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1. Introduction 
 

Complexity is a multidimensional phenomenon with several approaches and many 

theoretical definitions that we will not discuss in detail here (see e. g., Waldrop 1992 and 

Adami 2002). Originated in the physical and biological sciences the notion of complexity has 

been usefully extended to the analysis of social and economic systems (see e. g., Arthur 

1999, Rosser 1999 and Durlauf 2003). 

 

 

In the economic context, one interesting dimension of complexity is the level of 

interdependence between the component parts of an economy. The Leontief input-output 

model is, by its very nature, one of the best theoretical and empirical methodologies for 

studying it. 

 

In fact, inter-sectoral connectedness is the central feature of input-output analysis, and there 

are, as expected, many different ways of measuring it, from the earlier and classical 

indicators of Chenery and Watanable(1958), Rasmussen(1956) and Hirschman(1958), to 

more sophisticated methods as the interrelatedness measure of Yan and Ames (1963), the 

cycling measure of Finn(1976) and Ulanovicz(1983), the dominant eigenvalue measure of 

Dietzenbacher(1992) and many others. Among the more recent examples of 

interconnectedness measures, proving the resurgence of interest in this kind of research, 

are the average propagation length (weighted or unweighted) proposed by Dietzenbacher 

and Romero (2007) and the complexity as interdependence measures of Amaral et al 

(2007).  

 

The study of economic complexity in an input-output framework has been an interesting 

subject for economic analysis and policy making purposes (see e.g., Robinson and 

Markandya 1973, Sonis et al 1998 and Dridi and Hewings 2002). For example, in a more 

complex economy the effects of (global) policy measures tend to be easily and rapidly 

propagated and more evenly distributed among sectors, and the same goes for unexpected 

(desirable or undesirable) shocks of any nature (see e.g., Sonis et al 1995, Dietzenbacher 

and Los 2002, Steinback 2004 and Okuyama 2007) 
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On the other hand, it can be expected that the complexity of an economy is negatively 

correlated with the relative weight of its so-called key sectors and this may eventually make 

(dominant sectors directed) policy interventions less efficient. (see e.g., Laumas 1975, 

Dietzenbacher, 1992, Sonis et al, 1995 and Muñiz et al, 2008).  

 

For comprehensive reasons, it is also expectable that, in general, regional economies are 

less complex than national economies, small economies less complex than large economies 

and open economies less complex than closed economies, but the exhaustive study of 

these comparisons would need a careful theoretical and empirical research, well beyond the 

scope of this paper.  

 

It is also predictable that the effects of measurement errors in collecting interindustry data 

and the robustness of input-output projections from ESA and SNA Table are in some sense 

related to the complexity of an economy. This may be an important issue for empirical 

researchers and statistical unities, and so an appropriate measure of sectoral complexity 

can be supplemented with these input-output tables, in line with the robustness measure 

proposed by Wolff (2005). 

 

The inter-sectoral measures of complexity analyzed and quantified in this paper can also be 

useful in other fields of research, namely for studying the ecological complexity of natural 

(living) systems (Finn 1976, Zucchetto 1981, Bosserman 1982 and Ulanovicz 1983) and the 

complexity of social networks (Wasserman and Faust 1994, Jackson 2006).  

 

These measures were chosen among those input-output methodologies directly giving (or 

allowing to deduct) holistic indexes of connectedness that can be considered good 

indicators or proxies of complexity as sectoral interdependence. In order to fully understand 

and quantify economic complexity in this sense, these measures should be complemented 

with other forms of uncovering structure, like the qualitative input-output analysis based in 

the theory of directed graphs (Czamansky 1974; Campbell 1975; Aroche-Reys 2003), the 

minimum flow analysis (Schnable 1994; 1995), the fields of influence and feedback loops 

analysis (Sonis and Hewings 1991; Sonis et al 1997; van der Linden et al. 2000), the 

concept of important coefficients (Jensen and West, 1980; Aroche-Reys 1966), the 

fundamental economic structure (Simpson and Tsukui 1965; Jensen et al 1987; Thakur 

2008), the neural network approach to input-output analysis (Wang 2001), among others.  
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The structure of this paper is as follows: in section 2 the measures of complexity are 

presented and briefly discussed; in section 3 a detailed quantification of economic 

complexity as connectedness is made, applying the rich menu of (input-output) measures 

presented in the previous section and confronting them empirically, using the inter-industry 

tables of several OECD countries; and section 4 concludes the paper. 

 

 

2. Measures of Input-Output Connectedness 
 

There are several measures of connectedness in input-output analysis. Although not 

explicitly made for that purpose, they can be considered as alternative measures of 

economic complexity as sector interrelatedness. And it is an interesting exercise per se to 

rank the economies according to the level of interrelatedness obtained for each of them. 

 

In this section, we present a (not exhaustive) list of measures, from the traditional ones to 

some recent and more theoretically elaborated. Most of these measures were proposed by 

authors in economics but there are also some proposed by biologists, and have an 

ecological content (useful surveys of some of these measures are Hamilton and Jensen 

1983, Szyrmer 1985,  Basu and Johnson1996, Cai and Leung 2004, and Amaral et al, 

2007). 

 

One of the first indicators of connectedness of an input-output system is the Percentage 

Intermediate Transactions (M1 – PINT) of Chenery and Watanable(1958), defined as “the 

percentage of the production of industries in the economy which is used to satisfy needs for 

intermediate inputs”, and defined as: 

 

xi
xi

'
'100PINT A

=       (1) 

where A is the production (technical) coefficients matrix, x is the vector of sectoral gross 

outputs, i is a unit vector of appropriate dimension, and ‘ means transpose. 

 

Another classical measure of connectedness is the Average Output Multiplier (M2 – AVOM) 

based on Rasmussen(1956) and Hirschman(1958): 
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ii
n

1)('1AVOM −−= AI      (2) 

with n the number of sectors and I the unit matrix. 

 

A similar measure is used by Blin and Murphy(1974), with n2 in the denominator. 

 

Useful only in very disaggregate matrices is the Percentage of Nonzero Coefficients 

measure (M3 – PNZC) of Peakock and Dosser (1957): 

 

ii
n

K'100PNZC 2=       (3) 

with K a Boolean matrix, such as: [ ]


 ≠

==
otherwise

a
kkk ij

ijij ,0
0,1

,  

 

A simple but useful measure is the Mean Intermediate Coefficients Total per Sector (M4 – 

MICT, Jensen and West, 1980): 

 

ii
n

A'1MIPS =       (4) 

 

Based on the work of Wang(1954) and Lantner(1974) is the idea that the smaller the value 

of the determinant of the Leontief matrix, |I-A|, the larger the elements of the Leontief 

inverse and the interrelatedness of the IO system, and so we can use the (Inverse) 

Determinant measure (M5 – IDET): 

 

||
1IDET
AI−

=       (5) 

 

A more elaborate one is the Yan and Ames(1963)  interrelatedness measure (M6 – YAAM), 

defined as: 

∑=
ji

YA
ijn ,

2

11YAAM
O

      (6) 
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where YA
ijO  is the Order Matrix, with each entry representing the smallest order of 

interrelatedness between i and j, that is, given the series A, A2, A3, …, Ak, k consisting of the 

exponent necessary to convert the corresponding cell to nonzero. 

 

Dietzenbacher(1992) proposed as an alternative measure of connectedness  the Dominant 

Eigenvalue of Matrix A (M7 – DEVA): 

 

λ=DEVA        (7) 

with λ: the dominant eigenvalue of matrix A. This measure has recently been used and 

refined by Midmore et al (2006). 

 

With particular importance for the study of ecological systems are the following measures of 

connectedness proposed by Finn(1976) and Ulanovics(1983): the Mean Path Length and 

the Cycling Index.  

 

The Mean Path Length (M8 – MPLE) is:  

 

yi
ii

'
'MPLE X

=         (8) 

where tii =X' , is the total system (gross) output and i’y is the system final demand flow 

(with y representing the vector of sector final demands). 

 

 The Cycling Index (M9 – CYCI) is:  

t
b

=CYCI         (9) 

where: j
j jj

x
l

b )11(∑ −=  is the sum of the cycling flows, lii are the main diagonal elements of 

the Leontief inverse matrix and t was defined above. 
 

A recent measure of input-output connectedness that can be used as an indicator of 

economic complexity is the Average Path Length (unweighted or weighted) proposed in 

Dietzenbacher et al (2005) and Dietzenbacher and Romero(2007). 
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This measure is based on matrices L = (I-A)-1 and H, with H being defined as: 

 

...321 32 +×+×+×= AAAH       

 

Dietzenbacher and Romero(2007) show that: 

H = L(L – I)        

and define the Sectoral Average Propagation Lengths (APL’s, that we can represent on a 

nxn matrix; let us call it the APL matrix ): 

jifor
l
h

APL
ij

ij
ij ≠= :,        

jifor
l

h
l

hAPLAPL
jj

jj

ii

ii
jjii =

−
=

−
== :,

)1()1(
     

 

These values are the base of the M12 - APLU: Average Propagation Lengths (Unweighted) 

measure: 

∑ ∑∑ ∑ 



=





j i iji j ij APL
nn

APL
nn

1111
    (10) 

 

Another recent measure, explicitly made for quantifying economic complexity as input-output 

interdependence, is proposed by Amaral et al (2007), based on Amaral(1999). 

 
This measure considers i) a “network” effect, that gives the extent of direct and indirect 

connections of each part of the system with the other parts, more connections 

corresponding to more complexity; and ii) a “dependency” effect, that is, how much of the 

behavior of each part of the system is determined by internal connections between the 

elements of that part – which means more autonomy and less dependency – and how much 

that behavior is determined by external relations, that is, relations with other parts of the 

system – which means less autonomy and more dependency. 

 

A brief description of this measure is presented here, following closely Amaral et al (2007). 
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Consider a system represented by a square matrix A, of order N and with all values non 

negative. A part of the system of order m (m = 1, …,N-1), is a square block A* of order m 

which has its main diagonal formed by m elements of the main diagonal of A. 

 

Let A* be a part of the system. For example: 

 









=

2221

1211*
aa
aa

A         

 
A* can be considered a sub-system of the system A. This sub-system is the more 

autonomous (or, equivalently, the less dependent) the greater the values of its elements 

( 11a , 12a , 21a , 22a ) are relative to the elements ( ja1 , ja2 , 1ja 2ja ), for all j>2. 

 

In order to measure the greater or lesser autonomy of the sub-system A*, it can be defined 

the autonomy degree of A* as: 

 

******
*

*)(
AAA

A
A

++
=aG         

 

where M  means “sum of the elements of matrix M”, A** is the block of all the elements of 

the columns belonging to A* with the exception of the elements of A*, and A*** means the 

same for the rows. For example, if A* is the block defined above:  

 

)(** 21 jj aa += ∑A  and )(*** 21 jj aa += ∑A for j = 3, 4, …, N   

 

Based in the autonomy degree it can be defined a block dependency degree as: 

 

*)(1*)( AA ad GG −=         

 

It is easy to see that in a matrix A of order N there are 2N – 2 blocks A* (because there are 

( )∑ N
k  blocks A* with k = 1, ... , N-1). 
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So, the (raw) dependency degree of system A is defined as: 

 

22
*)(

)(*
−

= ∑ N
k kdG

G
A

A        

for which k varies from 1 to 2N – 2 and Ak* represents a square block that includes the main 

diagonal. 

 

After correcting by the scaling factor given by the maximum value of G*(A) (that is a function 

of N): 

22
122 2

−
−− −

N

NN

         

 

the dependency degree G(A) of A is:  

 

122
)(*)22()( 2 −−

−
=

−NN

N GG AA        

 

The network effect indicator, H(A) is: 

 

H(A) = 1 – h(A)       

with 
NN

h
−

= 2

 )Z(  )( AA ,  

in which Z(A) is the number of zeros of matrix L = (I-A)-1. 

 

Finally, the complexity as interdependence index combining the dependency and the 

network effects is: 

 

I(A) = G(A) x H(A)       (11) 

 

This measure can be based on the technical coefficients matrix, A (M11 – CAIA) or on the 

Leontief inverse, substituting, in G(A), L for A (M12 – CAIL). 
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3. Measuring connectedness and complexity with OECD IO data 

 

From the previous section we end up with 12 measures of complexity as input-output 

connectedness, listed in the table presented in Appendix 1. 

 

In this section we present the results of an empirical application of all these measures using 

the Input-Output Tables of nine OECD economies in the early seventies and the early 

nineties of the previous century.   

 

For convenience of analysis the original data is aggregated in the 17 sectors presented in 

the table of Appendix 2. 

 

Tables 3 and 4 show the main results, that is, the values of all the measures for all the 

countries in early 70’s and early 90’s.  

 

A broad inspection of these values confirms the expected conclusions that the large 

economies (Japan and USA) are in fact more complex, and smaller economies tend to be 

less complex (the Netherlands and Denmark), both at the 70’s and the 90’s.  

 

This is clearly seen in Tables 5 and 6, where we present the rankings of countries for each 

measure (9 points for the largest value, 1 point for the smallest) and the final ranking 

considering all the measures (total number of points and relative position of each country). 

 

Looking to the absolute values of the connectedness measures and its percent changes 

(Table 7) we also see  a (perhaps unexpected) slight reduction in the average economic 

complexity, with a decreasing dispersion of countries along the “interrelatedness scale 

function” but no significant relative changes, except UK, upgrading from 8th in the 70’s to 4th  

in the 90’s. 

 

A closer inspection of the absolute values and rankings calls for a careful association of 

measures corresponding to different methodologies or conceptualizations of economic 

complexity. This task can be better accomplished analyzing the correlation coefficients 

presented in Tables 8 and 9 and using the following definitions and results. 
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Let M be the set of the measures mi, r(i,j) the absolute value of the correlation coefficient 

between mi and  mj  and c the number 0 ≤ c  ≤ 1. 

  
Definition 1: A bundle B of measures of M is a set of elements of M such that for every pair 

(mi , mj ) of B we have r(i,j) ≥ c and for every mk of M-B we have at least one mi of B such that 

r(i,k) < c. 

 

Two bundles B1 and B2 are perfectly separated when for every mk of B1 we have r(k,i) < c 

for every mi of B2. 

 

Definition 2: An isolated measure ml is one such that the bundle where it belongs is the 

degenerate bundle {ml}. 

 

It is easy to see that the family of bundles of the measures of M is a partition of M as the 

union of disjoint sets. However the set M may be partitioned in several ways. 

 
Assumption (emergent concepts):  For a set M that is partitioned in perfectly separated 

bundles, each bundle B is interpreted as the emergence at the surface of a hidden concept 

of interrelatedness. 

 

When the bundles are not perfectly separated the hidden concepts of interrelatedness are 

called fuzzy concepts.  

 

It is easy to see that if there is a perfectly separated partition it is the only perfectly 

separated partition that exists.  

 

Applying these concepts to the results of tables 8 and 9 and taking for the value of c for 

each of the years respectively the average of all the correlation coefficients, we have for the 

90’s two perfectly separated bundles: 

 

B1 = {PINT, AVOM, MICT, IDET, DEVA, MPLE, CYCI, APLU, CAIA, CAIL} 
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B2 ={ PNZC, YAAM}. 

 

This result indicates a clear distinction (at this level of aggregation - 17 sectors) between 

measures based on Boolean (B2) and non Boolean (B1) methods, that is probably only 

interesting, or useful, for very disaggregate matrices. 

 

Another, more useful, distinction is obtained considering, in the domain of strongly 

correlated non Boolean measures, the correlation coefficients with positive and negative 

signs, pointing to a further separation of bundles of this kind: 

 

B11 = {PINT, AVOM, MICT, IDET, DEVA, MPLE, APLU, CAIL} 

 

B12 = {CYCI, CAIA} 

 

The close behavior of measures CYCI and CAIA is supposedly explained by the fact that 

they explicitly exclude (direct) intra-dependence flows (the values of self-supplying inputs or 

the coefficients in the main diagonal of matrix A) and in the sense of complexity as (sectoral) 

interdependence, these are probably the most appropriate measures.  

 

To explore this distinction further, it is useful to make the rankings of economic complexity 

based on bundle B11 (Tables 10 and 11) and bundle B12 (Tables 12 and 13).   

 

The interesting result is of course that, according to this particular notion of complexity as 

interdependence, large economies appear to be less complex than small ones and 

complexity does not necessarily augments as economies grow and develop.  But the full 

understanding of all the forces behind this surprising result would need further research. 

 
Looking at the correlation coefficients of the early 70’s, a degenerate bundle with the 

isolated measure M11 - CAIA exist, pointing to an autonomous emergent concept of 

economic complexity, that does not persist in the 90’s.   
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4. Conclusions 

 
Connectedness is a crucial feature of input-output analysis that can be used for studying 

economic complexity as sectoral interdependence. 

 

There are many ways to quantify connectedness, and it is a useful exercise to confront 

different measures, both theoretically and empirically. 

 

In this paper, a menu of twelve measures is presented and briefly discussed. All these 

measures are quantified using an input-output database of nine OECD countries in the early 

70’s and 90’s, which gives us an interesting inter-country comparison and two decades 

evolution of economic complexity as sectoral interrelatedness.   

 

Looking at the absolute values of the measures it appears that large economies (Japan and 

USA) are more “intensely connected” (and so, more complex) than small ones (Netherlands, 

Denmark). It also appears that there exist a slight reduction in complexity and a decreasing 

dispersion of countries along the “interrelatedness scale”, with one peculiar exception of 

complex upgrading (UK). 

 

A closer inspection of the values, applying a method of identifying emergent concepts using 

the correlation coefficients, points to the emergence of three bundles of measures: a 

Boolean based group of two measures with weak correlation with all the others; a group of 

eight measures based on all technical coefficients (and production multipliers) with strong 

positive correlations between them and weak positive correlations with the Boolean group; a 

bundle of two measures that explicitly exclude intra-sectoral flows, negatively correlated with 

all the others, but probably the most appropriate to measure complexity as (sectoral) inter-

dependence. 

 

According to the majority bundle of (more conventional) measures of connectedness, large 

economies seem to be more complex than small ones. The bundle of two measures 

excluding (direct) intra-sectoral flows, on the other hand, points to the inverse conclusion, 

but this surprising result needs confirmation with further theoretical and empirical research.   
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Appendix 1:  
 
Table 1: Input-Output Connectedness Measures 

Number: Designation: Formula: Proponents: 

M1 PINT 
x'i

Ax'i100  
Chenery and Watanable (1958) 

M2 

 

AVOM 

 
iAIi

n
1)('1 −−  

Rasmussen-Hirschman (1958) 

M3 

 

PNZC 

 
Ki'i

n
100

2  
Peakock and Dosser (1957) 

M4 

 

MICT 

 
Ai'i

n
1

 
Jensen and West (1980) 

M5 IDET 

 |AI|
1
−

 
Wang(1954) 

 Lantner(1974) 

M6 

 

YAAM 
∑

j,i
YA
ij

2 O
1

n
1

 
Yan and Ames (1963) 

M7 DEVA 

 

λ : dominant 
eigenvalue of A 

Dietzenbacher (1992) 

M8 

 

MPLE 
y'i

Xi'i
 

Finn (1976) 
Ulanovicz(1983) 

M9 

 

CYCI 

 t
b

 
Finn (1976) 

Ulanovicz(1983) 

M10 

 

APLU 

 
[ ]∑ ∑i j ijAPL

n2

1 Dietzenbacher (2007) 

M11 

 

CAIA 

basedA
AHAG )()( ×

 
 Amaral, Dias and Lopes (2007) 

M12 

 

CAIL 

basedL
LHLG )()( ×

 
Amaral, Dias and Lopes (2007) 
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Appendix 2. 
 

     

Table 2: Aggregate sectors    

1 Agriculture, mining & quarrying 

2 Food, beverages & tobacco 

3 Textiles, apparel & leather 

4 Wood and paper 

5 Chemicals, drugs, oil and plastics 

6 Minerals and metals 

7 Electrical and non-elect. equipment 

8 Transport equipment 

9 Other manufacturing 

10 Electricity, gas & water 

11 Construction 

12 Wholesale & retail trade 

13 Restaurants & hotels 

14 Transport & storage 

15 Communication 

16 Finance & insurance 

17 Other sectors 
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Appendix 3: 
 

 

Table 3: Connectedness Measures - early 70’s values 
 

Country Year PINT AVOM PNZC MICT IDET YAAM DEVA MPLE CYCI APLU CAIA CAIL 

Australia 1968 44,667 1,742 91,004 0,420 8,539 0,955 0,428 1,807 0,864 2,188 0,747 0,406 

Canada 1971 42,287 1,685 100,000 0,395 5,231 1,000 0,416 1,733 0,899 2,041 0,779 0,404 

Denmark 1972 31,755 1,473 99,654 0,318 3,381 0,998 0,329 1,465 0,926 1,705 0,786 0,328 

France 1972 41,030 1,678 96,886 0,407 8,639 0,984 0,395 1,691 0,869 1,959 0,737 0,381 

Germany 1978 40,939 1,757 99,308 0,424 10,537 0,997 0,458 1,693 0,857 2,046 0,732 0,402 

Japan 1970 50,524 1,956 97,232 0,484 15,087 0,986 0,501 2,021 0,825 2,272 0,740 0,450 

Netherlands 1972 29,758 1,449 91,350 0,304 4,298 0,957 0,368 1,424 0,909 1,735 0,754 0,301 

UK 1968 37,560 1,683 93,426 0,393 9,180 0,967 0,427 1,602 0,868 2,014 0,729 0,379 

USA 1972 41,916 1,898 100,000 0,478 18,285 1,000 0,465 1,722 0,858 2,187 0,712 0,430 
 
 
 
Table 4: Connectedness Measures - early 90’s values 
 

Country Year PINT AVOM PNZC MICT IDET YAAM DEVA MPLE CYCI APLU CAIA CAIL 

Australia 1989 38,391 1,722 100,000 0,429 6,629 1,000 0,399 1,623 0,897 1,919 0,767 0,410 

Canada 1990 40,764 1,686 100,000 0,399 6,068 1,000 0,414 1,688 0,891 2,037 0,765 0,400 

Denmark 1990 31,656 1,532 99,654 0,356 3,638 0,998 0,315 1,463 0,922 1,725 0,791 0,355 

France 1990 37,051 1,683 95,848 0,416 8,087 0,979 0,411 1,586 0,883 1,914 0,748 0,386 

Germany 1990 41,064 1,769 99,654 0,446 8,737 0,998 0,416 1,697 0,864 1,963 0,753 0,416 

Japan 1990 45,999 1,912 95,502 0,483 18,497 0,978 0,473 1,852 0,844 2,212 0,719 0,432 

Netherlands 1986 29,986 1,473 91,696 0,324 3,601 0,959 0,330 1,428 0,921 1,728 0,782 0,324 

UK 1990 40,389 1,743 100,000 0,428 9,562 1,000 0,421 1,678 0,859 1,944 0,737 0,403 

USA 1990 40,153 1,849 100,000 0,468 12,871 1,000 0,442 1,671 0,864 2,077 0,732 0,429 
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Table 5: Connectedness Measures - early 70’s rankings 

 

 

Table 6: Connectedness Measures - early 90’s rankings 

 

 

Table 7: Percent changes of absolute values, between the 70’s and the 90’s 

Country PINT AVOM PNZC MICT IDET YAAM DEVA MPLE CYCI APLU CAIA CAIL

Australia -14,051 -1,179 9,886 1,987 -22,371 4,710 -6,872 -10,187 3,828 -12,264 2,669 1,103

Canada -3,601 0,086 0,000 1,099 16,001 0,000 -0,556 -2,570 -0,883 -0,205 -1,809 -1,043

Denmark -0,312 3,975 0,000 11,956 7,596 0,000 -4,353 -0,145 -0,356 1,179 0,703 8,362

France -9,699 0,350 -1,071 2,007 -6,387 -0,527 4,140 -6,182 1,658 -2,304 1,562 1,320

Germany 0,304 0,681 0,348 5,249 -17,082 0,174 -9,262 0,211 0,908 -4,053 2,887 3,639

Japan -8,956 -2,266 -1,779 -0,178 22,601 -0,877 -5,684 -8,379 2,277 -2,632 -2,799 -4,187

Netherlands 0,764 1,627 0,379 6,547 -16,214 0,181 -10,211 0,325 1,268 -0,405 3,712 7,702

UK 7,533 3,554 7,037 8,853 4,170 3,399 -1,262 4,747 -0,999 -3,465 1,117 6,333

USA -4,205 -2,560 0,000 -1,991 -29,611 0,000 -4,960 -2,945 0,665 -5,037 2,817 -0,282
 

 

Country Year PINT AVOM PNZC MICT IDET YAAM DEVA MPLE CYCI APLU CAIA CAIL Total FR 
Australia 1968 8 6 1 6 4 1 6 8 4 8 6 7 65,0 5º 
Canadá 1971 7 5 8,5 4 3 8,5 4 7 7 5 8 6 73,0 3º 
Denmark 1972 2 2 7 2 1 7 1 2 9 1 9 2 45,0 7º 
France 1972 5 3 4 5 5 4 3 4 6 3 4 4 50,0 6º 
Germany 1978 4 7 6 7 7 6 7 5 3 6 3 5 66,0 4º 
Japan 1970 9 9 5 9 8 5 9 9 1 9 5 9 87,0 1º 
Netherlands 1972 1 1 2 1 2 2 2 1 8 2 7 1 30,0 9º 
UK 1968 3 4 3 3 6 3 5 3 5 4 2 3 44,0 8º 
USA 1972 6 8 8,5 8 9 8,5 8 6 2 7 1 8 80,0 2º 
Total   45 45 45 45 45 45 45 45 45 45 45 45     

Country Year PINT AVOM PNZC MICT IDET YAAM DEVA MPLE CYCI APLU CAIA CAIL Total FR 
Australia 1989 4 5 7,5 6 4 7,5 3 4 7 4 7 6 65,0 6º 
Canadá 1990 7 4 7,5 3 3 7,5 5 7 6 7 6 4 66,5 5º 
Denmark 1990 2 2 5 2 2 4,5 1 2 9 1 9 2 41,0 8º 
France 1990 3 3 3 4 5 3 5 3 5 3 4 3 43,5 7º 
Germany 1990 8 7 5 7 6 4,5 6 8 2 6 5 7 71,0 3º 
Japan 1990 9 9 2 9 9 2 9 9 1 9 1 9 78,0 2º 
Netherlands 1986 1 1 1 1 1 1 2 1 8 2 8 1 28,0 9º 
UK 1990 6 6 7,5 5 7 7,5 7 6 3 5 3 5 68,0 4º 
USA 1990 5 8 7,5 8 8 7,5 8 5 4 8 2 8 79,0 1º 
Total   45 45 45 45 45 45 45 45 45 45 45 45     
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Table 8: Correlation coefficients - 70’s 

PINT AVOM PNZC MICT IDET YAAM DEVA MPLE CYCI APLU CAIA CAIL
PINT 1,000 0,910 0,181 0,905 0,665 0,181 0,848 0,992 -0,847 0,938 -0,370 0,951

AVOM 0,910 1,000 0,277 0,993 0,906 0,277 0,948 0,897 -0,912 0,956 -0,635 0,972

PNZC 0,181 0,277 1,000 0,294 0,250 1,000 0,142 0,152 -0,001 0,080 0,112 0,341

MICT 0,905 0,993 0,294 1,000 0,905 0,294 0,921 0,881 -0,904 0,949 -0,659 0,972

IDET 0,665 0,906 0,250 0,905 1,000 0,250 0,850 0,656 -0,838 0,796 -0,817 0,797

YAAM 0,181 0,277 1,000 0,294 0,250 1,000 0,142 0,152 -0,001 0,080 0,112 0,341

DEVA 0,848 0,948 0,142 0,921 0,850 0,142 1,000 0,845 -0,928 0,923 -0,668 0,900

MPLE 0,992 0,897 0,152 0,881 0,656 0,152 0,845 1,000 -0,844 0,919 -0,334 0,925

CYCI -0,847 -0,912 -0,001 -0,904 -0,838 -0,001 -0,928 -0,844 1,000 -0,881 0,749 -0,843

APLU 0,938 0,956 0,080 0,949 0,796 0,080 0,923 0,919 -0,881 1,000 -0,568 0,961

CAIA -0,370 -0,635 0,112 -0,659 -0,817 0,112 -0,668 -0,334 0,749 -0,568 1,000 -0,489

CAIL 0,951 0,972 0,341 0,972 0,797 0,341 0,900 0,925 -0,843 0,961 -0,489 1,000
 

Note: mean absolute values below main diagonal = 0.637 

 

 

Table 9: Correlation coefficients - 90’s  

PINT AVOM PNZC MICT IDET YAAM DEVA MPLE CYCI APLU CAIA CAIL

PINT 1,000 0,943 0,357 0,914 0,834 0,357 0,953 0,996 -0,912 0,953 -0,850 0,930

AVOM 0,943 1,000 0,351 0,991 0,909 0,351 0,957 0,937 -0,931 0,938 -0,913 0,966

PNZC 0,357 0,351 1,000 0,398 0,012 1,000 0,224 0,301 -0,222 0,221 -0,087 0,553

MICT 0,914 0,991 0,398 1,000 0,873 0,398 0,931 0,900 -0,913 0,890 -0,888 0,973

IDET 0,834 0,909 0,012 0,873 1,000 0,012 0,875 0,860 -0,895 0,889 -0,933 0,777

YAAM 0,357 0,351 1,000 0,398 0,012 1,000 0,224 0,301 -0,222 0,221 -0,087 0,553

DEVA 0,953 0,957 0,224 0,931 0,875 0,224 1,000 0,943 -0,937 0,959 -0,940 0,909

MPLE 0,996 0,937 0,301 0,900 0,860 0,301 0,943 1,000 -0,910 0,958 -0,851 0,907

CYCI -0,912 -0,931 -0,222 -0,913 -0,895 -0,222 -0,937 -0,910 1,000 -0,868 0,962 -0,857

APLU 0,953 0,938 0,221 0,890 0,889 0,221 0,959 0,958 -0,868 1,000 -0,872 0,888

CAIA -0,850 -0,913 -0,087 -0,888 -0,933 -0,087 -0,940 -0,851 0,962 -0,872 1,000 -0,803

CAIL 0,930 0,966 0,553 0,973 0,777 0,553 0,909 0,907 -0,857 0,888 -0,803 1,000
 

Note: mean absolute values below main diagonal = 0.719 
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Table 10: Connectedness Measures - early 70’s rankings – B11 (all interindustry flows) 

Country Year PINT AVOM MICT IDET DEVA MPLE APLU CAIL Total FR 
Australia 1989 4 5 6 4 3 4 4 6 36,0 6º 
Canadá 1990 7 4 3 3 5 7 7 4 39,5 5º 
Denmark 1990 2 2 2 2 1 2 1 2 14,0 8º 
France 1990 3 3 4 5 5 3 3 3 28,5 7º 
Germany 1990 8 7 7 6 6 8 6 7 55,0 3º 
Japan 1990 9 9 9 9 9 9 9 9 72,0 1º 
Netherlands 1986 1 1 1 1 2 1 2 1 10,0 9º 
UK 1990 6 6 5 7 7 6 5 5 47,0 4º 
USA 1990 5 8 8 8 8 5 8 8 58,0 2º 
Total   45 45 45 45 45 45 45 45     

 

 

 
Table 11: Connectedness Measures - early 90’s rankings: B11 (all interindustry flows) 

Country Year PINT AVOM MICT IDET DEVA MPLE APLU CAIL Total FR 
Australia 1989 4 5 6 4 3 4 4 6 36,0 6º 
Canadá 1990 7 4 3 3 5 7 7 4 39,5 5º 
Denmark 1990 2 2 2 2 1 2 1 2 14,0 8º 
France 1990 3 3 4 5 5 3 3 3 28,5 7º 
Germany 1990 8 7 7 6 6 8 6 7 55,0 3º 
Japan 1990 9 9 9 9 9 9 9 9 72,0 1º 
Netherlands 1986 1 1 1 1 2 1 2 1 10,0 9º 
UK 1990 6 6 5 7 7 6 5 5 47,0 4º 
USA 1990 5 8 8 8 8 5 8 8 58,0 2º 
Total   45 45 45 45 45 45 45 45     

 

 

 

 



 25

 

 
Table 12: C.M. - early 70’s rankings: B12: (off-main diagonal flows) 

Country Year CYCI CAIA Total FR 
Australia 1968 4 6 10,0 4º ea 
Canadá 1971 7 8 15,0 2º ea 
Denmark 1972 9 9 18,0 1º 
France 1972 6 4 10,0 4º ea 
Germany 1978 3 3 6,0 7º ea 
Japan 1970 1 5 6,0 7º ea 
Netherlands 1972 8 7 15,0 2ºea 
UK 1968 5 2 7,0 6º 
USA 1972 2 1 3,0 9º 
Total   45 45     

 

 

 
Table 13: C.M. - early 90’s rankings: B12: (off-main diagonal flows) 

Country Year CYCI CAIA Total FR 
Australia 1989 7 7 14,0 3º 
Canadá 1990 6 6 12,0 4º 
Denmark 1990 9 9 18,0 1º 
France 1990 5 4 9,0 5º 
Germany 1990 2 5 7,0 6º 
Japan 1990 1 1 2,0 9º 
Netherlands 1986 8 8 16,0 2º 
UK 1990 3 3 6,0 7º ea 
USA 1990 4 2 6,0 7º ea 
Total   45 45     

  


