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Abstract

Sensitivity analysis is an important part of quantitative modelling in eco-
nomics and other empirical sciences. It studies how the variation in the out-
put of a model (numerical or otherwise) can be apportioned, qualitatively or
quantitatively, to different sources of variation. Thus, it serves to examine
the robustness of numerical results with respect to input parameters, which
is a prerequisite for deriving economic conclusions from them. In practice,
modellers apply different methods, often chosen ad hoc, to do sensitivity
analysis. This paper pursues a systematic approach. It formalizes deter-
ministic and stochastic methods used for sensitivity analysis. Moreover, it
presents the numerical algorithms to apply the methods, in particular, an im-
proved version of a Gauss-Quadrature algorithm, applicable to one as well as
multidimensional sensitivity analysis. The advantages and disadvantages of
different methods and algorithms are discussed as well as their applicability.

∗Corresponding Author, e-mail: mennel@zew.de. Financial Support by the EU project ”Tran-
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1 Introduction

In economics as well as other model based sciences, a modeler has to do a sensi-
tivity analysis to show the validity of results of his numerical model simulations.
A sensitivity analysis is the study of how the variation in the output of a model
(numerical or otherwise) can be apportioned, qualitatively or quantitatively, to dif-
ferent sources of variation in input parameters. It thus allows for an assessment
of the robustness of numerical results, as it translates the range (confidence in-
tervals) of fundamental (input) parameters into the model into ranges (confidence
intervals) of economic (output) variables. The econometrician Edward Leamer
makes it quite clear: "A fragile inference is not worth taking seriously. All sci-
entific disciplines routinely subject their inferences to studies of fragility. Why
should economics be different? ... What we need are organized sensitivity analy-
ses." (Leamer, 1985)

In the context of CGE models, we ask whether the choice of basic parame-
ters of the model, e.g. elasticities or time preference parameters, lead to stable
equilibrium values of economic variables, e.g. GDP or labor participation. Usu-
ally, we refer to the equilibrium of the benchmark scenario. Quite importantly, a
sensitivity analysis depends on the existence of equilibria for a sufficient range of
parameters: If the model is not solvable for parameter values close to the ones we
have chosen as benchmark values, model results are instable and thus worthless.

Basically, there are two methodological approaches to sensitivity analysis: a
deterministic and a stochastic approach. Deterministic sensitivity analysis as-
sumes that the tuple of basic parameters is an element of a given subset of all
possible parameter choices. It seeks to determine upper and lower bounds on the
corresponding subset of economic outcomes of the model. Stochastic sensitivity
analysis treats the vector of parameters as a stochastic variable with a given dis-
tribution, rendering economic equilibria of the model into stochastic variables. It
aims at calculating the first moments of these variables, with the variance indi-
cating the robustness of the results. The two approaches are presented in section
2.

The choice a modeler has to make in a sensitivity analysis is, however, not
only a methodological, but also a numerical one. Sensitiviy analysis can involve
more or less calculations of equilibria, so that usually there is a trade-off between
accuracy and calculation time. This holds already true for a comparison of the
deterministic and the stochastic approach, and is particularly relevant for the case
of a multidimensional sensitivity analysis. In section 3, we present and discuss
different algorithms. In particular, an improved version of an algorithm based on
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Gauss-Quadrature is developed.
Section 4 presents a simple CGE model in Markusen’s (2002) spirit. We con-

duct a sensitivity analysis with respect to demand elasticities and discuss the re-
sults obtained with different algorithms.

2 Theory of Sensitivity Analysis

2.1 Mathematical Preliminaries

Before conducting a sensitivity analysis, indeed even before implementing a nu-
merical model, the modeller has to understand whether his model is in fact solv-
able. Proving existence (and sometimes uniqueness) of economic equilibria is a
challenge of its own. There exist, however, a set of mathematical theorems that
- if applicable - guarantee the existence of solutions. For example, the existence
of an equilibrium in a general equilibrium framework is proved by recurring on
Kakutani’s fix-point theorem (cf. Mas-Collel et al. 1995, chapter 10). In the se-
quel, we assume that models are (uniquely) solvable for at least some parameter
values and discuss under which circumstances a sensitivity analysis is possible.

An equilibrium of a computable general equilibrium (CGE) model takes the
mathematical form of a solution to a system of (non-linear) equations

G(x∗, a) = 0,

wherex∗ ∈ Rn is a vector of (equilibrium) state variables of the economy
(such as capital or wage) anda ∈ Rd a vector of parameters of the economy
(such as demand elasticity or time preference).G is a continously differentiable
function

Rn ×Rn → R,

that consists of first order conditions and (budget) constraints. This CGE
model will be our standard example. Note, however, that the methods for sen-
sitivity analysis presented can be generally be applied to economic models: The
decisive distinction is the one between economic state variablesx and basic pa-
rametersa.

Sensitivity analysis is concerned with the effect that (minor) changes of ba-
sic parameters∆a have on equilibrium state variables∆x∗. This notion will be
formalized subsequently. At this point we ask under what circumstances an equi-
librium x∗∗ exists for a parameter valuea′ in a neighborhood ofa, e.i. a′ ∈

3



Bε(a) = {ã s.t. |ã − a| < ε}. This is an important question: The existence of
econommic equilibria in a neighborhood ofa is the theoretical prerequisite for
sensitivity analysis. The implicit function theorem gives a definite answer.

Theorem 1 (Implicit function theorem) If det|∇x∗G(x∗, a)| 6= 0, then there ex-
ists an open neighbourhoodU(a) ⊂ Rd of a and a continously differentiable
functionh : U(a) → Rn that maps any vector of parameters on the correspond-
ing equilibrium vector.

Proof. Rudin (1976), theorem ?
Thus we learn that there is someε > 0 so that the existence of equilibria in aε-

neighborhood ofa is guaranteed wheneverG is a regular function ata. Generally
speaking, we would expectG to be regular as long as first order conditions and
constraints are independent. While it may be difficult to prove the assertion in
some cases, it can be checked without problem numerically.

We have formulated the implicit function theorem for the case of CGE models.
Simular formulations can be given for partial equilibrium models that are charac-
terized by first and second order conditions and, possibly, additional constraints.
In the case of economic optimization problems, the role of the implicit function
theorem is taken by the theorem of the maximum (cf.).

So far we have neglected the notion of uniqueness of equilibria. While in prin-
ciple sensitivity analysis can be conducted in the presence of multiple equilibria
as well, uniqueness facilitates the analysis considerably. It is usually ensured by
adequate convexity assumptions (cf. MasCollel et al. (1995) p.?). In the more
general case of multiple equilbria, caution is warranted. In this case,

h : U(a) → P(Rn)

is a correspondence, mapping the vector of parameters into a set of solutions

h(a) = {x∗1, x∗2, ..., x∗m}.

Ignoring multiplicity can seriously blur a sensitivity analysis whenever a nu-
merical solver ’jumps’ from a solutionx∗j to some other solutionx∗i along changes
of underlying parametersa. In that case, sensitivity of an equilibrium with respect
to the basic parameters can be seriously exaggerated: Instead of following the
initial equilibrium x∗j along a continous path for changes ofa (cf. Judd, page), a
numerical discontinuity occurs and the new equilibriumx̃∗i is more distant tox∗j
than the correct equilibrium̃x∗j . The best provision against such fallacies is the
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calculation of all equilibria along the path of change; however, this can entail a
considerable computational effort. At this point, we will not discuss the issue any
further.

2.2 Deterministic Sensitivity Analysis

Sensitivity analysis is sometimes called robustness analysis. This term highlights
its motivation: Assuming that we do not know the basic set of parameters exactly,
how robust are the economic state variables in an equilibrium with respect to
changes in the parameters? Thedeterministic approach to sensitivity analysis
states is that there exists one true vector of economic parametersa∗ ∈ Rd, but that
-instead ofa∗- we only know its neighbourhoodA. Usually, we choose one vector
of parameterŝa ∈ A and call it thebenchmark scenario. The point of sensitivity
analysis then is to investigate whether equilibria vary considerably acrossh(A) in
comparison to the benchmark equilibriumh(â).

Mathematically speaking, deterministic sensitivity analysis amounts to a geo-
metric problem: Determine the relation of the volume of the image ofA underh
and the size ofh(â), weighted with a scaling factorwk in each dimension1

vol(im(w ∗ h))

‖w ∗ h(â)‖
=

∫
A

√
det(∂ij(w ∗ h(a)))da1...dad

(w ∗ h(â), w ∗ h(â))
,

where the vectorw specifies the relative weight we want to attach to the dif-
ferent economic variables in equilibrium2. The findings of the model are robust
whenever the relation is sufficiently small, where the assessment of sufficiency is
left to the reader. The formal definition we have just given is a generalization of
the more familiar notion of sensitivity analysis in one dimension: E.g. we might
ask how big is maximal interval of values of GDP engendered by a model for a
given interval of demand elasticities. We will discuss the issue in more detail in
the next section where we present thepeacemeal approachto sensitivity analysis.

Under some circumstances, we can say that the sensitivity of the model for a
set of parameterŝa is approximated by the relation of

1By ′∗′ we denote component-wise multiplication of vectors.
2We do not have to attach a weight to an economic variable explicitly - instead we assess

sensitivity by comparing the effect of changes ina on each dimension of the equilibrium state
variablex. Implicitly, however, we will attach some weight to each dimension by accepting a
certain outcome of the sensitivity analysis.
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(w,∇h(â))/(w, h(â)).

This Taylor-expansion view is used in linear programming (Flavell and Salkin,
1975). However, for non-linear programming it is usually impractible and unreli-
able.

2.3 Stochastic Sensitivity Analysis

Thestochastic approachto sensitivity analysis takes a different view of the basic
problem: It treats the vector of basic parameters as a stochastic variablea with a
given distributionG(a) of a ∈ A. While somewhat counterintiutive in the first
place, the approach is in line with econometric estimations. These do not only
produce mean values for parameters such as demand elasticities, but confidence
intervals and higher moments for them. Under stochastic sensitivity analysis,h
becomes a mapping onto a stochastical variablex∗ = h(a) of equilibria.

We then calculate the mean and the variation of the equilibrium vectorx∗:

m = E[h(a)] =

∫
A

h(a)dG,

v = V ar[h(a)] = E[(h(a)−m)2] =

∫
A
(h(a)−m)2dG.

Attaching different weights to different economic variables, the stochastic sen-
sitivity analysis assesses the size of

n∑
k=1

wk
vk

mk

,

where indexk is running over the dimension ofx. In words: Given a distri-
bution of basic parameters, we investigate the most likely equilibrium (the mean).
We assess its robustness by assessing the relative size of the variance of equi-
libria with respect to the mean, possibly attaching different weights to different
economic variables.

3 Practical Sensitivity Analysis

Having formalized the notion of sensitivity analysis in the preceeding section we
now present the practical implementation of the (somewhat abstract) concepts.
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For the sake of clarity in the sequel we assume that all dimensions are weighted
equally, thus dropping the vectorw from all formulae.

3.1 The Peacemeal Approach

In apeacemeal approachto sensitivity analysis, we calculate

∆ = max
ai,aj∈{a1,...,aM}

|h(ai)− h(aj)|

for a set of representative parametersai ∈ A. The relation of∆ to the
weighted benchmark equilibriumh(â) is used to assess the sensitivity of the model
at equilibriumh(â). The peacemeal approach is kindred to a deterministic sensi-
tivity analysis. But instead of calculating the volume ofA underh, it focusses on
the maximal intervals of economic variables engendered by the set of parameters
a ∈ A.

If the set containsa = argmina∈Ah(a) and a = argmaxa∈Ah(a), then
the following inequality holds (to facilitate the presentation and without loss of
generality, we setn = 1):

vol(im(h))

|h(â)|
≤ vol(A)

h(a)− h(a)

|h(â)|
= vol(A)

∆

|h(â)|
.

A peacemeal approach can give a good idea of the sensitivity of the model if
the set of parametersai ∈ A is sufficiently representative.

As an example, let bothn = 1 andd = 1. Then

h : [a, a] → [x, x]

for some scalar parametersa, a, x andx. If h is monotonously increasing,
then

vol(im(h))

h(â)
≤ (a− a)

h(a)− h(a)

h(â)
.

In this specific case, the peacemeal approach and the more formal definition of
deterministic sensitivity analysis given in the first section virtually coincide. Gen-
erally speaking, while our formal definition captures the intention of sensitivity
analysis more accurately, the peacemeal approach is more practicable.
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3.2 The Monte-Carlo Approach

TheMonte-Carlo approach is the first of two practical implementations of stochas-
tic sensitivity analysis. Both mean and variance of equilibriumx∗ are approxi-
mated in the following way: Draw a (large) set of realisations{a1, ..., aM} from
the distributionG(A) and calculate

m = E[h(a)] ≈ 1

M

M∑
i=1

h(ai) = m̃,

v = V ar[h(a)] ≈ 1

M

M∑
i=1

(h(ai)− m̃)2 = ṽ.

The sums of the right-hand side converge stochastically to the true values of
m andv. Beyond mean and variance of the stochastic variablex∗, we can eas-
ily approximate its distributionh ◦ G. A great disadvantage of the Monte-Carlo
approach is that in order to assure convergence, the number of drawsM has to
be high and thus the approximation is numerically costly. This is a problem in
particular when the space of parametersa is high dimensional - the curse of di-
mensionality drives up the number of necessary draws exponentially (cf. Judd).

3.3 The Gauss-Quadrature Approach

The second way of practically implementing stochastic sensitivity analysis is by
Gauss quadrature - in fact a numerical method to approximate integrals (cf.
Stoer). Remember that we intent to approximate mean and variance, that are
defined by integrals of the distribution of basic parametersa. We want to do so
using a rather small numberL of function evaluationsh(.).

Essentially, the Gauss quadrature gives us nodesxi and weightsωi to approx-
imate the (one dimensional) integral∫ b

a

f(x)ω(x)dx ≈
L∑

i=1

ωif(xi). (1)

In our specific case, we look for nodesai and weightsgi to approximate mean
and variance of equilibria:

m =

∫
A

h(a)dG ≈
L∑

i=1

gih(ai) = m̃,
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v =

∫
A
(h(a)−m)2dG ≈

L∑
i=1

gi(h(ai)− m̃)2 = ṽ,

where again, the dimension of economic variables is set ton = 1 (we present
the generalisation to several variables below).

In the following, we develop a version of Gauss quadrature new to computa-
tional economics, in that it builds onorthogonal polynomials. While somewhat
complicating the straightforward Gauss quadrature algorithm commonly used in
economics (cf. Arndt 1996) conceptually, our approach simplifies the compu-
tation of a sensitivity analysis in cases of standard probability distributions, in-
creasing the approximation quality at the same time. This is possible because the
optimal nodesxi turn out to be zeros of orthogonal polynomials. They have to
be linearly transformed to fit the respective interval but can otherwise be taken
from an existing table. In contrast, in Arndt’s (1996) algorithm, the nodes are the
solution of a system of non-linear equations.

To define orthogonality in this context, let the distributionG(a) be represented
by a weight functiong(a). Then the expression

(f1, f2)g =

∫
A

f1(a)f2(a)g(a)da

defines a scalar product(., .)g. We refer to orthogonality with respect to this
scalar product. The following lemma holds:

Lemma 2 (Gram-Schmidt, Weierstrass)For any scalar product(., .) on the space
of continuous functionsC([a, a]), there is a complete system of orthogonal poly-
nomials{p0, p1, ...|(pi, pj) = 0, i 6= j}.

Proof.
For any given scalar product, orthogonal polynomials can be constructed from

monomials1, x, x2,... by the Gram-Schmidt procedure

p0 ≡ 1 pi(x) = xi −
i−1∑
j=1

(pj, x
i)

(pj, pj)
pj.

We thus obtain an infite sequence of orthogonal polynomials. As for complete-
ness, we know that the polynomials(p0(x), p1(x), ..., pn(x)) span the same linear
subspace of the space of continuous functions as the monomials(1, x, x2, ..., xn).
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Consequently, we can apply Weierstrass’ approximation theorem which states that
the space of polynomials is dense in the space of continous functions (cf. Rudin
1976, ch. 2) and the completeness of the family of orthogonal polynomials ensues.

There are well known examples of orthogonal polynomials, the best known
being Legendre, Tchebychev, Laguerre and Hermite polynomials.

Examples of families of orthogonal polynomials

Name g(x) [a, b] Definition

Legendre 1 [−1, 1] Pk(x) = (−1)k

2kk!
dk

dxk [(1− x2)k]

Tschebyscheff (1− x2)−
1
2 [−1, 1] Tk(x) = cos(k cos−1(x))

Laguerre exp(−x) [0,∞) Lk(x) = exp(x)
k!

dk

dxk (xk exp(−x))

Hermite exp(−x2) (−∞,∞) Hk(x) = (−1)k exp(x2) dk

dxk (exp(−x2))

The proof of lemma is constructive, so that for any weight functiong(a) or-
thogonal polynomials can be constructed from monomials1, x, x2, .... For a gen-
eral distribution probability distributionG(a), their calculation can entail consid-
erable

To proceed, we need one property of orthogonal polynomials.

Lemma 3 The zeros{a1, a2, ..., al} of pl(a) are real and distinct.

Proof. Stoer
It is because that they are real and distinct that the zeros of a orthogonal poly-

nomial are a possible choice of nodes for the evaluation of the approximation
formula 1. The following theorem shows that they are indeed a good choice.

Theorem 4 (Stoer) Let {a1, a2, ..., al} be the zeros ofpl(a) and g1, ..., gl be the
solution of the system of linear equations

n∑
i=1

gipk(ai) =

{
(p0, p0) : k = 0
0 : k = 1, 2, ..., l − 1
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Thengi > 0 for i = 1, 2, ..., l and∫ a

a

p(a)g(a)da =
l∑

i=1

gip(ai)

for all p ∈ Π2l−1 =� p0, ..., p2l−1 �.

In words: For a given weight functiong(a) (i.e. probability distributionG), we
calculate the zerosa1, ..., al of the corresponding orthogonal polynomial of degree
l. Calculating the weightsg1, ..., gl from a suitable system of linear equations, we
obtain a integration formula of type 1 that integrates polynomials up to degree
2l-1 exactly.

Thus, for our purpose of numerical integration, we have to calculate the zeros
of orthogonal polynomials and weights corresponding to the probability distribu-
tion G with weight functiong(a). However, we have to do so only once for a
givenG. While in general the numerical determination of the zeros of orthog-
onal polynomials for a given distribution may be tricky, in the case of standard
probability distributions we have no problem. A look at the table of orthogonal
polynomials confirms that for uniform distributions, we can use Legendre poly-
nomials, and Hermite polynomials for normal distributions. This facilitates our
task considerably: We can either (easily) calculate the zeros numerically from the
defining formulae for Legendre or Hermite polynomials, or take these from pub-
lished tables. The next section shows an application of the method presented here
to a simple example.

In higher dimensionsn > 1, integrals can be approximated by product rules,
combining one-dimensional nodes and weights:

∫ a1

a1

...

∫ ad

ad

f(a1, ..., ad)g1(a1)...gd(ad)dad...da1

≈
n∑

i1=1

...

n∑
id=1

g1
i1
...gd

id
f(a1

i1
, ..., ad

id
)

In a later version of this paper, we will provide the formulae for a higher-
dimensional application of our Gauss-Quadrature approach. It is essentially straight-
forward, applying the one-dimensional procedure step by step for each dimension.
It is in dimensions higher than one - when a joint distribution of basic param-
eters is inserted into the sensitivity analysis, that Gauss-Quadrature integration
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has a great advantage over Monte-Carlo simulations, as the evaluation of nodes
increases exponentially with each dimension, making MC simulations simply to
expensive.

4 A Simple Example

We consider a two-by-two closed economy in the spirit of Markusen (2002). It
represents an economy with two commodity goods,X andY, two factors (capi-
tal K and laborL), and one single representative agent. The goods are produced
through constant returns to scale production activities which combine primary fac-
tor inputs. We use a balanced equilibrium data set given by the square accounting
matrix below. The accounts labelledX andY in this matrix refer to markets for
final commodities. AccountW correspond to final consumption. TheRA account
corresponds to the representative agent. It defines both the endowment and ex-
penditures for the models’s single representative agent.

Accounting matrix with benchmark flows:

Markets X Y W RA Row sum
PX 100 -100 0
PY 100 -100 0
PW 200 -200 0
PL -40 -60 100 0
PK -60 -40 100 0

Column sum 0 0 0 0

The accounts of the matrix do not by themselves completely characterize a gen-
eral equilibrium framework because they provide a variety of benchmark value
shares. A model formulation additionally relies on assumptions about elasticities
of substitution in the various sectors. These are the parameters with respect to
which we want to conduct a sensitivity analysis.
In our model we have three elasticities of substitution for the three production
activities: esubx denotes the elasticity of substitution between inputs toX pro-
duction,esuby the elasticity of substitution between inputs toY production and
esubw the one between inputs to final consumption.
We chooseesubx = esuby = esubw = 0.5 and use a GAMS program to cali-
brate the model as replication of the benchmark equilibrium. Then we introduce
an exogenous labor tax on goodX by settingTAXLX = 1.
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In the following we want to compare two different approaches for the sensi-
tivity analysis: the Monte-Carlo (MC) analysis and the Gauss-Quadrature (GQ).
We assume that the elasticity of substitutionesubx is uniformly distributed on the
interval0.25 and0.75 and that the other elasticities are constant and equal to0.5.
Due to the assumption of uniform distribution we choose Legendre polynomials
for the Gauss-Quadrature.

For the sensitivity analysis with the Monte-Carlo approach we randomly draw
values foresubx from the interval [0.25,0.75]:

esubx = UNIFORM[0.25, 0.75].

We calculate the corresponding equilibrium values forX, Y andW: X.L, Y.L and
W.L. Given the solution from the benchmark scenario withxbench, ybench and
wbench the new results are normalized:

resultx = ROUND(100 ∗ (X.L− xbench)/xbench).

Fory andw, this is done accordingly. By summing up

results(i) = (resultx(i), resulty(i), resultw(i))

over all drawingsi and dividing by the number of draws we calculate the mean
and hereupon the variance of the economic variables.

For the sensitivity analysis using Gaussian Quadrature with Legendre polyno-
mials we use a MATLAB routine to calculate the zeros of Legendre polynomials
legendrenodes and the weightslegendreweights. Hereby, we use the recur-
sive formula for polynomials given by the Gram-Schmidt procedure, calculate the
zeros for these polynomials and solve the equation system given in Theorem 4
with respect to the corresponding weights. We save the zeros and weights in a
gdx file. Alternatively, schedules with zeros and weights for Legendre polyno-
mials can also be found in the internet or in math books. Once thisgdx file is
created, it can be used to run sensitivity analysis for every CGE model where the
parameters are assumed to be uniformly distributed.
In our GAMS program, the variableslegendrenodes andlegendreweights are
loaded and transformed into the variablesgrid andweights. For the program we
choosemaxdegree which is the degree of the maximal Legendre polynomial that
we want to consider. It also refers to the rows with zeros and weights that are
loaded from thegdx file. A highermaxdegree raises the accuracy of the Legen-
dre approach but is computationally more expensive.
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We have to transformlegendrenodes linearly from interval[−1, 1] to grid on
interval [a, b] = [0.25, 0.75] because the standard Legendre polynomials are de-
fined on the interval[−1, 1]: grid(i) = (b− a) ∗ (zerosval(′maxdegree′, i) +
1)/2 + a. zerosval(′maxdegree′, i) denotes the i-th zero point for a Legendre
polynomial of degreemaxdegree which is loaded fromlegendrenodes. Now
we calculate the equilibrium values forX, Y andW by a loop of the model, varying
the elasticityesubx acrossgrid. We calculate again the means and variances of
economic variables by summing upresults, weighted byweights which can be
drawn from the gdx file directly:

mean(resultx) = SUM(i, weights(i) ∗ resultx(i)),

variance(resultx) = SUM(i, weights(i)∗sqr(resultx(i)))−sqr(mean(resultx).

Fory andw, this is done accordingly.
Sensitivity w.r.t. esubx: Mean

Name MC mean MC mean MC mean GQ mean GQ mean GQ mean
(Runs) (100) (500) (2000) (10) (20) (40)

X -8.990 -9.010 -9.023 -9.036 -9.026 -9.030

Y 7.582 7.578 7.575 7.576 7.568 7.570

W -1.396 -1.410 -1.417 -1.426 -1.427 -1.421

Sensitivity w.r.t. esubx: Variance
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Name MC var. MC var MC var GQ var GQ var GQ var
(Runs) (100) (500) (2000) (10) (20) (40)

X 0.027 0.031 0.031 0.031 0.031 0.031

Y 0.004 0.004 0.005 0.004 0.004 0.005

W 0.014 0.015 0.016 0.018 0.015 0.016

The matrix above presents the result for our model. The number of model eval-
uations which is proportional to the computation time are given as following:
MMC = 100, MMC = 500 andMMC = 2000 for the Monte Carlo approach
and lGQ = 10, lGQ = 20 and lGQ = 40 for the Gauss-Quadrature. It can be
seen directly from the matrix that the Gauss-Quadrature considerably reduces the
computation time.

The sensitivity analysis can be done in a similar way for the parametersY

andW separately or for all parameters simultaneously. In the later case, the elas-
ticities of substitution ar drawn randomly but independently from given intervals
[ax, bx], [ay, by] and[aw, bw] when using the Monte Carlo approach. For the Gauss-
Quadrature three grids are loaded and transformed from thegdx file. The equilib-
rium values are calculated by three loops over the three grids. Mean and variance
can be derived by weighting the results with the associated weights:

mean(resultx) =

SUM(i, SUM(ii, (SUM(iii, weights(i) ∗ weights(ii)∗
weights(iii) ∗ resultx(i, ii, iii)))))

and

variance(resultx) =

SUM(i, SUM(ii, SUM(iii, weights(i) ∗ weights(ii)∗
weights(iii) ∗ sqr(resultx(i, ii, iii)))))− sqr(mean(resultx) .
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5 Conclusion

Due to its general importance in economic modelling, sensitivity analysis merits a
systematic understanding by economic modellers. This paper hopes to contributes
to such an understanding and to serve as a guide in applying the appropriate al-
gorithm. Dimensionality of sensitivity analysis (the number of parameters that
are varied simultaneously) makes an important difference. Moreover, it is demon-
strated that generally stochastic sensitivity analysis gives more and better insights
than deterministic sensitivity analysis. However, it is also more burdensome com-
putationally. Comparing stochastic methods, the paper shows that Monte-Carlo
methods are easily applicable, but computationally expensive. Gauss-Quadrature
methods reduce the computational burden and thus are suitable for higher dimen-
sional problems.
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