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Abstract

This paper studies the role of consumption externalities on equilibrium
dynamics and long-run capital distribution of a neoclassical growth model
with heterogeneous agents. For simplicity and without loss of generality,
we reduce agents�heterogeneity to two types of agents who di¤er in their
initial wealth and discount factor. In contrast to the usual speci�cation
of macroeconomic literature, we assume that consumption externalities
in�uence the "intertemporal facet" of agents�preferences; i.e., the discount
rate. Our major contribution consists of the following two results. First,
we show that our speci�cation establishes a non-degenerate distribution
of capital in the steady state. That is, even if households discount their
future utility di¤erently, all of them own positive amount of capital at
equilibrium. Second, we show that this model can produce Hopf cycles at
some range of the parameter values
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1 Introduction

This paper studies the role of consumption externalities on equilibrium dynam-
ics of a neoclassical growth model with heterogeneous agents. For simplicity,
we reduce agents�heterogeneity to two types of agents who di¤er in their initial
wealth and discount factor. We depart from the usual speci�cation of dynamic
macroeconomic literature in which the external e¤ect of consumption is formu-
lated in a way that gives rise to "Jealousy" or "keeping-up with the Joneses"
feature. In particular, we assume that consumption externalities in�uence the
�intertemporal facet�of agents�preferences; i.e., the discount rate.
Our main objective is to study how the interaction between endogenous

discount rate and consumption externalities plays an important role in a¤ecting
the local dynamics.
This paper is related to two strand of literature. From one side, the way

consumption level is related to discounting is studied in previous literature.
Drugeon (1998) argues that high economy-wide consumption could be observed
as an indication to a high living standards of individuals in the society. There-
fore, a rise in aggregate consumption makes agents to discount less their future
utility and so they become more patient.1 Meng (2006) assumes that discount
rate depends on aggregate consumption and average income. The author shows
that local indeterminacy requires a positive e¤ect of average consumption on
the rate of time preference; that is, as the society consumes more, the agent
himself becomes even more impatient and is less willing to defer consumption.
Finally, Chen and Hsu (2007) consider an economy where agent�s discount rate
depends on his own consumption, while the aggregate consumption level enters
in the instantaneous utility function. They show that indeterminacy requires a
decreasing discount rate in individual consumption.
From another side, several papers showed that, in the model of Becker and

Foias (1987, 1994),2 it is possible to establish a non-degenerate capital distrib-
ution at the steady state in speci�c cases. For example, Sarte (1997) assumes
that agents who di¤er in their constant rates of impatience face a progressive
tax structure. Epstein and Hynes (1983); Lucas and Stokey (1984; and Boyd
(1986) assume that preferences are described by recursive utility functions.
Sorger (2002) shows that non-degenerate equilibrium could be also obtained
whenever households exercise market power on the capital market.
In this model, the discount rate di¤ers across agent, for one agent, it de-

pends on the other agent�s consumption level. We have two main results. First,
we show that all agents hold positive capital, at an equilibrium near a steady
state. In other terms, contrary to the existing literature including consump-
tion externalities such as Garcia-Penalosa and Turnovsky (2007) who obtain an

1As well, Drugeon (1998) argues that living standards of the society determines individuals
productivity e¢ ciency. To capture this idea, he introduces the aggregate consumption in the
production function.

2 In Becker and Foias (1987, 1994), whenever agents are heterogeneous with respect to their
discount rate, the most agent holds the entire capital stock of the economy at an equilibrium
near a steady state.
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equilibrium which is equivalent to the representative-agent model,3 our model
captures the heterogeneity across agents in the long-run.
Moreover, the interaction between endogenous discount rate and consump-

tion externalities plays an important role in a¤ecting the dynamics. That is,
we show that, for plausible values of elasticities of external e¤ects, the steady
state changes its stability through Hopf cycles. This is an added value to pre-
vious literature, endogenous cycles have been known to be possible in Ramsey
model with heterogeneous agents since Becker and Foias (1994) work. They
show that the occurrence of Flip bifurcation requires that the income of patient
agent is decreasing function of capital stock (su¢ ciently low input substitution)
and the intertemporal substitutability is weak. Subsequently, Bosi and Seeg-
muler (2007) showed that two-period cycles can also be observed in the model
of Becker and Foias (1994) augmented to include an endogenous labor supply,
under the restriction of very small elasticity of capital-labor substitution.
This paper is organised as follows. In the next section, we present the model.

Section 3 de�nes the intertemporal equilibrium and shows the existence of a
steady state. In section 4, we analyze the local dynamics. The last section
concludes.

2 The model

The economy we consider is populated by in�nitely-lived heterogeneous agents.
The heterogeneity stems from di¤erent initial wealth and di¤erent discount fac-
tor. For the sake of simplicity and without loss of generality, we consider two
types of agents, and denote the size of the ith class of households as ni which is
constant over time. Agents are assumed to be identical within each group and
so we consider a representative agent for each type.
In addition, agents are assumed to be status seekers. From one side, the util-

ity function of a representative agent of group i depends on own consumption as
well as on consumption level of a representative agent of the other group. From
the other side, consumption externalities in�uence the �intertemporal facet�of
agents�preferences; i.e., the discount rate.
Time is continuous and the enviroment is deterministic. A representative

agent of type i is endowed with ki;0 > 0, supplies inelastically one-unit of labor
at each period. Further, given a sequence of real interest rates on capital frtg
and wages rate fwtg, agent i chooses a sequence of consumption and capital
fci;t; ki;tg+1t=0 which maximizes his life-time utility function (1) under his budget
constraint (2):

max
ci;t;ki;t

Z 1

0

ui (ci;t; cj;t) exp

�
�
Z t

0

�i (cj;v) dv

�
dt (1)

3Garcia-Penalosa and Turnovsky (2007) study a neoclassical growth model with heteroge-
neous agents and consumption externalities. They assume that agents�preferences are quasi-
homothetic so that the aggregate behavior of the economy is independent of wealth distribu-
tion. Thus this framework generates an equilibrium which is equivalent to the representative-
agent model.
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subject to

:

ki;t = rtki;t + wtli;t � ci;t (2)

The utility function (1) satis�es the following assumption:

Assumption 1 For i 6= j, the instantaneous utility function ui (ci; cj),
is twice continuously di¤erentiable and satis�es ui;1 (ci; cj) > 0 > ui;11 (ci; cj).
Further, the time-preference rate �i (cj) > 0 is twice continuously di¤erentiable
and �0i (cj) 7 0.

Setting up the current-value Hamiltonian of agent i�s maximization problem,
H = ui (ci;t; cj;t) + �i;t [rtki;t + wtli;t � ci;t], where �i;t > 0 is the co-state vari-
able, �rst-order conditions with respect to consumption and to capital (Hc = 0
and Hk = �i;t�i (cj;t)�

:

�) imply the following four dynamic equations:

�i (cj;t)� rt =
ui;11ci;t
ui;1

:
ci;t
ci;t

+
ui;12cj;t
ui;1

:
cj;t
cj;t

(3)

:

ki;t = rtki;t + wtli;t � ci;t (4)

where (3) is the intertemporal Euler equation and (4) is the resources con-
straint. Further, a rational agent takes account of transversality condition in
choosing his optimal consumption and capital:

lim
t!+1

exp

�
�
Z t

0

�i (cj;v) dv

�
ui;1 (ci;t; cj;t) ki;t = 0 (5)

For the felicity function ui (ci; cj), we de�ne the following elasticities. First,
let "i;11 � ui;11ci=ui;1 be the elasticity of marginal utility of own consumption,
which has a negative sign. In addition, the elasticity of intertemporal substitu-
tion in own consumption equals �1="i;11. Second, let "i;12 � ui;12cj=ui;1 be the
elasticity of marginal utility with respect to the other agent�s consumption. The
sign of this elasticity depends on how agent i responds to the consumption level
of agent j. If agent i is a conformist who wants to be similar to agent j (keeping-
up with the Joneses) then "i;12 > 0. However, if agent i is an anti-conformist
who wants to be di¤erent from agent j (running-away from the Joneses) then
"i;12 < 0.
For the time-preference function �i (cj), we de�ne the elasticity �i = �

0
icj=�i,

which measures the sensitivity of discounting of agent i to the consumption
of agent j. In this framework, we leave open the possibility of increase in j�s
consumption producing a positive or a negative e¤et over i�s dicount rate.4

4Drugeon (1998) assumes that higher consumption level in the economy indicates to higher
standard of living which in turn leads individuals to discount less their future utility and so
they become more patient. However, Meng (2006) shows that local indeterminacy requires a
positive e¤ect of economy-wide consumption on time preference rate.
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On the production side, assume that �rms are identical. We consider an
exogenous production function F (Kt; Lt) which is homogeneous of degree one
and satis�es the following assumption:

Assumption 2 Let kt � Kt=Lt be the capital per capita. The technology
f (k) is a continuous function of the capital per capita k � 0, positive-valued
and di¤erentiable. Furthermore, f 00 (k) < 0 < f 0 (k), for k > 0, and f (0) = 0,
limk!0 f

0 (k) = +1 and limk!+1 f
0 (k) = 0.

A representative �rm is assumed to take the factor prices rt and wt and
technology F (Kt; Lt) as given and maximizes its pro�t. We then get

rt = f 0 (kt)

wt = f (kt)� ktf 0 (kt) (6)

For the production function, � � [kf 0 (k) =f � 1] f 0 (k) =kf 00 (k) is the elas-
ticity of capital-labor substitution, s � f 0 (k) k=f (k) 2 (0; 1] is the capital share
of the total income and �nally we have f 00k=f 0 = � (1� s) =�.

3 Intertemporal equilibrium

We start by giving a de�nition of an intertemporal equilibrium:

De�nition 1 An intertemporal equilibrium is a sequence
�
rt; wt;Kt; Lt; (ki;t; li;t; ci;t)

2
i=1

�
which satis�es the following conditions:

1. given the strictly positive sequence (rt; wt)
1
t=0, (Kt; Lt)

1
t=0 solves �rm�s

program for t = 0; 1; : : : ;1;

2. given (rt; wt)
1
t=0, (ki;t; li;t; ci;t)

1
t=1 solves the program of agent i, for i =

1; 2;

3. the capital market clears: Kt = n1k1;t + n2k2;t, for t = 0; 1; : : : ;1;

4. the labor market clears: Lt = n1 + n2, for t = 0; 1; : : : ;1;

5. the product market clears:
:

Kt = F (Kt; Lt)� Ct, where Ct =
P2

i=1 nici;t
is the aggregate consumption.

Let Ni � ni= (ni + nj) 2 [0; 1] be the relative size of the ith class of house-
holds, which is constant over time, with Ni+Nj = 1. The capital per capita at
time t is given by kt = Niki;t +Njkj;t. Further, we denote the share of capital
per capita supplied by type i at time t by �i � Niki;t=kt, with �i 2 [0; 1] and
�1 + �2 = 1.
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We can now characterize the four-dimensional system as follows:

Proposition 1 Let assumptions (1) and (2) hold. An intertemporal
equilibrium with perfect forsight is a sequence of fci;t; ki;tg+1t=0 that solves the
four-dimensional dynamic system that consists of Euler equations

� :
c1;t
:
c2;t

�
=

c1;tc2;t
"1;11"2;11 � "1;12"2;12

�
"2;11=c2;t �"1;12=c2;t
�"2;12=c1;t "1;11=c1;t

� �
�1 (c2;t)� f 0 (kt)
�2 (c1;t)� f 0 (kt)

�
(7)

and the resources constraints, for i = 1; 2,

:

ki;t = f
0 (kt) ki;t + f (kt)� ktf 0 (kt)� ci;t (8)

subject to the initial aggregate endowment ki;0 > 0 and the transversality
condition (5).

At the steady state:
:
ci;t = 0 and

:

ki;t = 0. We get (for i 6= j)

�i (cj) = f 0 (9)

ci = (ki � k) f 0 + f (10)

where k = Niki +Njkj and Ni � ni= (ni + nj) 2 [0; 1].

From the dynamic system (7)-(8), consumption externalities appear only in
Euler equations and have two e¤ects. From one hand, external e¤ects have
intertemporal e¤ect, that is, agent i�s marginal rate of substitution between
consumption at di¤erent dates is a¤ected by agent j�s consumption. This leads
agent i to substitute ine¢ ciently consumption across periods. We observe that
such an e¤ect disappears at the steady state. Consequently, whenever consump-
tion externalities are introduced in utility function, they result in an ine¢ cient
equilibrium path while do not a¤ect long-run equilibrium.5

From another hand, external e¤ects in consumption have an intratemporal
e¤ect as they not only in�uence the transition path but also the steady state
equilibrium.

4 Local dynamics

We linearize the four-dimensional system (7) and (8) around the symmetric
steady state (9) and (10). We get the four-dimensional linear system

"1;12 �2

:
c1;t
c1
�"2;11�1

:
c2;t
c2
+
(1� s) �1

�
("1;12 � "2;11)

:

k1;t
k1
+
(1� s) �2

�
("1;12 � "2;11)

:

k2;t
k2

= 0

(11)
5See Fisher and Hof (2000a, 2000b), Liu and Turnovsky (2005) and Alonso-Carrera et al.

(2004, 2005, 2006).
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"1;11 �2

:
c1;t
c1
�"2;12�1

:
c2;t
c2
� (1� s) �1

�
("2;12 � "1;11)

:

k1;t
k1
� (1� s) �2

�
("2;12 � "1;11)

:

k2;t
k2

= 0

(12)

(N1 (1� s) + s�1)
:
c1;t
c1
+

�
s�1 (1� s)

�
(�1 �N1)� s�1

� :

k1;t
k1
+
s (1� s)
�

�2 (�1 �N1)
:

k2;t
k2

= 0

(13)

((1� s)N2 + s�2)
:
c2;t
c2
+
s�1 (1� s)

�
(�2 �N2)

:

k1;t
k1
+

�
s�2 (1� s)

�
(�2 �N2)� s�2

� :

k2;t
k2

= 0

(14)

In the following, we will focus on the case with no consumption external
e¤ects in the felicity function.6 Further, we leave open the possibility of increase
in j�s consumption producing a positive or a negative e¤et over i�s dicount rate.7

Assumption 3 Let "1;12 = "2;12 = 0 and �i 7 0.

The linear system (11)-(14) can be written in matrix form as follows:2664
:
c1
:
c2
:

k1
:

k2

3775 = J
2664
c1;t � c1
c2;t � c2
k1;t � k1
k2;t � k2

3775 (15)

where J is the jacobian matrix.

The characteristic equation of J is

P (�) = �4 + b1�
3 + b2�

2 + b3�+ b4 = 0 (16)

where

b1 = � (�1 + �2 + �3 + �4)
b2 = �1�2 + �1�3 + �1�4 + �2�3 + �2�4 + �3�4

b3 = � (�1�2�3 + �1�2�4 + �2�3�4 + �1�3�4)
b4 = �1�2�3�4

6Barbar and Barinci (2009) show that the introduction of consumption externalities in a
model based on Becker and Foias (1994) only modi�es the range of parameters values giving
rise to cycles of period two. In other terms, consumption externalities in preferences do not
a¤ect local dynamics.

7Meng (2006) shows that the introduction of consumption externalities in time-preference
rate plays a crucial role in the appearence of local indeterminacy.
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which are given by

b1 = s

�
1� 1

�
(1� s) (2�1 � 1) (�1 �N1)

�
(17)

b2 = �1�2s
2 +

�1R1"2;11 � �2R2"1;11
�

� S�1�2 (18)

b3 =
s�1�2
�

("2;11R1 � "1;11R2)�
�2R2
�

S�2 �
�
�2 +

�1R1
�b1

�
b1S�1 (19)

b4 = �S�1�2s2
�
R2
s�
�2 +

�
�2 +

R1
s�

�
�1

�
(20)

where

R1 � (1� s) [s�1 + (1� s)N1] 2 (0; 1)

R2 � (1� s) [s�2 + (1� s)N2] 2 (0; 1)

S � �"1;11"2;11 < 0

In order to analyze the local stability of the steady state (9) and (10), we
study how the coe¢ cients of the characteristic polynomial (16) vary with some
parameters of interest. In particular, we want to examine the existence of Hopf
cycles, using the method provided by several papers such as Liu (1994); Asada
and Yoshida (2003) and Manfredi and Fanti (2004).8

Hopf bifurcation occurs whenever a pair of complex conjugated eigenval-
ues crosses the imaginary axis while the other eigenvalues have non-zero real
parts.9 According to Liu (1994), the best and simplest indicator to examine the
existence of a pair of purely imaginary eigenvalues is the higher-order Routh-
Hurwicz (RH) determinant which is given by

� =

������
b1 1 0
b3 b2 b1
0 b4 b3

������ = b1b2b3 � b23 � b21b4 (21)

In other terms, the characteristic polynomial (16) has (at least) one purely
imaginary pair eigenvalues if � = 010 is satis�ed at some critical value of the
parameter of interest.

8We focus our attention on the appearence of Hopf cycles since the analytical detection of
local indeterminacy is very hard in four-dimensional model.

9Liu (1994) refers to this de�nition as "General Hopf Bifurcation, GHB". However, if Hopf
cycles appear due to a pair of complex conjugate eigenvalues which crosses the imaginary axis
while the other �non-bifurcating�eigenvalues have negative real parts, Liu (1994) refers to this
type as "Simple Hopf Bifurcation, SHB". As the former is reducible to the later, we apply
the what is called "General Hopf Bifurcation, GHB" for our model.
10 In literature, such a condition is referred to as the "Hopf bifurcation boundary".
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For our four-dimensional system, we apply the method provided by Asada
and Yoshida (2003). Accordingly, Hopf cycles appear if and only if either of the
following two conditions is satis�ed:

(A) b1b3 > 0, b4 6= 0 and � = 0.

(B) b1 = 0, b3 = 0 and b4 < 0.

The paramets of interest are the elasticities of the external e¤ects (�1 and
�2) and the elasticity of capital-labor substitution �.

We choose �1 as the bifurcation parameter. Here we observe that b1 depends
only on the elasticity of input-substitution �. This makes rise the following cases
according to the sign of b1:

Case 1 If (�1 �N1) (2�1 � 1) > 0, then de�ne

�� � (1� s) (�1 �N1) (2�1 � 1)

1. Whenever � < ��, then b1 < 0, the appearence of Hopf cycles requires
b3 < 0, b4 6= 0 and � = 0.

2. Whenever � > ��, then b1 > 0, Hopf bifurcation requires b3 > 0, b4 6= 0
and � = 0.

3. Whenever � = ��, then b1 = 0, Hopf bifurcation requires that b3 = 0 and
b4 < 0.

Case 2 If (�1 �N1) (2�1 � 1) < 0, then b1 > 0. Hopf cycles require that b3 > 0,
b4 6= 0 and � = 0.

The following proposition characterizes the local dynamics, based on the
cases above.

Proposition 2 Consider the critical values �01;3, �1;H1 and �1;H2 that are
respectively given in the Appendix by (23), (28) and (29), we have the following:

1. Whenever � < ��: For �2 < ��1R1=�b1, the system changes its stability
through Hopf cycles at �1 = �1;H1, while for all �2 > ��1R1=�b1, Hopf
cycles appear at �1;H2.

2. Whenever � > �� or (�1 �N1) (2�1 � 1) < 0: For �2 < ��1R1=�b1, the
system changes its stability through Hopf bifurcation at �1 = �1;H1, while
for �2 > ��1R1=�b1, Hopf bifurcation occurs at �1 = �1;H2.

3. Whenever � = ��: The system changes its stability through Hopf cycles
at �1 = �

0
1;3.
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Proof :
(1) Whenever � < ��, b1 < 0 and so the appearence of Hopf cycles requires

b3 < 0, b4 6= 0 and � = 0. This leads to two cases:

(1:1) For �2 2 (�1;��1R1=�b1).

In this case, b3 increases with �1 and b3 = 0 at �1 = �
0
1;3. Thus, b3 < 0 for all

�1 < �
0
1;3. The appearence of Hopf bifurcation requires the existence of a

critical value for �1 which belongs to the interval
�
�1; �01;3

�
and di¤ers

from �01;4 [since b4
�
�01;4

�
= 0] and at which � = 0. To check this, we study

the properties of the RH determinant: � (�1) has a maximum at ��1, and
�
�
�01;3

�
< 0 and � ! �1, as �1 ! �1. As a result, there exists one

solution for � = 0 that is denoted by �1;H1 2
�
�1; �01;3

�
and given by

(28) if and only if Q > 0.

It could be directly observed that such a solution exists in two cases:

- Whenever �2 2 (�1;�R1=s�) and �01;4 < �01;3, Hopf bifurcation arises at
�1 = �1;H1, with �

�
�1;H1

�
= 0 and �1;H1 6= �01;4.

- Whenever �2 2 (�R1=s�;��1R1=�b1) and �01;4 > �01;3, the system changes its
stability at �1;H1 by the appearence of a purely imaginary pair generating
Hopf cycles.

(1:2) For �2 2 (��1R1=�b1;+1).

First, b3 decreases with �1 and b3 = 0 at �1 = �
0
1;3, thus b3 < 0 for all �1 > �

0
1;3.

Second, consider the RH determinant � (�1), for all �1 2
�
�01;3;+1

�
, we

note that �
�
�01;3

�
< 0 and �! +1 as �1 ! +1, and � has a minimum

at ��1. As a result, we deduce that there exists one solution, denoted by
�1;H2, such that �

�
�1;H2

�
= 0 and �1;H2 6= �01;4. Therefore, the system

changes its stability through Hopf bifurcation at �1 = �1;H2.

(2) Whenever � > �� or (�1 �N1) (2�1 � 1) < 0, we have b1 > 0. Thus
there exists a purely imaginary pair eigenvalues and so the system changes its
stability through Hopf cycles if and only if b3 > 0, b4 6= 0 and � = 0. Since
b1 > 0, there is at least one of the other eigenvalues with negative real part.

(2:1) For �2 2 (�1;��1R1=�b1).

First, b3 is decreasing in �1 and b3 = 0 at �1 = �
0
1;3. Therefore, b3 > 0 for all

�1 2
�
�1; �01;3

�
. Furthermore, the function � (�1) has a minimum at ��1,

�
�
�01;3

�
< 0 and � ! +1, as �1 ! �1. As a result, there exists one

critical value of �1 at which � = 0, denote it by �1;H1. Then Hopf cycles
appear at �1 = �1;H1, provided that �1;H1 6= �01;4.
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(2:2) For �2 2 (��1R1=�b1;+1).

First, b3 increases with �1 and b3 = 0 at �1 = �01;3. Therefore, b3 > 0 for all
�1 2

�
�01;3;+1

�
. Moreover, b4 6= 0 for all �1 6= �01;4. The appearance of

Hopf cycles requires the existence of at least one (at most two) critical
value of �1 2

�
�01;3;+1

�
at which � = 0 and that di¤ers from �01;4.

We observe that the function � (�1) has a maximum at ��1, �
�
�01;3

�
< 0 and

� ! �1, as �1 ! +1. Hopf cycles arise if and only if � (��1) > 0, that
is, Q > 0. Given that the later condition holds, Hopf bifurcation appears
at �1;H2 which belongs to

�
�01;3;+1

�
and at which � = 0.

(3) For � = �� then b1 = 0. The appearence of Hopf cycles require b3 = 0
and b4 < 0.
First, b3 = 0 at �1 = �01;3. Then �

0
1;3 is the critical value at which Hopf

cycles appear if and only if it belongs to the interval at which b4 < 0. In order
to determine this interval, two cases arise:

(3:1) For �2 2 (�1;�R1=s�), then b4 is decreasing in �1 and b4 = 0 at �1 =
�01;4. Thus b4 < 0 for all �1 2

�
�01;4;+1

�
. Hopf cycles arise i¤ �01;3 2�

�01;4;+1
�
.

(3:2) For �2 2 (�R1=s�;+1), then b4 is increasing in �1 and b4 = 0 at �1 =
�01;4. Thus b4 < 0 for all �1 2

�
�1; �01;4

�
. Hopf cycles arise i¤ �01;3 2�

�1; �01;4
�
.

In each of the above cases, we have just shown the existence of a pair of
complex conjugated eigenvalues which crosses the imaginary axis at �01;3.

5 Appendix

We compute the following critical values:
Let b2 (�1) = 0, we get �1 = �

0
1;2, where

�01;2 �
1

S�2

�
�1�2s

2 +
�1R1"2;11 � �2R2"1;11

�

�
(22)

Let b3 (�1) = 0, we get �1 = �
0
1;3, where

�01;3 �
s�1�2
� (R1"2;11 �R2"1;11)� �2R2

� S�2�
�2 +

�1R1

�b1

�
b1S

(23)

Let b4 (�1) = 0, we get �1 = �
0
1;4, where

�01;4 = �
R2

s� �2

�2 +
R1

s�

(24)
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Further, the function � (�1) is given by

� (�1) = �b21S2
�
�2 +

�1R1
�b1

�
�1R1
�b1

h
(�1 � ��1)

2 �Q
i

(25)

where

Q �
�
�01;3 � ��1

�2
+

�1�2s
2

�2 +
�1R1

�b1

�2 +
R1

s�

S

�01;3 � �01;4
�1R1

�b1

(26)

and

��1 =
1

2 �1R1

�b1

 �
�2 + 2

�1R1
�b1

�
�01;3 � �2�01;2 +

�1�2s
2

�2 +
�1R1

�b1

�2 +
R1

s�

S

!
(27)

which solves @�=@�1 = 0.

In addition,

�1;H1 � ��1 �
p
Q (28)

�1;H2 � ��1 +
p
Q (29)

are the solutions of � (�1) = 0 and satisfy @�
�
�1;H1

�
=@�1 6= 0 and @�

�
�1;H2

�
=@�1 6=

0.
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