
How Much Greener is Really Green? -
Carbon Taxation Design and Resource Extraction

May 1, 2009

Darko Jus1 Markus Zimmer2

- preliminary version -

Abstract

Recently, there have been increasing doubts that further increases in carbon
taxes, which enjoy an ever increasing public support, are a proper instrument
to slow down Global Warming. Indeed, our analysis confirms that, under some
assumptions, an acceleration of “green” policies leads to the opposite effect since
resource owners try to escape their misery by pushing today’s extraction even
more. However, it is not true in general, but depends on the long-run expecta-
tions of the resource owners and on the policy design itself. In any case, we are
able to suggest a carbon taxation design that has all desired properties, namely
being climate friendly and politically feasible.

Keywords: Global Warming, Carbon taxation, Optimal taxation

JEL Classification: Q38, Q54, H21

1Center for Economic Studies at University of Munich
Address: Schackstr. 4, 80539 Munich, Fon: +49 (0) 89 21 80 31 04, E-Mail:

darko.jus@lrz.uni-muenchen.de
2Ifo Institute for Economic Research at University of Munich
Address: Poschingerstr. 5, 81679 Munich, Fon: +49 (0) 89 92 24 12 60, zimmer@cesifo.de

1



1 Introduction
One of the biggest challenges humanity is facing in the twenty-first century is
Global Warming. Scientists with very different backgrounds are involved in the
policy debate on how to cope with this problem. Obviously, the vast majority
will argue that the industrialized nations have to reduce their demand for oil and
other hydrocarbons in order to emit less of the climate-damaging carbon dioxide
gas. But however logical this requirement seems it does not reflect reality: Even
though 175 countries have ratified the Kyoto protocol so far, carbon dioxide
emissions are still on a rising scale.

In general, a market for a good is characterized by a demand and a supply
side. In case of the hydrocarbon market, the supply side has been neglected
to a high degree, by both economists and politicians. However, since it is only
possible to consume fossil fuels that have been extracted beforehand, supply or
extraction of resources, respectively, is crucial for the accumulation of carbon
dioxide in the atmosphere. Hence, the market equilibrium is determined by the
demand for fossil fuels and by the supply, so that an analysis of both compo-
nents is necessary. Thus, the question arises whether today’s carbon taxation
design can actually induce resource owners to extract on a lower scale, given
the demand function for fossil fuels. In this context, [Sinn 2007] shows that a
gradually increasing tax on hydrocarbon may lead to more extraction in the
short-run as it changes the optimal time-path of the resource owner, i.e. it
makes extraction in the distant future more costly, and hence, extraction today
more favourable. Essentially, this kind of analysis goes back to the theory of
[Hotelling 1931].

The purpose of this article is to examine different carbon taxation designs in
a comprehensive dynamic-optimization model for a supplier of a non-renewable
resource. Thereby, we allow for any symmetric structure of the supply side,
since our analysis for oligopolistic producers includes the competitive market
and the monopoly as border cases. In general, we think of two phases in the
maximization problem of the resource owner: The first stage covers the period,
when current carbon taxation policies are already settled (until time T ), and the
second stage represents everything that comes afterwards, i.e. when no climate
targets are specified yet. The resource owner knows about the tax policy that
will be applied up to T , and forms expectations about the long-run policies
after T . Obviously, as T is in the distant future, it is reasonable to assume
that the resource owner will assess the remaining stock of his resource at a
certain value per unit. This value may actually be interpreted as the price of a
backstop-technology that becomes available in T , so that the carbon taxation
policy points towards this backstop-technology.3 An interesting question to ask
in this context is how the extraction path of the resource owner is affected when
the announced tax policy up to T is changed unexpectedly. The impact on the
climate is obviously positive if the policy ensures that extraction is postponed
to future periods, whereas it is negative if extraction is brought forward.

3See e.g. [Davison 1978], [Kamien/Schwartz 1978] and [Heal 1976] for a model with
backstop-technology.
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We show that the climate impact of a further greening of government policies,
i.e. an additional increase in the carbon taxes, highly depends on the carbon
taxation design itself, but also on the long-run expectations of the resource owner
and the internal rate of return that is demanded.4 The term carbon taxation
design means on the one hand the choice of a unit-tax or an ad-valorem tax,
and on the other hand the various implementation options by choosing a specific
functional form and thus a specific time path for the development of the tax.

In general, a further tax increase tends to be beneficial if the resource owner’s
long-run expectation regarding the tax is not affected by the present policy
change. In contrast, if he incorporates the increase in the tax trend entirely,
then this policy change will typically lead to more extraction in the short-run.
In the latter case, a reduction of the tax growth might be a climate friendly
option, however, as Global Warming advances, a tax-cut with respect to an
already defined policy framework will obviously not be an acceptable solution
in a political context.

However, we are able to specify for any given carbon tax time-path a trans-
formation term with three desirable properties: (1) it increases the carbon tax
rate at any point in time compared to the current time-path (2) it postpones
extraction to the interval after the period for which a reduction is intended (3)
it is independent of the long-run expectations of the resource owners. Thus, a
further tax increase can be clearly beneficial from a Global Warming perspective
if the carbon taxation design is appropriately chosen. A remarkable result of
our analysis is that the conditions for a tax increase to be positive or negative
for Global Warming are independent of the market structure, i.e. regardless of
the supply market being controlled by a cartel like the OPEC or being perfectly
competitive.

The remaining chapters of the paper is organized as follows: In Section
2 we use the maximum principle to solve a resource extraction problem in a
dynamic optimization model. Thereby, we derive an optimal extraction path
and an optimal price path under the assumption of differing profit functions for
the short-run and a long-run planning horizon of the resource owner. We then
analyze the effects of changes in the carbon taxation design for the extraction
path and prove for which functional form a further tax increase is beneficial
in the sense, that resource extraction is postponed to later points in time. We
also analyze the effects of differing expectations of the resource owner about the
persistence of a carbon tax increase. Complementary to our theoretical analysis,
we present in Section 3 data on current carbon taxation trends. In Section 4,
we summarize our results and propose policy measures.

2 Model: Dynamic Optimization
The purpose of our analysis is to get a deeper understanding of how a change in
the tax trend of a carbon tax affects extraction behaviour. Due to the dynamic

4[Farzin 1984] was first to describe the relationship between the discount factor and re-
source extraction.
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features of resource extraction, a dynamic optimization model is used. We
assume that the market consists of N identical resource owners, each of them
faces the objective function stated in (1), where pt is the price of the resource, Rt
the quantity extracted, ct the underlying cost function and vt the tax function.
As the resource owner has a time preference we introduce ρ as required internal
rate of return, being the discount rate. First we define the problem with a tax
that is independent of the price, however, we show afterwards that a similar
result can be derived for an ad-valorem tax as well.

max
Rt

ˆ ∞
0

e−ρt [pt(Rt) ·Rt − ct ·Rt − vt(θ) ·Rt] dt (1)

Ṡ = −Rt (2)

S(0) = S0 (3)

lim
t→∞

S(t) ≥ 0 (4)

The equation (2) states the law of motion that determines how much stock is
still in situ at time t. Moreover, equation (3) constitutes the initial condition
and equation (4) the terminal condition. Moreover, we divide the time horizon
of the resource owner into a “well informed” short-run and into an “uninformed”
long-run planning interval. The first planning interval is effective for t < T , and
we assume the resource owner to know the market structure (i.e. the demand
function) and the government announced tax policy. Thus, the inverse demand
and the tax remain functions of their original variables.

pt = pt (Rt) (5)

vt = vt(θ) (6)

For the long-term t ≥ T , i.e. when no climate targets are specified yet, the
resource owner has simple expectations regarding the tax policy and the market
price or his personal valuation of the remaining stock in situ, respectively, and
equations (7) and (8) become valid.5

pt = P (7)

vt = W + β · vT (θ) (8)

The parameter β ≥ 0 indicates the resource owner’s expectation about how
persistent the tax level at the end of the announced tax period is in the long-run.
For β < 1 he assumes that the tax level after time T will underproportionally
depend on the short-run tax level (however, the total tax level can still be higher
than in the short-run if W > 0), for β > 1 he expects the tax level to depend

5For simplicity we assume the “uninformed” long-run time horizon to begin at the same
point in time for the tax policy and for the demand structure. This assumption could be easily
relaxed, and we leave it to the reader to show the results with differing switching points.
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overproportionally on the short-run level. In general, the resource owner may
also assume that the tax is going to be reduced to a minimum levelW if e.g. the
climate goals are achieved by then or Global Warming has shown not to be that
dramatic as many expected it to be. Thus the constant W describes the part of
the tax expectation that is independent of the announced developments, while
the latter part describes influence of the current tax policy on the expectations.
The current value Hamiltonian takes the form shown in equation (9) and we
can apply the maximum principle to solve for the optimal extraction path.

Hc = pt(Rt) ·Rt − ct ·Rt − vt(θ) ·Rt − λt ·Rt (9)

∂Hc

∂Rt
=
∂pt(Rt) ·Rt

∂Rt
− ct − vt(θ)− λt

!= 0 (10)

λ̇t
!= ρ · λt −

∂Hc

∂St
(11)

We assume for the remainder of our analysis that the resource stock is big enough
so that it will not be exhausted before T . The complementary analysis of a
resource owner who actually depletes the resource completely by T is presented
in the Appendix. From (10), (11) and the conditions (7) and (8) we can derive
the shadow-price of a unit more stock at the beginning of the maximization
problem, λ0.

λ0 = e−ρT · [P − cT −W − β · vT (θ)] (12)

Since we aim to analyze the effect of different tax policies on the extraction
path explicitly, we assume a specific inverse demand function. In a very general
formulation let the inverse demand function satisfy equation (13), where Qt is
the total quantity supplied by all resource owners and A, B and α represent
parameters such that price is falling in total quantity supplied6. Additionally,
it seems reasonable to make the assumption that price must be nonpositive
when supply approaches infinity. This gives us the following condition on the
parameters A and α: If α < 0, then A ≤ 0.

p̃t (Qt) = A−B ·Qαt (13)

For a Cournot competition and with η being the market share of total supply of
the representative resource owner, the individual inverse demand function and
marginal revenue have the following form:

pt = A−B ·

[1− η] ·Qt + η ·Qt︸ ︷︷ ︸
Rt


α

(14)

∂pt (Rt) ·Rt
∂Rt

= [A−B · [[1− η] ·Qt +Rt]
α]−B ·

[
α · [[1− η] ·Qt +Rt]

α−1
]
·Rt
(15)

6Since the inverse demand function is monotonically decreasing we know that ∂pt/∂Qt =
−α ·B ·Qα−1

t < 0 and thus α ·B > 0.
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Since resource owners are all identical, we can substitute Rt = η ·Qt to include
the reaction of the other resource owners and thereby are able to derive the
effects in the total market in terms of a positive analysis. Therefore, we will use
for the remainder the following result7:

∂pt (Rt) ·Rt
∂Rt

= A−B · [1 + η · α]
ηα︸ ︷︷ ︸
m

Rαt (16)

εRt,pt =
1

η · α
·
[
1− A

B ·Qαt

]
=

1
η
· εQt,pt < −1 (17)

It is easy to see that in equation (17) the price-elasticity of supply of the par-
ticular resource owner is equal to the total price-elasticity if his market share η
is one. On the other hand, if his market share is very small as it is the case in
a competitive market, his price-elasticity approaches infinity. Thus, we are able
to study this model for any symmetric market structure between a monopoly
with only one resource owner and a competitive market with an infinite number
of resource owners. For the solution not to be trivial, the individually observed
price-elasticity has to be smaller than unity since it would otherwise always be
optimal to further reduce extraction for positive extraction quantities.

2.1 Cost function
Having discussed the revenue side of the objective function, we can now turn
our attention to the cost function of the resource owner. We draw our functional
form of the cost function from real world data since we provide a positive analysis
with our model. It is rather difficult to get the correct figures on the cost
of extraction, however, before simply making a false assumption, it may be
reasonable to have a look at some data that is available. In Figure 1 we see the
direct costs of extracting oil and gas for the 28 largest private companies for the
period 1981-2006. Obviously, the costs per barrel of oil-equivalent peaked at
points in time when the price of oil was high. In these periods, these companies
found it worthy to extract much, and therefore also exploited sources that are
more expensive. Another plausible explanation might be that the companies
decided to employ more capital and labour in order to extract more from a
given resource, but there exist decreasing returns to scale for these production
factors. In any case, the costs went down as the price got back to its expected
path. As a result, the extraction costs per barrel are observed to be rather
slightly falling over the last 25 years with a recent increase as the oil prices rose.
For our model - being supposed to serve actually for deriving policy advices
about changes in the tax rate - we assume the cost function to be linear in the
amount of extracted resource and time-constant while the results could be easily

7This result includes the solutions for a monopoly with A− 2 ·B ·Rαt and A−B ·Qαt for
the perfect competitive case
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generalized to a more complex cost function. Hence, we let ct = C, where C is
the constant marginal cost.

Figure 1: Direct costs of extracting oil and gas for the 28 largest private com-
panies for the period 1981-2006

Source: EIA

2.2 Results, unit tax
The optimal extraction path of the resource owner for a unit tax is described
by equation (18) where C is the marginal cost as described in Section 2.1.

Rt =
[
A− ct − vt(θ)− eρ[t−T ] · [P − C −W − β · vT (θ)]

m ·B

] 1
α

for t < T (18)

At first glance an interpretation seems difficult, however, we can simplify
the equation to get the intertemporal optimality condition in equation (19). It
states that the marginal profit of any period t must equal the present value of
the prespecified net price in the long-term. Moreover, at this point we get back
to one assumption we made regarding the inverse demand function, namely that
A ≤ 0 if α < 0. We must exclude the case that the marginal revenue is negative
in any period. The variable b can only be negative if α < −1. However, then
by assumption A would have to be negative which must not be the case. To get
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a reasonable result for our extraction path we therefore have to require α > −1
such that the variable m is positive in any case.

A−m ·B ·Rαt︸ ︷︷ ︸
marginal revenue

− C︸︷︷︸
marginal cost

− vt(θ)︸ ︷︷ ︸
marginal tax︸ ︷︷ ︸

marginal profit

= eρ[t−T ] · [P − C −W − β · vT (θ)]︸ ︷︷ ︸
PV of marginal profit of extraction in T

for t < T (19)

It should be noted that this result holds only if the stock S0 is large enough
so that the terminal condition is not violated. To allow for the resource to be
exhausted before T the approach has to be generalized as shown in appendix I.
An interesting observation is that as the planning horizon approaches infinity,
the intertemporal optimality condition reduces to the standard static optimality
condition of marginal revenue equalling marginal cost plus marginal tax.

Moreover, we are able to derive a rule that describes the relationship between
the internal rate of return and the price path (equation (20)). It is the Hotelling
equivalent rule for our problem.

ρ =
ṗt − ∂vt(θ)

∂t

pt −A+ A−C−vt(θ)
[1+η·α]

(20)

It is easy to see the familiar results for this rule by setting η = 1 for the monopoly
case or η = 0 for perfect competition.

2.2.1 Supply elasticities of a change in carbon taxation

We can now analyse what happens if green taxes increase as the fear of global
warming continues to rise. We present in Section 3, Figure 6, data on how
green taxes have developed in the past. But will a further increase in the tax
growth really lead to less extraction? For a carbon tax policy to mitigate global
warming it is necessary that this policy induces resource owners to postpone
extraction. Let us analyze the effect of a change in the tax trend θ on the
supply8. The supply elasticity of a change in this tax trend of the unit tax is
shown in equation (21).

εRt,θ =
∂Rt
∂θ

θ

Rt
=

θ

α ·m ·B
[Rt]

−α︸ ︷︷ ︸
⊕

·

β · eρ[t−T ] · ∂vT (θ)
∂θ︸ ︷︷ ︸

⊕ or 0

−∂vt(θ)
∂θ︸ ︷︷ ︸
	

 (21)

8We define the tax to be an increasing function of θ → ∂vt (θ) /∂θ > 0

8



We can see that the tax elasticity of supply is indepentent of the market
structure and only depends on the term in the last parenthesis. The tax-policy
is neutral for any given period if the term in this last parenthesis is equal to
zero, since the product of all other variables is strictly positive. If the term
is negative the policy change will reduce extraction in that period, and it will
increase extraction if the term is positive. Let us recall that β measures the
resource owners expectations of the effect of a change in the current tax-policy
on the taxes after the period for which the tax-policy is announced. If β = 0,
then the policy change does not affect the expectation with regard to the long-
run taxes. If β = 1 then the resource owner expects the policy change to persist
in the long-term on a one to one basis. For a given tax function we can now
determine the “policy-neutral” level of β in any period by setting the term in
the parenthesis equal to zero.

Figure 2: Climate neutral expectations

In equation (22) we show the condition for a tax change to be neutral at time
t. If a tax increase is not optimal in the way as we specify it in Section 2.3, the
tax increase will lead to more extraction at the beginning of the maximization
problem. More extraction will persist until the neutrality-condition becomes
valid for the first time. Thereafter, less extraction takes place either until the
condition becomes valid once more or time T is reached.
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β(t) = eρ[T−t] · ∂vt(θ)/∂θ
∂vT (θ)/∂θ

(22)

If we now observe this condition exemplarily for a the tax being an arbitrary
linear function of time then β (t) = eρ[T−t] · t/T . Figure 2 shows the effect of
different discount rates for the neutrality of a tax increase. The repective fuction
that describe the values of β (t) for which the tax increase would be extraction
neutral becomes more concave as the discount rate rises, and thus the area
under the function in which the tax increase is beneficial for the environment
gets larger.

2.3 Optimal tax policy
Having a close look at equation (21) again we can see that the sufficient condition
for a tax increase to be strictly beneficial is β ·eρ[t−T ] ·∂vT (θ)/∂θ = 0 since than
the elasticity will be stricly negative. This is either the case if β = 0 and thus the
tax increase does not affect long run expectations, or if the tax rate in the long
run stays unchanged. Figure 3 displays a stylized optimal tax policy according
to that condition. Any policy that changes the tax path such that it is higher
than before for t < T but not for t ≥ T is optimal in a way that it will postpone
extraction to the long-run.

Thus an optimal policy crucially depends on its credibility. Its focus should
be not to rise the expectations about long-run taxes (i.e. in model terms: an
increase in β) and policy makers should then strictly stick to the aimed long-
run taxation level. Both of these advices seem to be interconnected in reality
and become more difficult to achieve as the end of the period for which the
tax policy is initially announced comes closer. Additionally the time scope
for environmental policy is then limited to the period for wich a tax policy is
currently known (and believed). Any announcment which is higher than the
current policy for T or the current expectations for t > T will accelerate todays
extraction. Increasing taxes in the short-run will postpone extraction if it is
credible that the expected tax levels in T and beyond will not be affected.
However, it seems questionable that this policy might be credible. The basic
question is whether those tax increases implicitly change the expectations, or
whether they can be evaluated separately.

2.4 Results, ad-valorem tax
If we assume that there exists an ad-valorem tax instead of a unit tax, the
orginally stated maximization problem remains unchanged. However, the rev-
enue function is now ϕt(θ) · Rt · pt = ϕt(θ) · Rt · (A−B · [[1− η] ·Qt +Rt]

α)
and the term previously describing the unit-tax disappears.9The new optimal
extraction path is described by equation (23).

9The tax function has now the following property: ∂ϕt(θ)
∂θ

< 0.
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Figure 3: optimal tax

Rt =
[
ϕt(θ) ·A− C − eρ[t−T ] · [ϕT (θ) · P − C]

ϕt(θ) ·m ·B

] 1
α

for t < T (23)

Again we can simplify the equation to get the intertemporal optimality con-
dition in equation (24). It states that the marginal profit of any period t must
equal the present value of the marginal profit in T .

ϕt(θ) · (A−m ·B ·Rαt )︸ ︷︷ ︸
marginal revenue net of tax

− C︸︷︷︸
marginal cost︸ ︷︷ ︸

marginal profit

= eρ[t−T ] · [ϕT (θ) · P − C]︸ ︷︷ ︸
PV of marginal profit in T

(24)

2.4.1 Supply elasticities of change in carbon taxation, ad-valorem

We can analyse the effect on the supply of a change in the tax growth. Since it
is not very convincing that green taxes will remain constant forever as the fear
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of global warming will continue to rise, this is the interesting case. We show the
elasticity of supply for a change in tax growth in equation (25).

εRt,θ =
θ

α ·m · B

[
A−

C + eρ[t−T ] · [ϕT (θ) · P − C]

ϕt(θ)

]−1

·
1

ϕt(θ)2︸ ︷︷ ︸
⊕

·

∂ϕt(θ)∂θ
·
[
C + e

ρ(t−T )
(P − β · P + β · P · ϕT (θ)− C)

]
︸ ︷︷ ︸

	

−β · eρ(t−T ) · P · ϕt(θ) ·
∂ϕT (θ)

∂θ︸ ︷︷ ︸
⊕ or 0


(25)

As for the unit-tax, the sign of the elasticity is determined by only one
term, this time being the last factor of the product. Once again, the elasticity
is clearly negative if β is zero or the change in taxation has no effect on the
long-run taxation. Therefore, our qualitative results for the unit-tax hold also
for an ad-valorem tax and in principle there is no advantage or disadvantage in
choosing an ad-valorem tax instead of a unit-tax.

2.5 Short-run and long-run planning horizon
For our analysis we assume the overall planning horizon of the resource owner
to be devided into a short-run period and a long-run period. We define the
short-run period as the time, for which the resource owner is informed about
governments’ climate targets and about the demand function. In practice, you
might think of the short-run being associated with the period for which the
Kyoto agreement is already defined. Those announcements are included in the
maximization problem on a one to one basis. Moreover, the resource owner
forms expectations about the tax regime after current climate target dates will
be reached. We leave these expectations very general as we define the long-run
carbon tax as the sum of some constant and a share of the announced tax rate
at the end of the short-run, where the share also may exceed unity. In general,
it is also reasonable to assume that a resource owner has only vague knowledge
about long-run demand. It is uncertain whether a backstop-technology will arise
at some point, and limit the price of the resource. Therefore, a resource owner
will include a long-run price in his today’s maximization problem, which reflects
his valuation of a unit of the resource that is not extracted at the end of the
short-run. If he assumes a backstop-technology to be in place by the end of
his short-run planning horizon, then his valuation is limited by the price of the
backstop-technology. Certainly the resource owner’s information on the demand
and on the government tax policies may have different end points, however, this
factum does not change the results, so we consider only the case in which both
coincide.
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2.6 Two-period interpretation of the results
Our previous analysis can easily be illustrated in a two period diagram, where
we use our definitions for the short-run and the long-run as before. Obviously,
the two-periods illustration is less powerful than the previously derived extrac-
tion path, since it does not incorporate the adjustments within the short-run,
but only the overall extracted quantity. However, it is still powerful enough
to demonstrate the main effects. Using equation (18) to substitute Rt in the
solution to the differential equation in (2) and defining the present value of the
short run marginal profit in t as MP ≡ e−ρt · [A−m ·B ·Rαt − C − vt (θ)] in
equation (19) we can determine S̃, the extraction until T , as:

S̃ =
ˆ T

0

[
A− C − vt (θ)− eρt ·MP

m ·B

] 1
α

dt for t < T (26)

Assuming for simplicity a linear demand function (α = 1) it is trival to see that
∂S̃/∂MP < 0. Knowing that the present value of the marginal profit is equal
in all periods it holds for the long run marginal profit that MPT = MP for
t ≥ T . Now we can take the inverse of both functions to display the relation as
shown in Figure 4. The figure allows an easy interpretation on how the long-run
carbon tax expectation of the resource owner influences the extraction decision.
In particular, the example explains that no increase in carbon taxation itself is
necessary for a shift of extraction to the short-run to occur. If the resource owner
begins to belief that the short-run carbon taxes will persist to a higher degree
in the long-run (e.g. β ↑ or vT (θ) ↑), he will consequently bring extraction
forward to the short-run period. In contrast, if governments could convince
resource owners that the carbon taxation policies will be relaxed in the long-
run, e.g. after climate targets are achieved, the long-run marginal profit curve
would shift upwards. Then extraction would be postponed into the long-run.

Figure 5 describes a particular situation, in which carbon taxes actually do
change. However, as the long-run marginal profit curve remains unaffected, this
tax policy is conform to our optimal tax policy. Therefore, we observe that
less is extracted in the short-run and more is postponed to the second period.
This conclusion, however, must not be generalized to all tax increases, as a
specification that does not match our optimality conditions also shifts the long-
run marginal profit curve. For this case, the two-period presentation is not a
suitable method since the extraction behaviour within the short-run period is
not clear-cut.
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Figure 4: Change in expectations

Figure 5: Change in the tax-policy
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3 Current trends in taxation
Complementary to our theoretical analysis, we present in this section data on
current carbon taxation trends. In principle, this article is an in-depth discus-
sion of policies becoming greener over time with the aim of mitigating global
warming. We have left it open so far whether the common feeling of carbon
taxes increasing over time can be confirmed by data. However, Figure 6 verifies
this hypothesis quite strongly. In the period from 1994-2005 the tax revenue
per metric ton of carbon dioxide emitted increased from US$ 57 to US$ 84, in
real terms.10 Especially the increase after 2001 is remarkable; there is no doubt
that OECD policies are recently becoming greener.

Figure 6: Tax revenues development

Source: own calculations, EEA, IMF, EIA

The Scandinavian countries (Denmark, Norway, and Sweden) and Switzer-
land have the highest carbon taxes within the OECD in 2005 (Figure 7). More-
over, the two by far biggest polluters, the United States and Japan, maintain
a very low tax level compared to almost all other member states. Although,
carbon taxes are increasing by almost 4 percent on average in the OECD, the
developments in the single member countries are rather different (see Figure 8).
Turkey reports the highest growth rates, however, as we have seen previously it
started from quite a low level in 1994. It is again the Scandinavian countries,
and here also the some Eastern European countries that have the fastest green-
ing policies. On the other hand, only Greece, South Korea and Mexico have
lowered their taxes on carbon dioxide emission in the period 1994-2005.-

10Figure 6 displays total OECD tax revenue in US$ devided by total OECD carbon dioxide
emissions.
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Figure 7: Tax revenues 1995 vs. 2005

Source: own calculations, EEA, IMF, EIA

Figure 8: Tax revenue growth

Source: own calculations, EEA, IMF, EIA

In general, we find broad confirmation of the hypothesis that carbon taxes
are rising over time. Thus our analysis is all the more useful, as we have shown
which effects may occur when governments increase taxes in a non-optimal way.
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4 Conclusion
One of the biggest challenges humanity is facing in the twenty-first century is
Global Warming. Recently, there have been increasing doubts that further in-
creases in carbon taxes, which enjoy an ever increasing public support, are a
proper instrument to slow down Global Warming. Indeed, our analysis con-
firms recent findings that, typically, an accelaration of green policies leads to
the opposite effect since resource owners try to escape their misery by pushing
today’s extraction even more. A highly important result of our model is that the
long-run expectations of resource owners play a key role for the climate impact
of increases in carbon taxation. We have shown that an increase in taxation is
clearly beneficial whenever long-run tax expectations remain unchanged. Also,
it is important that tax increases in the short-run do not spillover to the long-
run tax level. If a tax is designed in such a way that it rises taxation level up
to some point in time, but does not change the long-run taxes, then we show
that extraction will be postponed.

Nevertheless, it seems questionable whether a tax increase in the short-
run can be accomplished that does not alter long-run expectations. Today’s
tax increases and long-run tax levels seem naturally connected, however, it
does not need to be the case if announcements are made credibly. Climate
policies should be settled up to some point in time, and should be announced
not to increase anymore afterwards. Especially, if a backstop-technology will
be available eventually, it may not be necessary to increase taxes anymore so
that this policy is also conform to current climate goals. As other climate
options, e.g. directly limiting the global demand are politically not feasible
at the moment (as negotiations about the post-Kyoto agreement show), it is
advisable to design a carbon tax regime that will slow down global warming.
Based on our analysis, we therefore suggest to increase carbon taxes, however,
simultaneously to specify an end point for this policy change, which must be
communicated credibly to resource owners.
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5 Appendix
Short-run depletion in the simple case:

As we have analysed in the main part of this article a situation in which the
resource owner does not deplete the resource completely in the short-run, we
can restudy our results for the situation when the resource owner exhausts the
stock by time T . Then:

λ0 > e−ρT · [P − C −W − β · vT (θ)] (27)

Rt =
[
A− C − vt(θ)− eρt · λ0

m ·B

] 1
α

(28)

S0 =
ˆ T

0

[
A− C − vt(θ)− eρt · λ0

m ·B

] 1
α

dt (29)

For the case of a linear inverse demand function (α = 1 ):

λ0 = T · ρ

eρT − 1
·

[
A− S0

T
·m ·B − C −

´ T
0
vt(θ)dt
T

]
(30)

Rt =
1

m · B
·
[
A− C − vt(θ)−

eρt

eρT − 1
· ρ ·

[
A · T − S0 ·m · B − T · C −

ˆ T
0
vt(θ)dt

]]
(31)
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A−m ·B ·Rt︸ ︷︷ ︸
marginal revenue

− ct︸︷︷︸
marginal cost

− vt(θ)︸ ︷︷ ︸
marginal tax︸ ︷︷ ︸

marginal profit

= eρt · T · ρ

eρT − 1
·

[
A− S0

T
·m ·B − C −

´ T
0
vt(θ)dt

T

]
︸ ︷︷ ︸

PV of marginal profit of extraction in T

(32)

Thus the implications for the sufficient condition for a tax increase to be envi-
romentally beneficial are the same as before.

εRt,θ =
∂Rt
∂θ

θ

Rt
=

1
m ·B

· θ
Rt︸ ︷︷ ︸

⊕

·

 eρt · ρ
eρT − 1

·
ˆ T

0

∂vt(θ)
∂θ

dt︸ ︷︷ ︸
⊕ or 0

−∂vt(θ)
∂θ︸ ︷︷ ︸
	

 (33)

Special case ρ→ 0:

Rt =
S0

T
+

1
m ·B

·

[
1
T
·
ˆ T

0

vt(θ)dt− vt(θ)

]
(34)

Under constant marginal extraction costs, extraction is equally distributed over
time if the current marginal tax is equal to the average marginal tax at any
point in time. If this not true, then there exists an adjustment which depends
on the difference between the current marginal tax and the average marginal
tax. Note that [eρt · T · ρ] /

[
eρT − 1

]
→ 1/T as eρT = 1 for ρ = 0 and for a

marginal variation ρ = 0+ε the first order approximation (which is equal to the
true value for a marginal variation around a known value) of the exponential
function is eρT = 1 + ρT .

Special case T →∞:

A−m ·B ·Rt︸ ︷︷ ︸
marginal revenue

= C︸︷︷︸
marginal cost

+ vt(θ)︸ ︷︷ ︸
marginal tax

(35)

This can easily be seen from equation (32) where the term in brackets must be
non-negative as otherwise extraction cannot be profitable. Also, it is true that
T/
[
eρT − 1

]
→ 0 for T →∞.
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A general approach to the maximization problem if the ressource is

not depleted in the short-run:

We can formulate the problem in a more general way since we know that in the
short-run the elasticity of marginal revenue MR (Rt) for a change in the tax
development θ has the opposite sign of the elasticity of supply Rt for a change
in the tax develpment θ. From equation (9) and equation (11) we can derive
the general optimality condition (36).

∂pt(R?t ) ·R?t
∂R?t︸ ︷︷ ︸

MR(R?t )

= C + vt(θ) + eρ[t−T ] · λ?T (36)

Which is the optimal solution to the following generalized dynamic maximiza-
tion problem in which not all remaining stock is liquidated in T .

max
Rt

ˆ T

0

e−ρt [pt(Rt) ·Rt − C ·Rt − vt(θ) ·Rt] dt

+
ˆ ∞
T

e−ρt [pt(Rt) ·Rt − C ·Rt −W + β · vT (θ) ·Rt] dt (37)

s.t. pt(Rt) ≤ P for t ≥ T (38)

Where the asterix indicates that these are the optimal values as they fol-
low from the solution to the dynamic optimization problem. Additionally, since
λ?T = λT (ST (R?t (θ)) ,W + β · vT (θ) , C), the marginal profit in T is the refer-
ence point for any current point in time. This specifiction is more general than
the one before since we allow λ?T to decline in the optimal stock ST (R?t ) that is
left at time T .

Totally differentiating equation (36) while keeping ct constant, we derive:
∂MR (R?t )

∂R?t
· dR?t +

∂MR (R?t )

∂R?t
·
∂R?t
∂θ
· dθ =

∂vt(θ)

∂θ
· dθ + eρ[t−T ] ∂λT (ST (R?t ) ,W + β · vT (θ) , C)

∂ST (R?t )
·
∂ST (R?t )

∂R?t
· dR?t

+eρ[t−T ] ·
[
∂λT (ST (R?t ) ,W + β · vT (θ) , C)

∂vT (θ)
·
∂vT (θ)

∂θ
· dθ

+
∂λT (ST (R?t ) ,W + β · vT (θ) , cT )

∂ST (R?t )
·
∂ST (R?t )

∂R?t
·
∂R?t
∂θ
· dθ

]
(39)

This can used to define the elasticity of supply for a marginal change in θ
given the current optimal extraction path:

εR?t ,θ =

∂vt(θ)
∂θ

+ eρ[t−T ] · ∂λT (ST (R?t ),W+β·vT (θ),C)
∂vT (θ)

· ∂vT (θ)
∂θ

∂MR(R?t )
∂R?t

− eρ[t−T ] · ∂λT (ST (R?t ),W+β·vT (θ),C)
∂ST (R?t )

· ∂ST (R?t )
∂R?t

· θ
R?t
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−∂R
?
t

∂θ
· θ
R?t
·

∂MR(R?t )
∂R?t

− eρ[t−T ] · ∂λT (ST (R?t ),W+β·vT (θ),C)
∂ST (R?t )

· ∂ST (R?t )
∂R?t

∂MR(R?t )
∂R?t

− eρ[t−T ] · ∂λT (ST (R?t ),W+β·vT (θ),C)
∂ST (R?t )

· ∂ST (R?t )
∂R?t

(40)

εR?t ,θ =

∂vt(θ)
∂θ

+ eρ[t−T ] · ∂λT (ST (R?t ),W+β·vT (θ),C)
∂vT (θ)

· ∂vT (θ)
∂θ

∂MR(R?t )
∂R?t

− eρ[t−T ] · ∂λT (ST (R?t ),W+β·vT (θ),C)
∂ST (R?t )

· ∂ST (R?t )
∂R?t

· θ
R?t
− εR?t ,θ (41)

εR?t ,θ =
1

2
·

∂vt(θ)
∂θ

+ eρ[t−T ] · ∂λT (ST (R?t ),W+β·vT (θ),C)
∂vT (θ)

· ∂vT (θ)
∂θ

∂MR(R?t )
∂R?t

− eρ[t−T ] · ∂λT (ST (R?t ),W+β·vT (θ),C)
∂ST (R?t )

· ∂ST (R?t )
∂R?t

· θ
R?t

(42)

The denominator is negative since the first order effect of a rise in R?t on the
marginal revenue is negative and dominates the second order effect on λ?T .
Thus as seen for the special cases, the sign of the elasticity depends only on
the nominator, since the denominator is clearly negative and the ratio θ/R?t is
positive. Therefore, the sufficient condition for a tax increase to be beneficial
remains ∂vT (θ) /∂θ = 0. However, more precisely, the necessary condition is:

∂vt(θ)
∂θ

+ eρ[t−T ] · ∂λT (ST (R?t ) ,W + β · vT (θ) , C)
∂vT (θ)

· ∂vT (θ)
∂θ

> 0 (43)

Setting t = T in the above equation and using condition (8) we can define a
constant:

∂λT (ST (R?t ) ,W + β · vT (θ) , C)
∂vT (θ)

· ∂vT (θ)
∂θ

= −∂W + β · vT (θ)
∂θ

(44)

Substituting equation (44) in equation (43) we get the condition for a tax change
to be extraction neutral:

∂vt(θ)
∂θ

− eρ[t−T ] · ∂W + β · vT (θ)
∂θ

= 0 (45)

or
∂vt(θ)
∂θ

= eρ[t−T ] · ∂W + β · vT (θ)
∂θ

(46)

Thus, for a tax increase that also raises the tax in T to be environmentally
beneficial, the tax increase in any other period t < T must be be larger than
the net present value of the expected tax change in T .

∂vt(θ)
∂θ

> eρ[t−T ] · ∂W + β · vT (θ)
∂θ

(47)
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Derivation of the price-elasticity of supply:

pt = A−B ·

[1− η] ·Qt + η ·Qt︸ ︷︷ ︸
Rt


α

(48)

εpt,Rt = α · B · [[1− η] ·Qt +Rt]
α−1

Rt
A+B · [[1− η] ·Qt +Rt]

α (49)

εpt,Rt = α · B · [[1− η] ·Qt + η ·Qt]α−1
η ·Qt

A+B · [[1− η] ·Qt + η ·Qt]α
(50)

εRt,pt =
1

η · α
· A+B · [[1− η] ·Qt + η ·Qt]α

B · [[1− η] ·Qt + η ·Qt]α−1 ·Qt
(51)

εRt,pt =
1

η · α
·

[
[1− η] ·Qt + η ·Qt

Qt
+

A

B · [[1− η] ·Qt + η ·Qt]α−1 ·Qt

]
(52)

εRt,pt =
1

η · α
·
[
1 +

A

B ·Qαt

]
=

1
η
· εQt,pt (53)
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