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Abstract

In multi-round reverse combinatorial auctions bigdsubmit bids to supply single items or
bundles of items in a sequence of rounds. At tlteadreach round the auctioneer computes
the provisional allocations and provides feedbakémnplied item prices to facilitate bidding
process. Ask prices could be either on bundlesnandividual items. Individual prices may
be same for all bidders (anonymous) or vary frooder to bidder (non-anonymous). For a
bundle, sum of its items prices may be equal (Hhea unequal (non-linear) to its price.
Auction designs based on linear anonymous prices haen successfully tested and applied
in different experimental and practical contextshas been observed that they can offer
flexibility and achieve substantial efficiency faombinatorial auctions. However, linear
pricing schemes have rarely been used for casese e items or services auctioned can be
offered at different levels (e.g. areas conservezpecies protected) rather than being distinct
items (e.g. airport landing slots). Theoreticalthe former resemble multi-unit reverse
combinatorial auctions and are more appropriaten&tural resource conservation problems.
This paper focuses on testing pricing schemesdorbinatorial biodiversity auctions where
farmers are contracted to conserve packages otttapecies populations. We report
performance measures for linear pricing schemesdas the Resource Allocation Design
(RAD; DeMartini et al., 1998; Kwasnica et al., 2Q0@Hd nucleolus algorithms (Dunford et
al., 2007). An agent-based computational modelseduo thoroughly compare the pricing
schemes in terms of allocative and budgetary efiicy outcomes for different levels of
competition and heterogeneity in the bidder resmaral cost structures.
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1. Introduction

Combinatorial auction allows simultaneous tradifignultiple items as participants can bid

on combinations or packages of items (Rek®d Rothkopf, 2003). The bidders have
flexibility in expressing their preferences as thesictions allow them to nominate prices for
individual or combination of items (Cramton et 2006). This design is helpful in the trading

of complementary goods, as the bidders can exfitegsprecise valuations for any collection

of items (de Vries and Vohra, 2003). Combinatoaiattions are frequently used in trading a
variety of related items such as office equipmebtss routes, radio spectrum licences and
take-off and landing slots at airports (Jehiel &aldovanu, 2003). Stoneham et al. (2005)
have proposed that combinatorial auctions can bd ts manage additive natural resources,
such as allocation of areas of native timber oraflecation of aquaculture sites.
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In terms of timing, combinatorial auctions could dither continuous or round based (for a
review of the design space of combinatorial auctea Parkes, 2006). In continuous auction,
a timer is started and bids are submitted. The thdsfit within the logistic and feasibility
constraints of the auction are posted. New bidsbeaplaced at any time. The auction ends if
no allocation-changing bids are submitted durirfixed period of time (Porter et al., 2003).
The round-based auction could be composed of siogleultiple rounds. In multi-round
auctions, bids are submitted in a sequence. Ateh eound a winner determination problem
(WDP) is solved to determine a set of provisionlcations. Information related to the state
of the market (such as the winners and pricespssaal and a new round is then started. Often
activity rules for bid submission are imposed t@mpt faster convergence of auction
outcomes. The auction may end after a set numbeowids or when there are no new
winners or no new bids (Porter et al., 2003).

A key feature of combinatorial auctions is that #uetioneer facilitates bidding by providing
information on item prices. The prices are basegmmvisional allocations for the current
round and reflect the prices implied by these fmiowial allocations. Ideally, one would want
these feedback prices to be such that the valweirofing packages are equal to the actual
bids at these prices, while the losing packagesldhme deemed less valuable at these prices
relative to the actual bids (see Xia et al., 2004details). If these prices are per-item prices
(also known adinear prices) the feedback would be intuitive and easy to usided for
bidders for several reasons (Pikovsky, 2008). lgirenly a limited number of prices have to
be communicated in each round. This reduces thenitigy computational, and
communication burden placed on the bidders andhenauctioneer (Xia et al., 2004).
Secondly, it gives guidance to bid formation andleation. A bidder can easily estimate
values for different bundles, even if no bid wabmitted for this bundle in previous rounds.
So, such auctions tend to be simpler to bid onfaster, and require less communication and
computation and thus are feasible for a larger rarmobitems (Kwon et al., 2005).

Auction designs based on linear prices have beecessfully tested and applied in different
experimental and practical contexts. It has beesemed that they can offer flexibility and
achieve substantial efficiency for combinatoriatttans. There are couple of algorithms for
calculating linear prices (for a review see PikgysR008). These include the Resource
Allocation Design (RAD) which was first proposed BDeMartini et al. (1999) and the
nucleolus algorithm (proposed by Dunford et alQ20 RAD has been extensively tested in
laboratory and simulation experiments and usedffardnt practical contexts (Goeree et al.,
2007). The concept of a nucleolus is a key conicepbalitional game theory, which has been
recently applied in combinatorial auctions (Dunfcetl al., 2007). Both algorithms are
interesting and offer advantages over earlier #lyos, so we have chosen them for study.
However, the focus in the combinatorial auctioerfiture so far has been on auctions for
distinct item$, i.e. items that do not come in multiple quangitieAs a result, these schemes
have not yet been tested for cases where the iberservices auctioned can be offered at
different levels. In natural resource managemdm, interest is likely to be in designing
auctions for cases where bidders can offer diftesemvices with each service coming at
different levels. For example, a farmer is capaifleindertaking conservation activities to
benefit individual or multiple species but the leg€benefit can also be varied for each line
of benefit.

This paper focuses on testing linear pricing sctsefoe combinatorial biodiversity auctions

where farmers are contracted to conserve packafesrget species populations. We
construct an agent-based model to examine therp@fce of the designs. The simulated
auctions are procurement auctions where a govermageamt has a target conservation level
and is running a combinatorial auction to allocatntracts. The bidders resemble a

2 Aparicio et al. (2008) have developed a Data Empralent Analysis (DEA) based linear pricing schens focuses on multi-
unit forward combinatorial auction. In this paper study multi-unit reverse combinatorial auction
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population of farmers with different conservatioapacities and cost structures. Bidders
submit packages indicating the type and level @fcgs conservation they are willing to
undertake and the prices they would like to be .pAidactions run for a fixed number of
rounds and, in response to price feedback frongtivernment agent, bidders use simple bid
updating rules to revise their bids with the objextof winning the contracts. The
performance of each auction format is evaluateddifferent levels of competition. The
comparative analysis is also undertaken for differevels of heterogeneity in terms of
capacity and cost structures of the bidder popnati

The remainder of the paper is organized as folldwsSection 2, we discuss combinatorial
allocation problem for biodiversity auction. Werimduce linear pricing concept in Section 3.
Several candidate linear pricing schemes are redew Section 4. We discuss the
modifications we have done to the algorithms tooaumodate the multi-unit nature of our
combinatorial auctions. In Section 5, we providee tframework for the simulation
experiments. Results are presented and discuss®ektion 6. In Section 7, we conclude the
paper.

2. Combinatorial biodiversity auction

In conservation auctions, contracts are allocatedirtdertake environmental conservation
activities based on project proposals and pricas fthe participating farmers. The amount of
private information that farmers have extends bdyawst on individual items to the nature of
cost complementarity among different levels or §/pé projects. For example, the presence
of ecological complementarity and inter-dependeacaong the species as well as the
presence of jointness in conservation technologghinimean that the cost of undertaking
projects with multiple objectives is lower from vitene can deduce by looking at individual
projects. Different farmers may have cost and bersfvantages for different types of
activities. Combinatorial auction, which allows tiidg on single as well as packages of
items, can make it possible to exploit these pakmrtdvantages (Parkes, 2006). Farmers
would have the opportunity to present more inforamabn the nature of projects they can
undertake and the procuring agency would have rfiexaility in meeting its target under
these auctions.

Iftekhar et al. (2009) have espoused the idea ofb@matorial biodiversity auctions that can

be used for allocation of contracts for conservatd multiple species on farmlands. Here,
the agency specifies the ‘goods’ in terms of itggeecies) and units (population size of
species). Following invitation for participation &m auction, the farmers place bids showing
their willingness to maintain a certain set of spe@nd their respective populations at what
cost (Table 1). The auctioneer then selects the aatording to pre-defined criteria. The

normal criterion would be the minimization of tletal cost while fulfilling the target.

Table — 1: Examples of bids in a hypothetical camatrial biodiversity auction

Bid / | Bidder's | Item (Species and population size in the tenth)yearAsk price ($)
Package| ID Malleefo | Carpet python | Red-tailed

wi phascogale
1 01 10 10 2 97,542
2 02 40 40 6 374,538
3 01 60 60 6 580,962
4 02 60 70 4 580,180
5 01 60 80 4 607,742
Source: Iftekhar et al. (2009)
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To clarify the concept, let's assume that our agameds to maintain a set of speci@s:
{1, 2,..., g}. It specifies number of animals (or units) of bapecies it wantd) = {uy, uy,...,

Ug}, U [ 0. There areN sellers {1, 2,...n}. Each bidder submit a set of aske= {Ai1, Aiz,
., Ain}. An ask is a tupleA, =<(/]-1- A

i A /]3) pij>, where A > Ois the number of units of

speciesk offered in the bid submitted by bidder. The ask price ip; 2 0. The winner

determination problem (WDP) is to find the leaspensive set of bids under the constraint
that the agency receives all the target units ®ktecies (Sandholm, 2006):

N
min Z ZTizl P %
i=1
st.Y A% =U
i

inj <1

X, 0{o1}

(1)

Here,x; is a binary variable, indicating whether contrfmetbundlej is awarded to bidder
The first constraint is the resource requirememstaint and the second constraint reflects
the condition that at most one bundle is seleatath £ach bidder.

What makes combinatorial auctions complex is netwlnner determination problem. It is
the fact that the options or strategies that bigltiewve are so complex that the outcomes from
a single round would not be sufficient. The biddprgcess needs to be facilitated through the
provision of price feedbacks that would help theders to formulate their bids in subsequent
rounds.

3. Linear pricing for combinatorial auctions

Linear pricing schemes provide price feedback enfdrm of item prices that rationalizes the
results of the winner determination problem. Thealdset of feedback prices would be
compatible with the given allocation and the giéds, i.e., computed value for packages in
winning (loosing) bids are not lower (higher) thére respective bids. Compatible prices
provide indications to the winners, why they hawanywand to the losers, why they have lost.

However, such linear competitive equilibrium (CE)cps may not exist in the presence of
strong sub-additive bidder valuations for multilendles (Pikovsky, 2008). For example,
consider a two items (a and b) and two biddersnf 2), procurement auction. Bidder 1 is
asking $3 for {a, b} and bidder 2 is asking $1,a8d $4 for {a}, {b} and {a, b} respectively.
At most one bid is selected from a bidder. Biddevirds for {a, b} and total cost is $3. To be
compatible with this allocation, anonymous itemces, ps@) and py(b), have to be less
than or equal to $1. This implies that the auctswrmould spend only $2 by purchasing the
items separately, which is lower than the cost ftbenoptimal allocation. So, no anonymous
linear prices exist in this case supporting thicigdfit allocation identified by the WDP.

In such situations, the use of an approximate tinga&e system has been advised. This
approach was used for the first time by Rasserai. €1982). This system tries to find a set of
linear prices which satisfies the following congiits of the dual price systéras much as
possible:

% bual or shadow price is the change in the objectaeile of the constrained optimization problem dwea change in the
binding constraint. The constraint is relaxed bying them into the objective function with a pegatrm in proportion to the
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e Primal feasibility: It ensures that no unique itesrtraded / allocated for more than
once.

* Primal complementary slackness: This conditionestalat the winners are asked to
pay exactly what they have bid. In other words, poted value for bundles in the
winning bids should be equal to their respectidsbi

e Dual complementary slackness: The items not innugdtiallocation receive zero
prices. So, the price of an unsold item is zero.

e Dual feasibility: The item prices should be as stitét the non-winning bids are
priced out. That is the computed value for the eiigless than the submitted bids.

However, often dual feasibility constraint is reddxwhich may result in estimation of prices
for some bundles in loosing bids higher than tkeibmitted bids in a procurement auction
(Drexl and Jgrnsten, 2007). That's why these pracesoften called pseudo-dual linear prices
(Rassenti et al., 1982).

Let’s consider the following example to clarify tbencept (Table 2). There are 3 bidders and
3 items. In a cost minimizing multi-unit combina&rauction each of them has submitted
bids on 3 packages in any round; however, a maximfirone package is provisionally
selected from each bidder. The auctioneer’s tasgeet achieve 6 units of X, 4 units of Y and
3 units of Z. She solves model (1) to achieve #rgdt at minimum cost. The winners are
marked with asterisks.

Table - 2: Example of bids ($) in a 3 bidders aritefis multi-unit auction. Bids with *s are
in winning combination

Bidder Bid ID Bid ($) Units of different items

N

AA 150
420

500

BB 480
370

375

CC 250
260

360

wN R [D Nk w|N| -
-bwl\)woopmpl—\x
NH-I>07030000\100-<
WRIRINR|RWWlWw

Now, the auctioneer has to provide feedback on peiwes. These prices are obtained by
forcing the computed value (sum of the item pricatiplied by units of the item) of the
package comprising a provisionally winning bid tqual its respective bid amount but
allowing the computed value of packages comprisimg-winning bids to be less than the bid
for the respective package. The target of the aneér is to reduce the amount by which the
computed value for the loosing bids fluctuate tegkéhe pseudo dual prices as close to the
dual prices. Lety; be the slack variable that represents the diffexrdretween the bid amount
of non-winning bidj and the computed value of the bundles containetimwinning bidj.
However, the auctioneer has considerable flexybilit choosing an objective function that
will help in selecting among multiple solutions Vehstill ensuring that the set of pseudo-dual
prices yields the minimum cost of the round. Thetianeer could either minimize maximum
slack variable or minimize total amount of slaclket’s assume that the auctioneer has tried
options 2.1-2.3 while solving 2.

amount of infeasibility (de Vries and Vohra, 200Bpr example, if a farm is already operating atriesximum area, the shadow
price would be the price of adding an extra uniaofl.



Iftekhar M. S, Hailu A. and Lindner R. K. 2009. Comparisons of linear item pricing methods for iterative multi-unit reverse
combinatorial auctions. Peer reviewed conference paper accepted for the International Conference on Policy Modeling -

EcoMod2009, to be held on June 24-26, 2009, in Ottawa, Canada. (Canada). 1% May 2009 version.

min h
y,h,o
subject to

2 RA% = p 0 OW,
j

¥Aix, —o' < p' 0O

;yk X p'OiOL 2
J0'=0 OjoL

V=0

h=3y (0) oo 2.1)
h=Y (@f ool (2.2)
h> o' 0oL (2.3)

here )I'Jf > Ois the number of units of itek offered by the bid submitted by bidder. The

ask price igy; 2 0. x; is a binary variable, indicating whether contfactbundlej is awarded

to bidderi. Per-unit prices for each itemy{é. The results from the optimisations are
presented in Table - 3.

Table - 3: Pseudo dual prices for the items andsthek variables for different objective
functions solved for Table 2

Bidder Bid 2.1 2.2 2.3
Slack variables
AA 1 0 0 1.941
2 0 0 0
3 0 0 0
BB 1 0 0 0
2 5.00 4.423 3.816
3*
CC 1 0 0 0
2*
3 2.00 2.885 3.816
Total slack 7.00 7.308 9.573
Per unit price
X 79.00 78.846 78.684
Y 23.00 22.885 22.763
Z 0.00 0.577 1.184

We can see that different objective functions poedulifferent set of prices and slack
variables. Model 2.1 has minimum total slack bag the maximum slack for any bid among
the schemes. Also it has a zero price for item &jctw may confuse the bidders in
formulating their next round of bids. Model 2.2 lengd the maximum slack even though total
slack is higher than model 2.2. Model 2.3 worksimdividual slacks and produce lower
maximum slack than the other two models.

Therefore, pricing schemes should be chosen cirefsilmany sets of pseudo dual prices can
satisfy the constraint set (Dunford et al., 200T). a procurement auction, if the feedback
price of some bundle is approximated too low, ttas keep a bidder from submitting a
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potentially winning bid. If the price is approxinegt too high, a new bid might have little

chances of winning. An unfavourable price selectan exacerbate the threshold problem.
By threshold problem we mean the situation wheralldondders with combined least cost fail

to coordinate and outbid a large bid and loosemaltily. All these factors can reduce the
efficiency of the auction (Pikovsky, 2008). So, tréces should provide enough indication

for new bids to be competitive in the next roundvéénica et al., 2005). Linear (LP) or

nonlinear (NLP) constrained optimization schemessalved sequentially to get a unique set
of prices.

4. Competing linear pricing rules for combinatorial
biodiversity auctions

There are couple of linear pricing schemes thathagen used for iterative single-unit
combinatorial auctions (for a review see Parke®620In this paper, we study two of these
schemes, namely, the Resource Allocation Design D)RANnd the nucleolus based

mechanism. RAD is one of the pioneer linear priaiegigns. The RAD was developed by
incorporating features from two competing desigmpaekage bidding from the Adaptive User
Selection Mechanism (AUSM) and an iterative forifnain the Simultaneous Multiple Round

(SMR) auctions. It added a feature of providingdfegck on prices (Kwasnica et al., 2005).
RAD lets the bidders submit bids using OR biddiagguagé It calculates the prices based
on the LP relaxation of the WDP by solving an of#ation problem. Then another

optimization is solved to reduce the threshold [moh) by fine-tuning and balancing the

prices across the items. Feedback on prices andingirbids are provided. In the following

round bidders can revise their loosing bids, altfflowinning bids remain active. The auction
stops when there is no new bid or new allocatiomasle for consecutive number of rounds.
Cognitive simplicity and its dynamic ask price cartggion algorithm have made RAD design
attractive to auctioneers (Pikovsky, 2008).

Nucleolus based algorithms have retained the basperties of RAD, such as, package
bidding, iterative format, use of OR bidding langea stopping rules and a linear price
feedback system. It differs in the way it calcutatiee feedback prices. It uses the nucleolus
concept to find an optimal set of prices (Dunfordle 2007). Here, instead of bidders, items
are treated as agents. Every package is considsredcoalition of the items. The price set
tries to distribute the total cost among the itdaidy. Depending on the wining and losing
condition the maximum dissatisfaction / excessdny coalition (i.e., bid) is sequentially
minimized that could occur regarding a specificprestimate of a given item. Here, ‘excess’
refers to the differences between the computecesgdir the bundles and respective bids.

Let’'s consider a single-unit procurement combinatauction. There are N items where the
cost savingsy(P), to each packageP) isv(P) = Zc, —c(P), OP O N. Here,c is the
ioP
production cost of the itelnindividually andc(P) is the production cost of the packagelt
will be beneficial to bundle the items onlwi(fP) < 0. Any price allocatiom among the items
requires the distribution of the total cost amohg ttems. In order to find the core, the
nucleolus concept relies on minimizing the dis$atison or ‘excess’, which is the difference
between the cost savings the items enjoys at theationx and the cost savings it could
obtain by acting alone(x,P) = >"(c, - %) -c(P).

ioP

40ORrR bidding language allows a bidder to submit aimdmultiple bundles (Xia et al., 2004). Anotherdaage is XoR, which
allows a bidder to win, at most, one bundle eveugiin multiple bids could be submitted by the bidgRarkes, 2006).
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An allocation y is more favourable to packagd? than an allocation x
Whenevere(y, P) < e(x, P). A package has an ‘objection’ xaf there is another allocation
that is more favourable 8. Their objection has a ‘counter objection’ if thexxists another
coalition T that is worse off ay and furthermore, whose dissatisfaction (excest) wiis
greater than coalitio®’s dissatisfaction withx, that is, T has a counter objection toif
e(y,T) > e(x,T) ande(y,T)Z e(x, P). The nucleolus is the set of all allocatiomwith the
property that for every objectiow, (P) there is a counter objection (Carter and Walkeg6).
Table 4 presents some basic features of the tiiséza pricing schemes.

Table - 4: Basic features of some linear pricingesoes, which have been tested in this paper

Schemes Optimization Sign opfSource
slack
variable
RAD - LP 1. Minimizing the maximum of slack Positive | Kwasnica et al.
variables (2005)
2. Maximizing the minimum price*
RAD-NLP 1. Minimizing the sum of the squaredPositive | Kwasnica et al.
values of the slack variables (2005)
2. Maximizing the minimum price*
Nucleolus 1. Winning bids are lumped into [aFree Dunford et al,
single  bid. Minimizing the (2007)
maximum of slack variables Drexl and
Jarnsten (2007)
Constrained 1. Minimizing the maximum of slack Free Dunford et al,
Nucleolus variables (2007)

* We have modified this to minimizing the maximumae

Theoretically, combinatorial biodiversity auctioresemble multi—unit reverse combinatorial
auctions, where bidders submit packages of multipiés of items and the auctioneer selects
least cost combination of bids to fulfil its targg¥e are not aware of any study, which has
tested these linear pricing schemes for multi-tewerse combinatorial auctions. In absence
of proper theoretical analysis, it is difficult ppedict the behaviour of these pricing schemes.
In order to test the pricing schemes we have acamated the features of a multi-unit
reverse combinatorial auction.

All schemes are adapted to reverse auctions, wtiereauctioneer tries to reduce the
procurement cost instead of maximizing the revenilds has been done to allow the
conservation agency to allocate the contracts ¢olehst cost farmers while fulfilling the

targets. We have retained the free disposal prpm#rthe winner determination problem.

This means that while fulfilling the target the fiogeer would not mind to have some extra
unit of targets if the total cost is reduced.

The schemes have been adapted to accept XoR Hids.nieans that at most one bid is
accepted from a bidder even though she is alloweslibmit as many bids as feasible. This
feature will help the bidders to precisely exprigsr valuations. We consider it reasonable as
it has been observed that conservation cost afreifit population sizes of target species may
not be additive. There could be substantial ecoesnuf scale in the conservation of
endangered species. Consider an example whereathations of a farmer for two species
{A} & {B} and their package {AB} are $10, $20 and25 respectively. If the auctioneer
targets multiple units of the items and all thrékskare in least cost combination, it is possible
that all three bids from the farmer are selectelichv clearly exceeds the capacity of the
farmer. In this case, the farmer shall either haveubmit bids on individual items or only on
the package. Either way, it restricts the flextpibf the farmers in submitting bids and of the
auctioneer in selecting least cost combination. XdaRling solves this problem by selecting
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any one bid from a farmer. The bidders can subid#g bn any suitable combination of items
and auctioneer could use the information.

In auctions for unique items, each item is procuwely once. So, two bids on the same item
can never be winners. However, in multi-unit conalbémial auctions, multiple bids on same
item can be winners. This makes it hard to satikfy primary complementary slackness
condition, which is supposed to ensure that thepted values for the bundles in winning
bids are equal to their respective bids. Let's mmrsan example of an auction where the
target is to obtain 30 units of item X. There dmeé bids: bid1 (10 units, $10), bid2 (20 units,
$15) and bid3 (30 units, $50). The provisional vermare bidl and bid2. Per unit price for
bid1l and bid2 is $1 and $0.75 respectively. This isontradiction and there is no linear
anonymous price for item X in this case. So, in modifications, we have relaxed the

primary complementary slackness condition and halNewed the computed values for

packages in winning bids to be equal to or grethizn their bids. Thus, in this example, per
unit price would be $1. In the following sub-seoBowe present the details of our
modifications to the existing designs.

4.1 Resour ce Allocation Design (RAD)

The Resource Allocation Design (RAD) was first pyspd by DeMartini et al. (1999), which
calculates pseudo-dual prices based on the LP atéax of the combinatorial allocation
problem. Since there is only a limited number cfesawhere a set of ideal prices may exist,
in the RAD some slacks are allowed in calculating teedback prices. These slacks are a
measure of the perturbation of the calculated pricem the ‘ideal’ prices. The degree of
distortion is defined as the sum of squared slackas the largest slack. RAD chooses these
feedback prices so that they constitute the leesortion over the ‘ideal’ prices. Several
alternative objective functions have been suggesteerive item prices in RAD:

« Minimization of the sum of the squares of the slaekiables for all loosing bids,
followed by minimization of the maximum item pricése refer to it as RAD NLP
version)

¢ Minimization of the maximum of the slack variabta @ll loosing bids, followed by
minimization of the maximum item prices (we refeittas RAD LP version)

The description of the two versions provided befollows the presentation in Kwasnica et
al. (2005).

4.1.1 RAD NLP version

In RAD NLP we try to get a feasible set of pricesl alacks that ensures that the computed
values for bundles in the winning bids are equabrtanore than the respective bids and for
bundles in losing bids the computed values are atratless than their bids by solving RAD

NLP 01. The variabled’ is the amount of slack or deviation from the idpete for each
losing package. We minimize the sum of the squafethe §;'s. Let L, = B, \W,be the
loosing bid at roundl We solve the following problem —
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min Z

V.Z,0

subject to
Zyt" p’ Oj OW,
Zyt ijxij—J‘Spj 0j oL, (RAD NLP 01)
i

z2y (' oo
o' =0 Oj 0L,
Y20

Here, we minimize the total size of the slack wgtteater emphasis on larger slacks. Let
J .,y and Z be a solution to RAD NLP 01. It should be noted tha positive slack values
indicate the amount by which the computed valugréater than the bid amount. In other
words, positive slacks provide wrong signals toltsing bidders: the computed value for the
package in losing bid is greater than the ask pFoe this reason, these prices are considered
approximate instead of exact prices.

Further, the prices we obtain from RAD NLP 01 may be ‘balanced’ across the items and
would not be able to provide sufficient guidelimethe new bidders. For example, consider
the following procurement auction version of anragke provided in Kwasnica et al. (2005).
There are two items (a and b) and three bidder2 éhd 3). Bidder 1 is asking $6 for {a, b}
and bidder 2 is asking $6 for {a}. Bidder 3 ha$ bidl yet but its lower bound is $2 for {b}.

Bidder 1 is the provisional winner. Any prices subht y, + ), = 6and y, <6 will satisfy

RAD NLP 01. If we selecy, =6 and y; =0 then bidder 3 has no incentive to submit any

new bid in the following round since it cannot bielow $2. This means that bids from small
bidders could not be combined. The more naturalsaet would be to divide the prices
equally among the items.

In order to balance the prices, we run anothemaptition where we work on the prices while

keeping the slack variables fixed that we haveinbthfrom RAD NLP 01. Let)’ =457 . In
the original design the minimum price has been madd for forward auction. For our
reverse auction we minimize the maximum item pdgegquentially. LeK is the set of item

prices anK =K .

min Y
Y.y
subject to
ZW.,X, 2 p’ 0j W,
| _ (RAD NLP 02)
ZW%& o'sp’  OOL
ytk <Y Ok OK
Y=y Ok OK\K

Let, Y'and ' solve RAD NLP 02. We identify the set of priced (shich have been
minimized and are equal Y0, i.e.,); =Y *. We separate them into a $&tand fix them,

10
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i.e.,ytk = ytk We define another set with the remaining prid&s,K = K\K*. In the

following iteration we minimize remaining prices Weh keeping the minimized prices
obtained in earlier iteration. When we have sedalyntminimized all the prices, in other

words K is empty, we are done. The prices obtained framfittal iteration are our prices for
the following round.

4.1.2 RAD LP version

RAD LP focuses on the maximum slacks and work amthteratively, unlike RAD NLP
which focuses on total slack. At first, we try teta feasible set of prices and slacks that
fulfils the constraints by solving RAD LP 01.

min z
v,Z2,0
subject to
zykAlj)(lj - p DJ D\/Vt
Z yidix, —o' <p' 0oL (RAD LP 01)
0<d'<z OjoL
0'>0 OjoL

y<=0

Let J,) and Z be a solution to RAD LP 01. If there is no slackaimy of the losing bids

(i.e.,z* = 0) or if all the slacks have a value equaltdi.e.,d =Z ) we are done with the
minimization of the slacks. Then we go to the pngeimization optimization. On the other
hand, if the values of slacks are different thentiyeto reduce the maximum of the slacks
sequentially. We work on the initial set of slackat we have obtained in RAD LP 01. We
separate the bids which have slacks equal Zb into a separate setJ*

(i.e.,J* ={j O Lt‘z* = 5*‘}) and permanently fid’ =& ,0j 0J" . Then we solve RAD LP
02 -

min z
V,Z2,0
subject to
Zy“/l., x-o'spl  OOY
(RAD LP 02)
zykA”X” —p DJDLt\‘]t*
Osdlsz OjoL\J;
o' >0 Oj oL

y<=0

11
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Let 5,17and Z be the solution. Again, if there is no slack (ize=,0) or all the slacks have a

value equal toZ (i.e.,5= Z) we go to the price minimization optimization. @tWise, we
separate the bids witd = Z into a sefl , let J* =J* [0 J and go to RAD LP 02 again. This

way we reduce the amount of distortions by finding smallest values for slacks across all
losing packages.

It should be noted that in the original design dorgle unit auctions there is strong equality
condition in the second constraint of RAD LP 02wdweer, contrary to the original design, in
our design we maintain a weak equality conditiontfee second constraint. After solving
RAD LP 01 we separate the bids with minimized optislack into the set of bidd*). Since,
selection of bids with optimal slack does not eaghiat the computed values minus the slack
will be equal to the bids id* so it may be difficult to satisfy the strong etjtyacondition.

When the iteration on RAD LP 02 is complete we hngeeset of minimized slacks. Now in
order to balance the prices across the items weargnice minimization optimization as
described in RAD NLP 02. We keep the slack varslibeed that we have obtained from the

last iteration. Let5 be the solution from the last iteration of RAD DP. Letd”’ = 5’J and
solve RAD NLP 02.

Intuitively, it means that RAD LP starts with antiogization to find out the initial set of
slacks. It sets aside the loosing bids with maxmslacks. It then iteratively works on the
slack variables of other loosing bids to reducertlifepossible. However, the prices obtained
may not be unique and may not help in overcomieghheshold problem. So, we run another
optimization to minimize the maximum prices in arde find a unique set of price, which is
balanced across the items as far as possible.

4.2 Nucleolus based algorithms

Similar to RAD, nucleolus based algorithms alsottryfind the set of pseudo-dual prices by
minimizing the slacks or infeasibility. Here, trerdest slacks are iteratively minimized and
the slacks can take any sign (positive or negatapford et al. (2007) have suggested two
different ways to use nucleolus concept:

¢ Nucleolus algorithm: Winning bids are lumped intsigle bid. The maximum of the
slack variables for the loosing bids is minimizedjgentially (Drexl and Jgrnsten,
2007).

» Constrained Nucleolus: Sum of the prices of itema winning bid is required to be
equal to or more than the winning bid amount. Theximum of slack variables is
minimized sequentially.

Below we describe the approaches following Dungtrdl. (2007).

4.2.1 Nucleolus algorithm

In the nucleolus algorithm (hereafter Nuc), the nimg bids are lumped together into one
single bid. Computed value for the aggregate wignid is forced to be equal to the
provisional procurement cost of the auctioneer ihabtained from the winner determination
problem. Computed values for packages in individuahing bids may be greater than, less
than or equal to their respective bids. Computddegafor loosing bids are forced to be less

12
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than or equal to their respective bids (Drexl amchdten, 2007). The first iteration of the
nucleolus algorithm is:
min  z

subject to

ZW'M] MinCost 0j OwW,

o Nuc 01
zyu.,x. ss<p 0oL (Hue 0D
5'sz

J' isunrestricted in sign

Let Z and 51* be the solution. If there is no slack (i.e., z* Ftle iteration is complete.
Otherwise, we separate the set of bitt, for which the computed value minus the optimal

2 VA% -2 = pj,jDLt} Letd = J;.

iar!

slack @) is equal to the respective bidk, 2{

If J° = B the iteration is complete. Otherwise —

min z

subject to

Zyk)l”)qj MinCost 0Oj OW,

Zyk)luxJ -ol=p 0OOoOJ (Nuc 02)
Zyk)lux] <p’  OOL\Y

5‘sz

J' isunrestricted in sign

Let Z andJ, be the solution. At the end of iterationk, we set

o)

either when z* = 0 o = B. The valuesy* after termination of the algorithm, is our desired
set of item prices.

D A =p;,joL\J } Set)’ =J [J,. The algorithm terminates

iar

4.2.2 Constrained nucleolus algorithm

In the constrained nucleolus algorithm (hereaftenslNuc), we allow the computed values
(sum of the prices of the items multiplied by themioer of units) for packages in the winning
bids to be equal or greater than the winning bicbam For packages in loosing bids we
allow the computed values to be less than or etjudahe bid. The first iteration of the
constrained nucleolus algorithm is:

13
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min  z
subject to
Zyk/‘lj)g] = DJ vat
Zyk/‘ % — <pl oL ... (ConsNuc 01)
ij j -
5‘ <z

o' isunrestricted in sign
Let 51' be the solution. Create the set of bids where coeapvalue minus the optimal slack

D ViAx =4 p,,JDLt}- Letd” =J,. We

iar

is equal to the respective bi]i,={

separate the bids if and reduce maximum slack in the remaining losiitg literatively,
where at iteration k, ConsNuc 01 becomes —

min z
subject to
Zyk/l.,x, > p/ 0j OW,

Zyk/]”xIJ -o'=p’ OjOL\J ... (ConsNuc 02)
Zyk/]”x” <p’ 0OJ

5'SZ

J' isunrestricted in sign

Let 5; be the solution. At the end of iteration K, we

setJ, ={

whenJ* = BWW. We get the priceg/* after termination of the algorithm.

ZykA” X =0, =p;,iOL\J } Set)" =J" 0J,. The algorithm terminates

iar

In the previous sub-sections, we have presentednodifications to the existing designs of
four linear pricing schemes based on Resource &lioc Design (RAD) and nucleolus

algorithm. The RAD NLP pricing scheme emphasizeghentotal deviation from the ideal

prices and stops when the total sum of squarebeoklacks is minimized. Then it runs an
optimization on the price set to try to balance phiees across the items by minimizing the
maximum price. RAD LP focuses on the minimizatidrthee maximum of the slacks. This is
then followed by the price minimization optimizatio

Nucleolus based algorithms reduce the maximum gkec&tively like RAD LP. However,
instead of separating the bids with optimal slactkhie sequence of iterations like RAD LP,
they separate the set of bids for which computéaevainus the optimal slack is equal to the
respective bids. They do not involve explicit priaees for balancing the prices across the
items like RAD LP and RAD NLP. They allow the slackriables to take any (positive or
negative) sign. So, they may have more flexibilityselecting the slacks compared to RAD

14
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based algorithms. It is expected that such diffegenin the construction of the algorithms
should affect the performances of the auctions.

5. Experimental setting

The experimental framework used to test the desigtise context of a combinatorial auction
for biodiversity conservation is described below.

5.1 Farmer types

We have used a bioeconomic model developed byhidtelet al. (2009) for three native
endangered species (red-tailed phascogale, cagpeorp and malleefowl) found in the
wheatbelt of Western Australia. This model generatgtimal costs for conserving different
population sizes of target animals for differenpay of farmers. We have assumed two
categories of farmers differing in intervention tso$igh and low cost farmers. Further, under
each category, we have assumed three types of faméh different sizes of remnant
vegetations (<30, <50 and <70 ha) that they are @bput under conservation scheme. So, in
total, we get cost profiles for six farmer types.

For each type of farmer we ran the bio-economic ehad generate a cost functions for

different population target which is feasible foetgiven remnant size. Then we conducted
regression analysis to get conservation cost fanstfor different farmers (Table - 5). We can
see that with increases in remnant size, the avstdnservation of phascogale and python
goes down. In the case of malleefowl, per unit diwst declines and then increases again.
Positive coefficients for the intra-species int¢éiats indicate that it is more costly to

conserve larger population of any species. Howewegative co-efficient for inter-species

interactions indicate that it is more cost-effeetio conserve different species together.

Table — 5: Cost functions for different types aini@rs

Low cost High cost

Land <30 ha <50 ha <70 ha <30 ha <50 hpa <70(ha
Farmer ID Farmer 1| Farmer 2 | Farmer 3| Farmer 4| Farmer5 | Farmer 6

(AA) (BB) (CC) (DD) (EE) (FF)
Intercept -18,874 -12,487 -836 -7,369 7,253 20,585
Malleefowl (M) 5,255 4,539 5,064 7,247 5,129 6,050
Phascogale (Ph) 4,763 4,130 3,976 3,735 4,875 4,387
Python (Py) 32,815 27,303 21,873 29,989 22,735 781,9
M_sq 163 103 63 177 116 67
Ph_sq 61 39 28 104 42 30
Py sq 2,328 1,113 855 2021 1,166 489
M_Ph -226 -126 -89 -273 -140 -96
M_Py -1,470 -683 -440 -1478 -564 -218
Ph_ Py -1,218 -540 -417 -933 -510 -220
M_Ph_Py 42 11 7 38 10 4
Adjusted R 0.98 0.99 0.99 0.99 0.99 0.99
Square
F 1327.56** | 976.58*** | 1307.26*| 1192.12*| 1647.04** | 1955.41*

* *% *% * *%

It should be noted that the maximum size of pojutathe farmer could conserve depends on
the maximum size of the remnant the farmer carupder conservation scheme. So, we can
see that a farmer with less than 30 ha remnanttatge (AA and DD) can conserve a
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package consisting of up to 40 malleefowl, 40 pbgale and 4 pythons. Similarly, a farmer
with less than 50 ha of remnant vegetation (BB BE{ could conserve a package of up to 60
malleefowl, 60 phascogale and 6 pythons. On therdtand, farmers with the largest remnant
size (< 70 ha; CC and FF) can conserve a package wf 80 malleefowl, 80 phascogale and
6 pythons. This means that farmers with bigger @ams can offer packages of larger
population sizes. Another trend is that, with biggemnants, costs for conserving medium
size packages are comparatively lower than in dise éor smaller size remnants.

5.2 Packages used in the simulation experiment

In order to select the packages we have consider@dactors: maximum size of the package
that could be conserved with given remnant size @ehative cost disadvantage in high

population sizes. Within each cost category, foalten sized packages conservation cost is
same for each remnant size. But it gets costliesifiaall landholders to conserve bigger sized
packages. So, it would be prudent for the smatlii@fders to bid on smaller sized packages.
On the other hand, for big landholders it may Ligable to select packages of larger sizes to
exploit cost advantage. Following this argument, have considered three levels of

population sizes for each species, which is diffefer each type of remnant size (Table - 6).
Thus, for each farmer we compute cost estimateRTopackages from the bio-economic

model.

Table — 6: Different levels of target populatiornesfor each type of farmer

Remnant sizg Farmer ID Population level
Malleefowl | Phascogale Python
<30 ha AA, DD 10 20 2
20 30 3
30 40 4
<50 ha BB, EE 20 20 2
40 40 4
60 60 6
<70 ha CC, FF 40 40 2
60 60 4
80 80 6

5.3 Simulation framewor k

We have developed the simulation framework follayvidailu and Schillizi (2004). The
model incorporates two types of agents represetti@@ctual players in a real auction. These
are:
e Farmers bidding for the conservation contract. Bacimer has several packages of
target species and an opportunity cost associatbceach package.
¢ Auctioneer (conservation agency), which selects nimig farmers and awards
contracts based on the pre-determined criteriatidweer has a fixed target, which
may or may not be pre-declared.

Each auction round incorporates the following thregor steps or activities.
Step 1. Farmers construct their bids. The bids farmers end&pend on their respective
opportunity costs, cost categories, their previndsprices, and price information provided by

the auctioneer as well as their success or failurthe previous round. In the first round,
farmers do not have any prior experience and bialtidding more of their true opportunity

16



Iftekhar M. S, Hailu A. and Lindner R. K. 2009. Comparisons of linear item pricing methods for iterative multi-unit reverse
combinatorial auctions. Peer reviewed conference paper accepted for the International Conference on Policy Modeling -
EcoMod2009, to be held on June 24-26, 2009, in Ottawa, Canada. (Canada). 1% May 2009 version.

costs depending on their position in cost categonehich ultimately provides the upper
bound of the government expenditure. We have assuheg low cost farmers are more
aggressive and their bids depend on the random ewudrbwn from a uniform distribution of
[2, 3]. Similarly, the bids of high cost farmer @&&a on the random number drawn from a
uniform distribution of [1, 2]. The random draws amark-up factors that are used to multiply
or scale up the package costs in the construcfitdmedids.

In the subsequent rounds, the farmers use a vepleiearning algorithm to revise their bids
(Table - 7). Let’'s assume that there are two bgld&rand 2) and each of them has submitted
two packages (A and B). Due to XoR regulation oohe bid from each bidder may be
selected. After the very first round, the Package Bidder 1 is provisionally selected. In the
subsequent round:
1) Bidder 1 will maintain the same bid for winning gage.
2) For the loosing bids, Bidder 1 will revise the bidssuch a way that total tentative
profit is not reduced should any of them be setkoighe next round.
3) For the loosing bids with computed value highenttiee production cost, the loosing
bidder (Bidder 2) will submit bid between computedue and cost.
4) For the loosing bids with computed value lower tktza production cost, the loosing
bidder (Bidder 2) will submit bid between previdaud and cost.

Table — 7: Bid revision rules used in the experimen

Bid revision
Winner Winning Current bid (B) = Previous
(Bidder 1) | bid (B) bid (B)

Loosing Price (A) Price (A) - Costl Current bid (A) = Price (A)
bid (A) Cost (A) (A) > Profit (B)
Price (A) - Cost Current bid (A) = Cost (A) +
(A) < Profit (B) | Profit (B)

\Y

Price (A) < Current bid (A) = Cost (A) +
Cost (A) Profit (B)
Looser Loosing Price (A) > Current bid (A) = Price (A
(Bidder 2) | bid (A, B) | Cost (A) — (Price (A) — Cost (A)) X
random_2*
Price (A) < Current bid (A) = Previous
Cost (A) bid (A) — (Previous bid (A) +

Cost (A)) X random_3

*Low cost farmer: random_2 = random_22 [0, .2]ndam_22 [0, .2] / round no; High cost farmer: ramd@ = random_22 [0,
.3] - random_22 [0, .3] / round no; Low cost farmmandom_3 = random_33 [0, .1] - random_33 [0/ rbund no; and High
cost farmer: random_3 = random_33 [0, .2] - rand880, .2] / round no.

The values of the random numbers are differenacheound and different for each bidder.
We have assumed that the high cost bidders are eager to win and reduce bids for their
loosing bids more quickly than the low cost biddénsthe later rounds, all bidders reduce
their bids at a larger proportion compared to tdier rounds. This is commonly observed in
the real world and experiments that in a discrimanaauction overbidding is highest for the
lowest cost bidders, whereas the highest-cost tadoie closest to their true costs (Latacz-
Lohmann and Schilizzi, 2005).

Step 2: The auctioneer takes the submitted bids and camspam expenditure-minimizing
allocation in which each bidder receives at most grackage, while fulfilling the
conservation target. Thus, a multidimensional rpldtchoice knapsack problem is solved to
provisionally select the winners (Lehmann et alQ&). Then the auctioneer runs a pricing
algorithm to determine the per unit price of eatdmi After finishing the calculations it
informs each bidder whether their bids have beeaessful or not and tentative per animal
price for each species.
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Step 3: Farmers calculate the total price of their packaggsed on the item prices provided
by the auctioneer. Farmers update their contratustbased on the message from the
auctioneer and their learning experience. The anicttops after a fixed number of rounds,
which depends on the complexity in auction envirenm

Since the experiments involve the use of randonstochastic elements, the auctions are
replicated 20 times to average over these stochelstinents in the simulation.

5.4 Simulation settings

We have tested the pricing schemes for differevetlteof competition and heterogeneity in
the size and cost structure of the bidder populatid/e use two sets of test cases to analyse
performances.

5.4 1First set of tests

The first set consists of four small case studigh wimpler bidders’ population and cost
structures, which would allow us to understand ltle@aviour of the pricing schemes for
different levels of complexity in bidder populatioand competition. For case studies, we
increase the number of rounds in the auctions \iitreasing complexity in bidder
population. We replicate each auction for 20 timesl report average performances over
these replications. The case studies are desdnlradre detail below.

Case study 1in the first test we consider a homogenous popariatif six farmers (farmer
type AA) each with one identical package to subfhable — 8). We set the target of the
auction as 30 malleefowl, 30 phascogale and 3 pythbis target is equal to one-sixth of the
aggregate capacity of the bidders and thus repiesefair degree competition or rationing
among the bidders. According to the bio-economidehothe optimal cost of achieving or
‘producing’ this target is $277,255. Homogeneitythie population will help us to understand
the effect of pricing on the bidding behaviour ahé performance of the auctions. Each
auction comprises of 250 rounds.

Table -8: Packages of farmer AA used in case study

Malleefowl Phascogale Python Cost ($)

Bidder 1-6 (AA) 30 30 3 277,255

Case study 2n the second case study, we consider a semi lyeteeous population of three
bidders of farmer type AA (small bidder with lowstp<30 ha remnant) and three bidders of
farmer type FF (large bidder with high cost, <70 reannant), each submitting a single
package (Table — 9). The target of the auctioreéw achieve 60 malleefowl, 80 phascogale
and 6 python, which is one third of the aggregaigpk/capacity of the bidders. It should be
noted that any two small farmers or a big farmerda@supply the whole target. It is expected
that the provisional cost will reach the seconddsircost $688,946 pretty quickly due to the
competition between the two types of farmers. Afteat, provisional cost will keep going
down albeit at much slower pace due to compet#dimong the small bidders until they reach
the lowest production cost of $573,218. Each aoctiomprises of 500 rounds as the
competition pressure is less compared to case gtudy
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Table —9: Packages of the farmers used in casg &tud

Malleefow! Phascogale Python Cost ($)
Bidder 1-3 (AA) 30 40 3 286,609
Bidder 4-6 (FF) 60 80 6 688,946

Case study 3in the third case study, we consider a heterogenpopulation of six bidders
from each farmer type. Each farmer submits a sipgtekage (Table — 10). The target of the
auctioneer is to achieve 80 malleefowl, 80 phaseogiad 6 python, which is about one third
of the aggregate supply/capacity of the biddeividual bidders (FF, $887,694) or coalition
of bidders ((CC & EE, $811,956) or (AA, DD & EE,%B732) or (AA, DD & CC, $815,802)
can supply the target at different cost. Dependimghe performance of the pricing schemes,
saturation point would be somewhere in betweerofiienal cost $811,956 (CC and EE) and
second lowest cost $815,802. Each auction compoisg30 rounds.

Table - 10: Packages of the farmers used in casy 8t

Malleefowl Phascogale Python Cost ($)
Bidder 1 (AA) 10 20 2 124,968
Bidder 2 (BB) 20 20 2 184,567
Bidder 3 (CC) 40 40 2 368,013
Bidder 4 (DD) 30 20 2 322,821
Bidder 5 (EE) 40 40 4 443,943
Bidder 6 (FF) 80 80 6 887,694

Case study 4In the fourth case study, we accept multiple fiidsn a heterogeneous bidder's
population. Each farmer submits two packages (Tablel), from which any one may be
selected. The target of the auctioneer is to aeh&¥ malleefowl, 80 phascogale and 6
python. There are many combinations of bids, witiah supply the target. If the auction is
run for sufficient number of rounds, the procuretmemst would be somewhere in between
the optimal cost $738,269 and second lowest co6tl $24 irrespective of the pricing

schemes adopted. Each auction comprises of 10@@sou

Table - 11: Packages of the farmers used in casgy 4t

Bidder ID Package ID Malleefowl | Phascogale Python Cost ($)
Bidder 1 (AA) | P -1 20 20 4 195,628
P-2 20 20 2 184,567
Bidder2 (BB) | P -1 60 40 2 550,393
P-2 60 60 2 565,996
Bidder 3 (CC)| P-1 40 40 2 368,013
P-2 60 60 4 553,702
Bidder 4 (DD)| P -1 20 20 2 221,481
P-2 20 40 4 300,628
Bidder 5 (EE) | P -1 40 40 2 441,859
P-2 60 60 4 686,464
Bidder 6 (FF) | P-1 40 40 4 444,127
P-2 80 80 6 887,694

For the case studies in the first test, we exartlieebehaviour of the pricing schemes in
detail. We study the amount of bids submitted by bidders, profit made by each type of
farmer, per unit prices of the animals, level oftrextraction and allocative efficiency.
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5.4.2 Second set of tests

In the second set of tests, we test the sensitfithe performance of the pricing schemes in
presence of variation in auction environmentsak heen observed that asymmetry in bidding
capacities and auction environment can have a pmnerful impact on the performance of

the auction than the auction type itself (Sade let2806). We test the effects of some

important factors, such as, bidders’ heterogeneitynber of packages, number of bidders,
level of competition and level of complementaritye describe them below:

Bidder’s heterogeneitySince in combinatorial auctions bids from differéidders could be
part of a coalition, participation of heterogenebidders in the same auction means that the
bidders only compete when the bidders belong tosdree category and complement bids
from other categories. So, bidders’ homogeneitykhimduce more competition. We test the
schemes for 20%, 60% and 100% bidders’ heterogeneibrder to get multiple data points
we test the schemes for different number of pack&gable 12). To maintain a uniform level
of competition across the tests, we set the tamgetuch a way that for any level of
heterogeneity and any number of packages any tdaebs could supply the target. We run
each auction for 250 rounds and replicate for 2@$i.

Table - 12: Test schemes and their codes in teffirievel of bidder's homogeneity and
number of packages submitted by each bidder

Number of packages [NP]

Bidders’ Composition of 1 2 3 4

homogeneity [BH]| bidders’ population

(%)

100 5AA BH100NP1| BH100NP2 BH100NR3 BH100N

60 3AA 1BB,1CC BH60NP1| BH60NP2 | BH6ONP3 | BH60ONP4

20 1 AA, 1 BB, 1 CC, 1 BH20NP1 | BH20NP2 | BH20NP3 | BH20NP4
DD, 1 EE

Number of packagedVith increasing number of packages the auctiosheuld enjoy more
flexibility in selecting least costly combination$ bids to fulfil the target. However, with
increasing number of packages, bidders face thaitbog) burden to evaluate all packages.
For example, Chen and Takeuchi (2005), who experietewith 4 items in a combinatorial
VCG auction, have observed that the bidders havesistently failed to bid on all
combination of items (maximum of 15 packages).iB@mur experiments we have tested the
schemes for up to 4 packages. In order to get phelltiata points, we test the schemes for
three different bidders’ homogeneity levels (Tali®). To maintain a uniform level of
competition across the tests we set the targaidh a way that for any level of heterogeneity
and any number of packages any two bidders couddlgthe target.

Number of biddersWith respect to the number of bidders, there tmay trade-off between
the interests of the auctioneer (more participaisopreferred) and those of the bidders (less
participation is preferred). From bidders’ pointwéw, less number of bidders means less
competition. From auctioneer’s perspective it ifdreto have more participants. It has been
observed that subject to some restrictions ondhers choice of mechanism, an auction with
N + 1 bidders beats any standard mechanism fangeth N bidders (Bulow and Klemperer,
1996), which means that additional competition gatesl through an extra bidder outweighs
the benefits from any other mechanism (includingtian) with N bidders. We have tested
the schemes for 5, 15 and 40 bidders and allowell leidder to submit 4 packages. In order
to get multiple data points we test the schemeghi@e different competition levels (Table
12).
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Level of competition Level of competition is a large determinant ottin efficiency. The
higher is the competition the greater the benefitguction mechanisms. However, a balance
IS required to maintain an optimum level of comipati. Although a huge proportion of
successful bidders mean less competition and less savings for the agency, a huge
proportion of unsuccessful bidders mean negatividigad and psychological impact and
reduced chance for the unsuccessful bidders incjpeting in the next round of auction. In
our experiment, we have defined the level of coitipatas the percentage of bidders who
could supply the target and tested the schemegr, 40% and 60% competition (Table
13). Each bidder submits 4 packages. We run eacoaufor 1000 rounds and replicate for
20 times.

Table - 13: Test schemes and their codes in tefriglder's number and level of competition

Level of competition (% of bidders could
supply the target) [CM]

Bidders Composition of bidders 20% 40% 60%
number [BN]| population

5 bidders 1AA'1BB,1CC,1DD,1EE BN5CM20 BN@40 | BN5CM60

15 bidders 3 AA 3BB,3CC,3DD,3EE BN15CMRBN15CM40| BN15CM60

40 bidders 8 AA, 8 BB, 8 CC,8DD, 8 EE BN40CMRBN40CM40| BN40CM60

Level of complementarity in conservation of muigpeciesFor conservation of multiple
species we consider the presence and absence pfecnentary in conservation cost. In our
case, absence of complementarity means that tireefas planning to conserve the species in
separate patches of remnants, which have no ceoneSb, cost for conservation of multiple
species is the summation of their individual cosis, the other hand, by presence of
complementarity, we mean that the farmer plansotwserve multiple species in the same
remnant and there are some cost savings. To géptaudata points we have run the tests for
two different numbers of packages (Table 14). Ideorto maintain a uniform level of
competition across the tests we set the targetuich sa way that for any level of
complementary and for any number of packages anybidders could supply the target. All
bidders are medium size low cost bidders (type BRch test has been run for 250 rounds
and repeated for 20 times. Then we have averageddta for different pricing rules and
level of complementarity.

Table — 14: Test schemes and their codes in tefitlev@ of complementarity and number of
packages submitted by each bidder

Level of complementary (%) [CP] Number of packaféR)]
1 2

0 All (5) bidders have additive cost CPOONP1 CPORNP
20 4 bidders have additive cost CP20NP1, CP20NP2
40 3 bidders have additive cost CP40NP1, CP40NP2
60 2 bidders have additive cost CP60NP1, CP60NP2
80 1 bidder has additive cost CP80ONP1 CP80ONP2
100 | All (5) bidders have complementary cost CP10DNP CP100NP2

5.5 Perfor mance measures

There are several criteria for judging the perfarogaof an auction. Allocative efficiency and
the degree of rent extraction are two basic caténat are applicable to all auctions. For
combinatorial auctions, additional criteria candedéined. Following Goeree et al. (2007), our
set of performance measures include the followimgd.
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Allocative efficiency (AE): Allocative efficiency is a desirable property af auction. It is
achieved when one minimizes the total cost to tleners of the items being auctioned
(Pekec and Rothkopf, 2003). It can be measuretieasatio of the total cost of the resulting
allocation X to the total cost of an efficient aédion X* (Kwasnica et al., 2005). If AE =1,
allocative efficiency is maximized and the lowee thE, the lower the allocative efficiency of
the auction. We have used the following formulaatculate AE:

Allocative efficiency = minimum cost to meet thegat / total cost of the winning projects

Degree of rent extraction (RE): Degree of rent extraction shows the degree ofpayenent
or rent to the bidders. Given the resulting allagatX, the degree of rent extraction is
measured as the ratio of the auctioneer’s expeeditu the minimum cost of an efficient
allocation X*:

Rent Extraction = minimum cost to meet the targaidtioneer’s total payment

If RE =1, profit to the bidders is minimized. Thaner the RE, the higher is the winners’
profit.

Price monotonicity (PM): In procurement auction, gradual reduction in itences in the
course of the auction is necessary to reflect trapetitive situation. However, often linear
prices fluctuate as demand for different items eriThis may confuse bidders. Following
Pikovsky (2008), we measure the price non-monotiynias the sum of the ask price
increasesA"ytk divided by the sum of the ask price decrea&é}gk for all species in all

roundst. This results in the price non-monotonicity measi#M, where PM = 0 describes
fully monotonic ask prices.

DD WYY
>, Yo

We also report per unit prices, bidders’ profitdaubmitted bids to show auction dynamics.
In suitable cases, we have conducted univariatysiador variance to test between subject
differences. This allows us to test significancalifferences in performance estimates of the
pricing rules. Then we conduct multiple comparisasmg least significant difference (LSD)
t test to find out the sources of differences. &walysis we have used SPSS Version 17.

6. Results and discussions

The results from the simulation experiments arsgmeed and discussed in this section.
6.1 Resultsfrom first set

In this section we present results from the first af tests. We use these case studies to
demonstrate the behaviour of the algorithms.

6.1.1 Per unit prices

The individual price estimates across the priciclgesnes are quite different. In the first case
study, all pricing schemes have allocated the enpackage price to python. Nuc has
produced lower prices for python than other schemeke initial rounds. Then, at around
round number 90, all schemes have started to peoitlentical prices. The ask prices have
been fully monotonic for all pricing schemes, ileayve decreased consistently. Similarly, in
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the second case study, all pricing schemes haweaddld entire package price to python. Nuc
has produced lower prices for python than othees&s in most of the rounds, even though
at the end all schemes have produced almost idémpiices. The prices are fully monotonic
for all pricing schemes.

In the third case study, initially, all pricing sahes have divided the package prices among
the species. For python, Nuc has produced loweaageeper unit price for most of the rounds
followed by RAD LP and ConsNuc. However, at the éhat has produced zero prices for
python. For phascogale and malleefowl, RAD LP aADRLP respectively have produced
lower per unit price at the end. Overall, RAD LF lpoduced least fluctuated per unit price
(PM = 0.38) followed by Nuc (PM = 0.78), ConsNudM 0.95) and RAD NLP (PM =
1.97).

In the fourth case study, RAD LP has allocatedahtire package price to malleefowl and
subsequently produced highest per unit average foicmalleefowl. ConsNuc and Nuc have
produced lower per unit prices for malleefowl aiythpn respectively. For phascogale, RAD
NLP has produced lower prices followed by Nuc amth€Nuc (Figure 1). Overall, RAD LP

has produced least fluctuated per unit price (PM18) followed by ConsNuc (PM = 0.78),

RAD NLP (PM = 0.95) and Nuc (PM = 0.96).

We can see that for simpler cases (case 1 andi@hgischemes tend to allocate price for
whole package to any one species. They also profdiligemonotonic prices. For complex

cases (case 3 and 4) the schemes estimate pricesitfgple items (Figure 1). RAD LP tends

to produce monotonic prices. We shall see latardbavation of lower per unit prices have
influence on the bidding dynamics and overall panfance of the pricing schemes.
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Figure - 1: Average per unit price ($) of differeptecies (on Y axis) in the terminal round
under different pricing schemes (on X axis) for tese studies. Here, Py = Python, Ph =
Phascogale and M = Malleefowl
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6.1.2 Bidding dynamics

In the first case study, bidders started to bidr teduction costs earliest in Nuc (in round #
69) followed by RAD NLP (in round # 80), RAD LP (mund # 89) and ConsNuc (in round
# 96). In the second case study, in Nuc algoritinmalsbidders have started bidding their
production costs earlier (at round #359); thisdreras followed by RAD NLP (round # 469).
In case of ConsNuc and RAD LP, small bidders ndxeértheir true cost within the given
number of rounds. However, they were very closthéir production costs at the end of the
terminal round. On the other hand, in none of ttleemes, large bidders had to bid their
production cost ($688,946) within the given numioérrounds (500). On average, their
bidding was closest to the production costs in RAD($688,948) and furthest in RAD NLP
($689,031). The statistics for ConsNuc and Nudfaesame ($688,954).

In the third case study, we can see that withingilken number of rounds (500) the bidders
have never bid their production costs. In RAD LKRd aduc algorithms, bidders have

consistently bid lower than RAD NLP and ConsNucRWD LP all bidders (except medium

sized bidders BB and EE) have consistently bideslds their production cost, whereas, in
Nuc algorithm medium sized bidders BB and EE hawasistently bid closer to their

production costs. In RAD NLP all bidders have bigher than in other pricing schemes. This
trend was followed in ConsNuc. In the fourth casmlyg each bidder has submitted multiple
(two) packages. In Nuc algorithm, all bidders hhig consistently closer to their production
costs for all packages. This trend has been folibtae ConsNuc, RAD NLP and RAD LP

(Figure 2). In summary, we can observe that in Blgorithm the bidders have bid closer to
their production costs in most of the cases.

Case 4

1,200,000

1,000,000

800,000

600,000

400,000
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Figure - 2: Average bids ($, on Y axis) submittgdthe bidders in the terminal round for
different pricing schemes (on X axis) in the casel\s 4.

Another motivation behind bid revision is the teivia profit from the bid should it be
selected. In our framework, the bidder will maintéhie same bid as long as it is winning. For
the loosing bids, it will use the computed valuimation to reduce the bid until it reaches
its conservation / production cost. We consideraberage profit made by the bidders at the
terminal round as a measure of performance of ¢therses. We analyse bidders profit only
for case study 4. It has been observed that evmmgthbids from high cost medium and large
bidders (EE and FF) were initially selected theyevaltimately priced out in all pricing
schemes. Low cost small farmer (AA) has made lesfitpn RAD LP. Others (bidder BB,
CC and DD) have made less profit in Nucleolus badgdrithms (Table 15).
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Table - 15: Relative position of pricing schemeseirms of bidders’ tentative profit. Scheme
with lowest average profit has been ranked one

Bidder ID ConsNu¢ Nuc |RAD NLR RAD LP
Bidder 1 (AA) 4 2 3 1
Bidder 2 (BB) 2 1 3 4
Bidder 3 (CC) 1 3 4 2
Bidder 4 (DD) 2 1 4 3
Bidder 5 (EE) N/A N/A N/A N/A
Bidder 6 (FF) N/A N/A N/A N/A

It should be noted that in case study 4 no bidadet to bid their production costs in any
pricing schemes. Nuc and ConsNuc have performedrteet after the initial rounds they were
able to select bidders in optimal allocation. Hoerewhen the bidders in optimal allocation
are selected, competition in the auction ceasetheawinning bidders do not have to reduce
their bids anymore. So, bidders’ profit never rescto zero in this case study.

6.1.3 Rent extraction

Degree of rent extraction depends on how quickéypghcing scheme can select the bids in
optimal allocation and how well per unit prices gaide the bidding. We have considered
the value at which RE measures stabilize as amatgti of convergence for each pricing
scheme. In the first case study, we can see thatrBaches to convergence most quickly
(round # 47) followed by RAD NLP (round # 53), RAIP (round # 59) and ConsNuc (round
# 71). For case study 2, we can see that Nuc esanvergence most quickly (round # 253)
followed by RAD NLP (round # 313). In case of RAP land ConsNuc, rent extraction never
reaches to one even though it reaches very clo989Pat the end of terminal round. In the
third case study, all pricing schemes reach platesfiore the terminal round. RAD LP
algorithm performed best with 0.921 followed by Ni@c918), ConsNuc (0.912) and RAD
NLP (0.861). In the fourth case study, Nuc alganitperformed best (0.903) followed by
ConsNuc (0.875), RAD NLP (0.870) and RAD LP (0.79%Ye can observe that the
performances of all linear pricing schemes havedumly declined with increasing
complexity in bidder’'s heterogeneity and number pafckages (Table 16). The pricing
schemes producing lower per unit prices for theiggehave performed better.

6.1.4 Allocative efficiency

Capacity of auction designs to achieve allocatifieiency is a desirable property. In the first
case study, allocative efficiency is always onetles bidders’ population is homogeneous
(Table 16). In the second case study, since anytaall bidders can supply the target at least
cost, when the large bidders are priced out ottmpetition the allocative efficiency reaches
to one. Optimal allocation was made consistentlthatearliest (in other words, AE reaches
one) in case of Nuc (round # 21) followed by RADM{round # 22), ConsNuc (round # 24)
and RAD LP (round # 26). However, selecting leasit darmers does not mean the end of
competition as small farmers continue to competh each other to win the contracts, and so
RE continues to fall. In the third case study, Ndgorithm performed best (AE = 1.00 at
round # 102) followed by RAD NLP (round # 135) @RAD LP (round # 246). In ConsNuc
AE never could reach 1 within the given numberafnds. In fourth case study, the pricing
schemes have failed to select bids in optimal atioa. Nuc algorithm has performed best
(AE = 0.996 at convergence) followed by RAD NLPnSNuc and RAD LP. We can see that
similar to rent extraction estimates average atleeafficiency has declined with increases in
bidders’ population complexity.

25



Iftekhar M. S, Hailu A. and Lindner R. K. 2009. Comparisons of linear item pricing methods for iterative multi-unit reverse
combinatorial auctions. Peer reviewed conference paper accepted for the International Conference on Policy Modeling -
EcoMod2009, to be held on June 24-26, 2009, in Ottawa, Canada. (Canada). 1% May 2009 version.

Table - 16: Average rent extraction and alloca&ffeciency estimates at convergence for the
case studies under different pricing schemes

RE AE
RAD RAD RAD | RAD
LP NLP Nuc | ConsNuc| LP NLP | Nuc | ConsNug

Case study 1 1 1 1 1 1 1 1 1
(Homogeneous
population)

Case study 2 0.999 1 1 0.999 1 1 1 1
(Semi-
homogeneous
population)

Case study 3 0.920 | 0.861 | 0.918| 0.911 1 1 1 0.995
(Heterogeneous
population  with
single package)

Case study 4 0.794 | 0.870 | 0.903| 0.875 | 0.941 0.990| 0.996| 0.980
(Heterogeneous
population with 2
packages)

In the first set of tests, we study the amountid$ lsubmitted by the bidders, profits made by
each type of farmer, per unit prices of the animbdgel of rent extraction and allocative
efficiency under each pricing schemes. From the Viemited number of testing we have
conducted, it has been observed that all lineasimyischemes have achieved allocative
efficiency higher than 0.90 for all the bidder ptation structures (Table — 16). However,
their performances in terms of rent extraction €rewe distribution) have been affected by
bidder population complexity. For homogeneous aeghishomogeneous populations, all
pricing schemes have performed equally well. Inecad heterogeneous population,
nucleolus-based algorithms have performed better tther schemes. They have been able to
produce lower per unit prices for the species fosihof the rounds than other schemes, which
suggest that they may have been able to guideiddéin better. Even though the nucleolus
based algorithms have performed relatively well,[RRP has produced least fluctuated
prices for the species which may help bidders macuctions. Further study is needed to
see if the same result holds true for much larger @mplex auctions. In the second set of
tests, we examine the pricing schemes thoroughtydre complex environment with varying
degree of bidder population composition in termsadt and capacity while the bidders are
facing different levels of competition.

6.2 Results from second set

After exploring the behaviour of the pricing schene the first set of tests, in the second set
we examine the performances of the schemes withgesain the auction environment. We
test the effect of bidder's heterogeneity, biddg@dgulation size, level of competition, level
of complementarity in conservation costs for midtippecies and the number of packages
each bidder is allowed to submit. We discuss theltgin the following sub-sections.

6.2.1 Effect of number of packages submitted by bdders

In most of the conservation auctions, the farmeesaiowed to submit a single project. The
project selection is of an ‘all or nothing’ natwere the farmer is either contracted to carry
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out the whole project or nothing. However, suchigobformulation and selection precludes
contracting the farmers to perform a number ofrirgations that are relatively cost-effective
(Chan et al.,, 2003). Moreover, lumpy bids concealiations in the marginal cost over
different combinations of conservation outcomeg. &@mple, if the marginal cost increases
with the population size of the conserved spediesn landowners will avoid bidding for
larger population size. On the other hand, if thergmal cost decreases with the increase in
the number of species conserved, the farmer wilinbéned to bid on mix or package of
species. So, when, a single package is allowedaub8on could exploit only differences in
the average costs of individual farmers, but na thfferences in marginal costs of
conservation of different size and mix of populador any farmer. This phenomenon may
lead to lower participation, higher conservatiostcand lower efficiency (Hailu and Thoyer,
2006). So it may be beneficial to allow the farmersubmit multiple packages.

However, preparation of conservation projects neguisubstantial resources and technical
expertise. There is considerable uncertainty anfbrtefinvolved in developing the
management plans, which forms the basis of thegsgssment process. Different landholder
groups may view these transaction costs differerfilyr example, in the Desert Uplands
Project, it was observed that several landholderg lsubmitted a lumpy bid covering the
whole farm area instead of estimating a detailedfdi a particular section of their property
(Whitten et al., 2007).

Therefore, in this test, we have allowed the biddersubmit a maximum of four packages. In
order to keep the intensity of competition similee have set the target as such that for any
number of packages any two bidders could supplyaiget. We can see from the allocative
efficiency and rent extraction estimates that teefggmances of all pricing schemes have
enhanced with increasing number of packages (Figurén terms of allocative efficiency,
Nuc algorithm has performed best for NP1, NP3 aid ldnd ConsNuc for NP2. RAD LP
and RAD NLP have performed better than ConsNudl iotlher cases.

In terms of rent extraction estimates, univariat@lygsis indicates that there is significant
difference among different number of packages (Tpsum of squares 61.655, d.f. 3, F
4805.572*%). RE estimates have been highest forcmes with four packages (NP4) and
have significant differences with other packagesifNP1: 0.228*, NP2: 0.334* and NP3:
0.120%). This is followed by cases for three padaag\NP3 (NP1: 0.107 and NP2: 0.214%).
RE estimates for cases with NP1 is significantighler than cases with NP2 (0.107*). One
explanation for this could be that the presenceadiditional packages has provided more
opportunities to the auctioneer to select suithis.

The performances of the pricing schemes (in termRE) are also significantly different

(Type 11l sum of squares 1.920, d.f. 3, F 149.650&mong the pricing rules, Nuc algorithm
has obtained higher efficiencies and have significdifferences with other schemes
(ConsNuc: 0.033*, RAD LP: 0.055* and RAD NLP: 0.8h2ConsNuc has obtained second
highest average rent extraction estimates, whisigigficantly higher than RAD LP (0.022%)

and RAD NLP (0.019%). This is followed by RAD NLMhich has significant differences

with RAD LP (0.002*). In terms of price monotonigitall schemes have produced lower
fluctuating prices for medium number of package$?ZNand NP3). Nuc algorithm has
produced least fluctuating prices for NP1 and NIR&. higher package sizes RAD LP has
produced least fluctuating prices (Figure 4).
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Figure - 3: Average allocative efficiency and remtraction estimates (on Y axis) at
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6.2.2 Effect of bidders’ population size

Market participation is often defined as the numbfebidders who participate in the bidding
process. The design and target of the auction tafféee number of bidders drawn to it
(Klemperer, 2004). Conservation auctions often hapecific conservation goal (e.g.,
pollution reduction, native vegetation restoratjoognfined to specific geographic regions
and target a certain group of farmers (Rolfe et28108). All these factors limit participation.
The costs of participation and strategic motivey aiao be deterrents (Chan et al., 2003). If
the costs of participation are high bidders maydizxouraged from participating. Some
bidders may use tactics to discourage other biduens participating to reduce competition
and enhance chances of winning (Bryan et al., 2005)

Auctions work by promoting low cost bidders, so ooty the number of bidders but also the
type of bidders is important. If only high cost tédts participate there will be no benefits in
terms of cost effectiveness. So, widespread ppdiicin of bidders may be beneficial from
cost saving perspective (Whitten et al., 2007). By, due to practical and political

implications often auctioneer tries to optimize thenber of bidders instead of maximizing
them (Arsenault, 2007). High participation ratesymeesult in large proportions of

unsuccessful bidders which may be undesirable.

There is relatively little research on what comgéis a minimum level of participation to
ensure competitive efficiency. It has been obsethedl efficiency losses can be substantial
with only two or three bidders, but are negligibdgh seven bidders or more (Goeree and
Offerman, 2003). In many situations four agents swéficient to imply a competitive
outcome (Holt et al., 2007). As a guideline foromservation auction in Queensland, Windle
and Rolfe (2005) have suggested that there shauklt keast eight active bidders in a tender
and ideally more than 15.

In this test we have examined the schemes for thistct population sizes (5, 15 and 40) of
bidders. We can observe that the allocative efimyeestimates for the schemes have reduced
with increasing number of bidders (Figure 3). Fawér number of bidders all schemes have
performed equally well and achieved complete atlgezefficiency. For medium population
size (BN15) allocative efficiency has been reducsbich has again increased for larger
population (BN40). For rent extraction estimatestiiend is similar.

Univariate analysis indicates that there is sigaifit difference in rent extraction estimates
among different population sizes (Type lll sum qtiares 9.415, d.f. 2, F 4354.716**). RE
estimates have been highest for the cases witHeghbidder population (BN5), which have

significant differences with other bidder populatisizes (BN15: 0.064* and BN40: 0.052%).

This is followed by cases with largest populatiBh40 (BN15: 0.012%).

The performances of the pricing schemes (in termRE) are also significantly different
(Type Il sum of squares 1.495, d.f. 3, F 460.895%mong the pricing rules, ConsNuc
algorithm has obtained higher efficiencies, evanugh it does not have significant difference
with Nuc. The average rent extraction estimates@onsNuc is significantly higher than
RAD LP (0.02419*) and RAD NLP (0.02138*). Nuc hagrsficant differences with RAD LP
(0.023*) and RAD NLP (0.02*). RAD NLP has producsignificantly higher average RE
estimates than RAD LP (0.003*). In terms of pricenmtonicity, all schemes have produced
higher fluctuating prices for medium populationesiaf bidders (BN15) compared to other
population sizes. RAD NLP has produced least flatihg prices for BN5 and BN15.
Whereas, for higher population size ConsNuc hadymed least fluctuating prices (Figure 4).
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6.2.3 Effect of level of competition

Conservation auctions vary in terms of level of pefition. In general, the higher is the level
of competition, the greater the competitive efficig, and so the greater the benefits of
auction mechanism. Competition depends on the degfrbeterogeneity among landholders
in their conservation costs. If costs are highlyialle, the advantages of increased
competition from increased bidders’ population plausible. Auctions should be open to
anyone willing and able to meet financial prequedifion, as they will enhance competition
and limit opportunities for collusion. Along withé number of active bidders, level of targets
defines the extent of competition (Whitten et 2007).

There is no specific rule on what should be thegmuate level of competition. It depends on
the objectives of the auction, approximate numbdnids, cost of assessing the bids to the
agency, likely impact on unsuccessful bidders (¥hitet al., 2007). The agency may add
some conditions to control the level of competitfbehmann et al., 2006). Commercial firms
may want to maintain diversity in contract allooatiin terms of suppliers’ capacity and
location so that changes in circumstances do resupli essential supplies. But too many
winners increase overhead (Abrache et al., 20@7overnment auctions, there may be a
ceiling on what fraction of the contracts may gsétect bidders. If the allocation is too small
it may discourage the bidders and if it is too éatige government may become dependent on
particular suppliers. For example, Holt et al. (20Bave suggested restricting any entity from
purchasing (or taking a beneficial role) more tt&8% of the allowances for sale in the
auction for CQ emission.

In this test, we have defined competition in teohpercentage of bidders that could fulfil the
target in the optimal allocation. For example, CM2@ans that there are twenty percent
bidders in the optimal allocation. We can obsehat the allocative efficiency estimates for
the schemes have decreased with reduced levehgdatidion. For high levels of competition
(CM20 and CM40) all schemes have performed equaigll and achieved complete
allocative efficiency. For cases of reduced conjpeti (CM60), ConsNuc has achieved
higher allocative efficiency (Figure 3).

We can see from the RE lines that the performanéedl pricing schemes have enhanced
with increasing competition and they have perfornedt with highest level (20%) of

competition. Univariate analysis indicates thatehie significant difference in rent extraction
estimates among different levels of competitiong@yll sum of squares 155.556, d.f. 2, F
70743.840**). In cases for intense competition (@Y 2all pricing schemes have achieved
high rent extraction estimates. With gradual reiducin intensity of competition (CM40 and

CM®60) the amount of rent extraction has gone down.

The performances of the pricing schemes (in termBRE) are also significantly different
(Type lll sum of squares 1.495, d.f. 3, F 453.1)6%Among the pricing rules ConsNuc
algorithm has obtained higher efficiencies in allses, even though it does not have
significant difference with Nuc. The average remtraction estimates for ConsNuc is
significantly higher from RAD LP (0.024*) and RADUR (0.021*). This is followed by Nuc,
which has significant differences with RAD LP (0332 and RAD NLP (0.020%).
Performances of RAD LP and RAD NLP are also sigaiitly different (0.003*) with RAD
NLP producing higher average RE estimates.

In terms of price monotonicity, RAD NLP has proddi¢east fluctuating prices for CM20 and
CM40. For CM60, Nuc has produced least fluctuapniges. For RAD LP and RAD NLP,
price fluctuations have increased with increasagel of competition. For Nuc and ConsNuc
price monotonicity shows reverse trend (Figure 4).

31



Iftekhar M. S, Hailu A. and Lindner R. K. 2009. Comparisons of linear item pricing methods for iterative multi-unit reverse
combinatorial auctions. Peer reviewed conference paper accepted for the International Conference on Policy Modeling -
EcoMod2009, to be held on June 24-26, 2009, in Ottawa, Canada. (Canada). 1% May 2009 version.

6.2.4 Effect of bidders’ homogeneity

Bidders’ homogeneity in terms of cost structure hiatling strategy has significant effect on
the performances of the auctions (Sade et al.,)200@Be bidders are homogenous, they will
compete with each other and reduce the procureomsts. But, if all bidders are high cost
then bidders homogeneity will help little in redogioverall procurement costs. On the other
hand, if the bidders are heterogeneous the highbodders will bid closest to their production
costs. The low costs bidders will bid slightly lawtban the high cost bidders in order to be
selected. Thus they will be competing directly owith those offering the same quality mix.
This will reduce competition (Latacz-Lohmann ancizzi, 2005). This may be case for
conservation auctions, since there is high hetergigein landholder’s opportunity costs. For
example, it has been observed that the averageebidectare in BushTender was $274/ha but
the standard deviation of bids was $349/ha, evengh the auction was confined to a
relatively homogeneous agricultural production egst (Box Iron Bark vegetation
classification) (Eigenraam et al., 2006).

In this test, we have defined bidder's homogenigitierms of percentage of bidders having
identical packages and similar bidding strategy. &@mple, BH60 means that sixty percent
of bidder's population have identical packages hade similar bidding strategy. We can
observe that the allocative efficiency estimategtie schemes have decreased with increased
level of heterogeneity. This may be the case dubddact that with increased heterogeneity
the pricing schemes not only have to separate Vadie bidders from low-value bidders but
also reflect the demands of bidders across commedifLedyard et al., 1997). For
heterogeneous populations (BH60 and BH20) ConsNag dichieved higher allocative
efficiency (Figure 3).

In terms of rent extraction estimates, univariat@lgsis indicates that there is significant
difference among different levels of bidders homugey (Type Il sum of squares 42.454,
d.f. 2, F 4730.573**). In cases for homogenous paimn, all pricing schemes have achieved
high revenue efficiencies. But when the bidder pajen is semi heterogeneous (BH60), the
schemes produce lower rent extraction comparectterdgeneous population (BH20). This
means that in case of semi heterogeneous populhiopricing schemes have not been able
to guide the bidders sufficiently to make the aurctinore competitive. This may also be the
case when bidders are competing only with otherthinsame group and so the level of
competition has reduced.

The performances of the pricing schemes in ternidEoare also significantly different (Type
Il sum of squares 1.44, d.f. 3, F 106.971*"). Amgothe pricing rules Nuc algorithm has
obtained higher efficiencies in all cases. The agerrent extraction estimates for Nuc is
significantly higher from other pricing rules (Cdngc: 0.033*, RAD LP: 0.055* and RAD
NLP: 0.052*). This is followed by ConsNuc, whichshsignificant differences with RAD LP
(0.055) and RAD NLP (0.052). However, performanoéshe RAD LP and RAD NLP are
not significantly different. Price fluctuations leincreased with increasing level of bidder’s
heterogeneity. For homogeneous population (BH1@) RP has produced least fluctuating
prices. For BH60 and BH20 ConsNuc and Nuc has mediueast fluctuating prices
respectively (Figure 4).

6.2.5 Effect of level of complementarity

Presence of complementarity / synergy in productosts of the items is one of the main
reasons for using combinatorial auctions. Perfogaarof combinatorial auctions have been
tested for different settings of synergy. For exenpedyard et al. (1997) have reviewed 130
auction experiments conducted for allocating Peasd@ommunications licenses by the
Federal Communications Commission of USA. They habserved that over a very wide
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range of complementarities, combinatorial auctiwedkly) dominates simultaneous auction,
which in turn (weakly) dominates sequential auctiimander and Nilsson (2004), who have
compared the designs in sealed bid first price &ymalso observed higher efficiency of
combinatorial auction in allocating complementagnstruction contracts. Cramton et al.
(2006) noted that where complementarities are bwting and varied across bidders, package
bids could improve the efficiency. Goeree et a0 have made similar observations. But
in case of un-related goods, sequential and simedtas auctions generate almost similar
revenue (Menezes and Monteiro, 2003).

In these experiments, for a procurement auctiorellef complementarity is defined as the
amount by which procurement / production costswid ftems are reduced when they are
produced together. For example, if A and B are ttems, and c (.) denotes the farm’s
production cost, A and B are said to be complemmgnta ({A, B}) =c {A}) +c ({B}) — «
(AB), o (AB) > 0. Herea (AB) is the estimate / level of synergy (Abracheak, 2007).
Different authors have varied this estimate innleiperiments to test the performances of
CAs. For example, Leufkens et al. (2006) have tette bidding in a sequential private value
auction under three treatments: a baseline witkynergies, one with mild synergies (s = 1.5)
and one with strong synergies (s = 2.0). ChernaanazLevin (2007) investigated bidding in
a first-price sealed-bid multi-unit demand auctieith and without package bidding. There
are two local bidders competing against a globlaé @lobal bidder draws a single value from
the same uniform distribution as local bidders. Vh&ie to the global bidder for obtaining
both items is vg = (&g wheref represents the synergy value and sg is the gluldder’s
value.

However, in this paper, we have defined the le¥alyoergy differently. We have considered
that the bidders could either have synergy or Absence of synergy means that the farmers
are conserving the species in different patchescandervation costs are unrelated. So, the
cost of the project is the sum of the costs fdiediint patches. Presence of synergy means that
the farmers are conserving the species in the pamch and the costs are complementary. We
have varied the number of farmers with synergigéickages. For example, CP20 means that
twenty percent bidders have synergistic packageke wie rest has additive packages. We
can observe that all the pricing schemes have rdaicomplete allocative efficiency,
although the rent extraction estimates have vaneith the changes in level of
complementarity (Figure 3).

Univariate analysis indicates that there is sigaifit difference in rent extraction estimates
among different levels of complementarity (Type #im of squares 156.95, d.f. 5, F
3159.249**). Cases where all or majority of thenfiers have either additive (CP00) or
complementary costs for (CP100 and CP80) packadkgpricing schemes have achieved
complete revenue efficiency. But when these twaugsoare mixed the schemes produce
lower rent extraction estimates (CP40 and CP20h dkieugh they can achieve complete
allocative efficiency (CP40). This means that tigdbrs are competing only with bidders in
the same group and the level of competition hagaedl

The performances of the pricing schemes (in termRE) are also significantly different
(Type 1l sum of squares 0.454, d.f. 3, F 15.218%&)nong the pricing rules, Nuc algorithm
has obtained highest efficiencies in all cases. adeage rent extraction estimates for Nuc is
significantly higher than other pricing rules (Cbiug: 0.0178*, RAD LP: 0.0227* and RAD
NLP: 0.0183*). However, the performances of othdcing schemes are not significantly
different among each other.

Price fluctuations have varied with changes inl¢ivel of complementarity. Price fluctuations
have increased for medium level of complementarig@P20 and CP40). RAD LP and RAD
NLP have produced less fluctuating prices compdeediuc and ConsNuc for all cases
(Figure 4).
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7. Concluding remarks

Combinatorial auctions offer advantages over tiai or simpler conservation auctions that
have been attracting policy interest especiallythie last decade. However, the flexibility
offered by combinatorial auctions requires the giesif price feedback schemes or algorithms
that help bidders formulate and revise their bidthiese auctions. There has been several
price feedback algorithms suggested in the liteeatdowever, they have been proposed and
applied in auctions for distinct items rather tisanvices that can be offered at different levels
(e.g. area conserved). This paper focuses on agplnd evaluating the price feedback
algorithms for auctions where the bidders can offet only different services but also
different levels of the individual services, sepalsaor in combination.

We test some linear pricing schemes for multi-ueNerse (procurement) combinatorial
auction. A bio-economic model is used to generaistsc for conservation of different
packages of target species on lands owned by farnidrese farmers compete to win
contracts to conserve sets of target species.der @0 accommodate the multi-unit features of
our auctions, we have modified the existing desiginfour linear pricing schemes based on
Resource Allocation Design (RAD) and nucleolus gtgms. Bidding and auction outcomes
are simulated for bidder populations with differtvels of heterogeneity and complexities in
the auction environment.

In order to test the schemes in wide range of enwent we have studied the performances
with variation in some major factors of auction eorment, such as, bidders’ heterogeneity,
number of packages, number of bidders, level ofpmdition and level of complementarity.
We summarize the main findings —
« All pricing schemes have obtained very high allneaefficiency (AE > 0.95) and
reasonably well rent extraction estimates (RE 0.5
« Performance of the schemes have enhanced withd¢heaise in number of packages
e The schemes have performed better in low and hidghelds population sizes
« With enhanced competition the schemes have obtdiigter allocative efficiency
and rent extraction estimates
« The allocative efficiency estimates decrease wittrédasing bidders’ heterogeneity.
In terms of rent extraction, the schemes were nedfieient for homogenous and
highly heterogeneous bidders’ population.
« Similarly in presence of high proportion of farmevih additive or complementary
costs, the schemes were more efficient

Overall, RAD based algorithms have produced ldastuating prices. This may be due to the
presence of price balancing optimization across iteens. However, nucleolus based
algorithms have performed consistently better thimer pricing schemes in terms of
allocative efficiency and rent extraction estimaté& postulate two reasons. Firstly, in the
nucleolus based algorithms the sign of the slaciabke is free, so the algorithms have more
freedom in selecting both positive and negativekdaand positive prices compared to RAD
based schemes. Secondly, in the Nuc algorithmhallwinning bids are merged into an
aggregated bid. While, computed value for the agmpesd bid is forced to be equal to the
minimum cost, individual winning bids may have laweigher or equal computed values. So,
the algorithm has more freedom in selecting prezeapared to other schemes.

However, there is scope for further study. Althaugiucleolus based algorithms have
achieved better efficiency, per unit prices produbg them fluctuate between the rounds. In
the simulation experiments, it may not hamper teefgpmances of the bidders. But in
experiments with human subjects and in real lifeliagtions highly fluctuating / volatile

prices may confuse the bidders. In the literatprege anchoring or smoothing techniques
have been applied for single unit combinatorialtans. This can be adapted for multi-unit
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auction. There are also alternative algorithmsotmpute linear prices. For example, Aparicio
et al. (2008) have developed a DEA based pricitgerses for multi-unit forward auction.
This can be adapted to reverse auction to tepeifermances. Lastly, the learning rules used
for the bidders are very simplistic. More compléstder’s learning rules could be used to test
the schemes. We have plans to test some of thpeetasn future experiments.
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