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Abstract

This paper characterizes the derivation and the assessment of design limits
of monetary policies in the case of a regime-switching economy. The object
of the analysis on design limits is to derive the restrictions on how feedback
rules, the Taylor-type rules typically used in monetary economics, a¤ect the
frequency �uctations underlying the state variable of interest. We extend the
analysis in the context of a very structured type of model uncertainty where
the uncertainty is described by the presence of di¤erent potential models whose
probability of occurrence and switching is given by a known and ergodic Markov
Chain transition matrix.
The presence of switching modi�es the characteristics of design limits in two

main aspects. First, contrary to the linear case, design limits are a¤ected by the
policy rule so that their role switches from a constraint to an externality that
the policymaker may want to take into account. Second, frequency speci�c re-
strictions associated with a variance minizing rule appear more or less stringent
with the respect to the linear case depending on the probability of switching:
the higher it is, the worse is the performance in terms of frequency-speci�c
�uctuations.

JEL Classi�cation: C52, E6

Keywords: Design Limits, Stabilization policy, Regime switching, Model Un-
certainty

1 Non technical summary

The paper explores the restrictions on the e¤ects of stabilizing policies on �uctuations
from the perspective of the frequency domain. Those restrictions are called design
limits by the control literature. The object of the analysis is the study of some
fundamental limitations regarding frequency-speci�c e¤ects that alternative monetary
policy rules may imply. The object of interest underlying those limitations is the
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notion of the Bode�s integral value, typically derived in the frequency domain1, which
represents an aggregate measure of design limits, in a way that will be clari�ed in
the paper. The theory of design limits has been �rst introduced in economic contexts
by Brock and Durlauf (2004). In this paper we extend the notion of design limits in
a quite structured form of model uncertainty: the Markov Switching ARMA models
(MSARMA) framework. The interest in the relation between the Bode�s integral and
the presence of uncertainty originates from the fact that the formula of the Bode�s
integral constraint can be interpreted by means of information entropy (or Shannon
entropy) computation (Zang and Iglesias (2003)). The notion of entropy has recently
received a renewed interest in macroeconomics due to the literature on robustness as a
way to deal with model misspeci�cation, rigorously developed in Hansen and Sargent
(2008), in which the policymaker seeking to robustify against model misspeciifcation
minimizes the entropy associated to the economic model under study rather than the
familiar quadratic loss function typical of monetary policy exercises.
Design limits are relevant in the decision process of a monetary authority as

long as there may be reasons to consider frequency-speci�c e¤ects produced by the
policy rule, in addition to the conventional object of monetary policy, namely, the
minimization of the overall variability of the macroeconomic aggregates of interest.
For instance, it seems plausible to suppose that the central bank is more interested
in the business cycle performance of its decisions (medium frequencies) rather than
the long run (or low-frequency) e¤ects.
The presence of switching modi�es the characteristics of design limits in two main

aspects. First, contrary to the linear case, design limits are a¤ected by the policy rule
so that their role switches from a constraint to an externality that the policymaker
may want to take into account. Second, frequency speci�c restrictions associated
with a variance minimizing rule, appear more or less stringent with the respect to
the linear case depending on the probability of switching: the higher it is, the worse
is the performance in terms of frequency-speci�c �uctuations.
The paper is structured as follows. Section 2 introduces the notion of design limits

and their relevance in economics. Section 3 presents the framework of MSARMA
models and summarizes the main �ndings of Pataracchia (2008a), which de�nes the
frequency domain of the MSARMA models. Section 4 describes the derivation of the
analogous of the Bode�s integral constraint in the regime-switching case. In Section
5 we present some simulations and comment on the main characteristics of design
limits in regime-switching cases. Section 6 concludes.

1A good reference for the notion of the Bode integral value in time domain is provided by Zang
and Iglesias (2003) who use the notion of entropy for an information-theoretic interpretation of the
costraint.
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2 Introduction

Usual conventional monetary policy�s objectives consist on the minimization of the
overall unconditional variance of a vector of state variables of interest. A typical
backward-looking model, usually considered in monetary policy literature is the fol-
lowing

xt = A (L)xt�1 +B(L)ut + "t (1)

where xt, the state variable of interest, may be a vector, composed, for instance,
by the in�ation rate and the output gap. A (L) and B (L) are two lag polynomials
matrices, where L, the back shift operator, is such that Laxt = xt�a: The control
variable ut, is set by the policymaker (for instance, the level of interest rate if the
policymaker is a monetary authority). When ut = 0 we are in the so called free
dynamics case: the model evolves independently from the control of the policymaker
and the autoregressive part of the system depends only on A (L) : For convenience,
we label this case NC, standing for "no-control", C otherwise. The shocks vector,
"t, while, in general, may have its own moving average structure, is supposed to be
a vector of independent and identically normally distributed zero mean shocks with
covariance matrix known and constant.
Suppose, for simplicity, xt being scalar. There is an important relation between

the unconditional variance of a stationary stochastic process, var (xt jC ) ; and its
spectral density fxjC (!):

var (xt j C) =
�R
��
fxjC (!) d! (2)

The area under the spectrum corresponds to the overall variance of the process.
Formula (2) recovers the variance from the spectrum: the spectral density and the
variance convey the same information about the second order moments of xt: The
frequency domain, however, reveals something more: the area under the spectrum
between two frequencies represents the contributions of those frequencies to the overall
variance. The total variability can indeed be considered as the weighted average of
the spectral density across the frequencies. This is the main justi�cation of the use
of the spectral domain: if one believes that the policymaker may associate di¤erent
losses to di¤erent frequency ranges, then the frequency domain studies enrich the
policymaker�s information set for better and more complete policy evaluations.
Let�s provide a very simple example. Suppose a univariate AR(1) where A (L) =

0:5 and "t being a simple white noise with unit variance. A typical spectral represen-
tation of the free dynamics of such AR(1) is shown by the solid line in �gure 1: when
the autoregressive coe¢ cients is positive (and less than one) the spectrum presents a
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Figure 1: The spectral representation for the process xt = 0:5xt�1 + "t (solid line)
and for the optimally controlled process which reduces to a white noise (dashed line).
The dashed-dot line reproduces an unfeasible result.

peak at the low frequencies and decreases at the high frequencies2. Let�s suppose now
that B(L) = 1 and ut = �fxt�1: where f is set by the policy. If, as policymaker, we
only care about the overall variance we try to kill o¤ all the temporal dependences
(f = 0:5) so to obtain a white noise (the �at dashed line in �gure 1): we are reduc-
ing, by construction, the overall variance (the variance of the controlled process is 1,
the part of the variation deriving from the shock process that the policymaker can-
not control). However, as it may be seen from �gure 1, while stabilizing the model,
we are reducing low frequency components variance, but we are also increasing the
contribution of variance deriving from high frequencies. We refer to those e¤ects as
frequency trade-o¤s.
Should we, as policymakers, care about frequency speci�c e¤ects? There are

several reasons to believe so.
First, nonseparable preferences for policymakers can lead to di¤erent losses for

di¤erent frequency-speci�c �uctuations. Examples of this property are found in Otrok
(2001) and Otrok, Ravikumar and Whiteman (2002): it seems reasonable to assume
that individuals are more sensitive to �uctuations at high frequencies rather than low
frequencies. For instance, consumers may have the following utility functions:

2Notice that the domain of the spectral representation is the close interval [��; �]. The spectral
representation is always symmetric with the respect to the frequency 0, so that, alternatively the
spectrum can be completely de�ned just in the close interval [0; �] :
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U (ct � ct�1)
This is a general idea that deviates from the usual way of consumption. If it is the
correct speci�cation of utility, then C in �gure 1 may imply that people are worse
o¤. In other words, if we introduce uncertainty about preferences, we may want to
be sensitive about the frequency trade-o¤s implied by the minimization of the overall
variance.
If we were able to control the process in the way represented by the dashed-

dotted line, C�, in �gure 1, then uncertainty about preferences would not be a great
deal: no matter frequency speci�c trade-o¤s, C� would constitute an improvement.
Unfortunately, in backward looking contexts, C�is not feasible. This has been the
main message of Brock and Durlauf (2004) who �rst introduced the notion of the
Bode�s integral constraint in macroeconomic contexts. In what follows, we brie�y
explain its technical background and formal de�nition3.
Suppse we consider the scalar version of (1):

xt = A (L)xt�1 �B (L)ut + "t (3)

where xt is supposed to be a zero mean , second order stationary process and "t is a
mean-zero shock as a white noise with variance �2". Suppose we want to stabilize the
state variable: we consider a Taylor type feedback rule

ut = F (L)xt�1

The basic principle of all the stabilization policies requires the control to eliminate
all the temporal dependences so that, in our case, xt is shaped into a white noise,
namely, A(L)xt�1 � B(L)F (L)xt�1 = 0: Every control rule, even if not optimal,
allows to shape the autoregressive representation into a moving average one, so that
every solution may be expressed on the form:

xt = D
c (L) "t

where Dc (L) is the transfer function4 of the model under study. Equivalently, in the
frequency domain, we can say that every control rule shapes the spectral representa-
tion of the unconstrained process

fxjNC =
�2"
2�
DNC

�
e�i!

�
DNC

�
ei!
�
5 (4)

3We invite the interested reader to refer to Brock and Durlauf (2004) and Brock, Durlauf and
Rondina (2006) for an introduction to the control literature on the Bode�s integral applied to eco-
nomic contexts and for the extension to forward looking environments.

4Given the model xt = Dc (L) "t, the transfer function is the mapping from the shock (input),
"t; to the target vector (output), xt.

5This expression represents the covariance generating function of the process in terms of the
coe¢ cients of DNC (L) and the variance of the white noise "t (Sargent (1987)).
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into

fxjC =
�2"
2�
DC

�
e�i!

�
DC

�
ei!
�

(5)

where DNC (e�i!) and DC (e�i!) represent the analogous of the transfer functions in
frequency domain, the complex number, e�i!; ensures that the domain of the spectral
density is the real line and the frequency ! belongs to the closed interval [��; �]. The
Fourier transforms6 de�ned in formulas (4) and (5), may be equivalently described
as follows:

fxjNC =
�2"
2�

��DNC
�
e�i!

���2
and

fxjC =
�2"
2�

��DC
�
e�i!

���2
where j�j2 denotes the complex and conjugate product of the transfer function.
We are now ready to de�ne the object of interest of the Bode�s integral, called

sensitivity function in control literature:

S
�
e�i!

�
, DC (e�i!)

DNC (e�i!)
(6)

From (4) and (5) it follows that

��S �e�i!���2 , fxjC
fxjNC

(7)

which helps in understanding the role of S (e�i!): it describes how the spectrum
of the unconstrained process is shaped into the controlled one. As a stabilizer, the
policymakers wants to choose F so that S (e�i!) = 0: This is naturally not possible
because the realizations of the driving process do not belong to the policymaker�s
information set. Furthermore, there exists a more stringent feasibility constraint
described by the celebrated Bode�s integral Theorem7 that we present after de�ning
the Bode�s integral.

De�nition 1 Given a model and a feasible, stabilizing rule F;with associated sen-
sitivity function S (e�i!) de�ned as in (7), the Bode�s integral (KB) is de�ned as
follows

KB =

Z �

��
log
��S �e�i!���2 d!:

6The interested reader is invited to refer to chapter 13 of Sargent (1987) for a comprehensive
introduction to the theory of Fourier transform.

7The original result is stated in Bode (1945)�s classical monograph.
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Theorem 2 Let�s consider the process (3). If the roots of A(L) � the eigenvalues
of the free dynamics of (3)� are stable, then

�R
��
log
��S �e�i!���2 d! = 0

This theorem states that, in backward looking environments, even if the policy-
maker is able to reduce the overall variance of the state of interest through the choice
of F , the variance contributions at some frequencies will necessarily exacerbate, since,
from Theorem 2, the sensitivity function, S (!) ; 8 cannot be less than one at all the
frequencies, in other words, it must be that

fxjC (!) > fxjNC (!) for some !:

Notice that, for all the stable free dynamics, the value of the Bode�s integral is
always zero and independent of the particular model under exam. Further, it is
independent of the policy rule. Figure 2 proposes again the spectral representation
of a stable autoregressive process (the solid line) and the spectrum of the process
when a variance minimized rule is adopted (the dashed line). As anticipated before,
Theorem 2 ensures that C� is an unfeasible control. Figure 2 also shows that any
random chosen feasible control, even if able to lower the overall variance, produces
some frequency trade-o¤s.
This is the essence of the limitations of the control, or design limits, which seem

particularly relevant when there is uncertainty about the correct speci�cation of the
frequency-speci�c preferences.
The second formulation of the Bode�s integral theorem is the following:

Theorem 3 Let�s consider the process (3) and let�s suppose that at least one root of
A (L) is greater than 1 (unstable). Then

�R
��
log jS (!)j2 d! = 4�

P
i

jlog pij

where pi are the unstable roots of A(L):

The underlying intuition is straighforward. When the process to stabilize has no
�nite variance, stabilization has some costs in terms of performance. In backward
looking contexts Theorem 3 implies that the Bode�s integral may take either zero or
positive values, meaning that frequency-speci�c trade-o¤s are unavoidable. This is
the reason why the Bode�s integral is usually called "the Bode�s integral constraint".

8Trough the paper, we will switch from the equivalent notations S
�
e�i!

�
and S (!). The former

is more formal, the latter is more intuitive and synthetic: in covariance stationary cases, the spectral
representation and, consequently, the sensitivity function, are always real objects and functions of
the frequency, !:
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Figure 2: The spectral representation of the process xt = 0:5xt�1+ "t (solid line) and
for the optimally controlled process which reduces to a white noise (dashed line). The
dotted line represents the process resulting from a feasible control. The dashed-dot
line reproduces an unfeasible result.

Brock and Durlauf (2005) provides an example of a formal control problem with the
Bode�s integral as a constraint. Notice that, even in the cases in which the Bode�s
integral is positive, its value is independent from the policy rule and given only by
the unstable roots of the free dynamics.
Brock, Durlauf and Rondina (2006) describe how to quantify the Bode integral

in forward looking models: they show that in these contests, Bode may also take
negative values. This is due to agents�expectations which enrich the information set
of the policymaker. However, the feasible rules which could, in principle, minimize
the variance at all frequencies are, not always, the optimal response.
In this paper, we will provide an extension of the Bode�s integral result to a context

in which there is a speci�c form of model uncertainty: the policymaker knows that
the economy may be represented by di¤erent potential models, whose probability of
occurrence and switching are described by an ergodic, aperiodic Markov Chain. We
suppose the policy is model independent and set prior to the realization of the Markov
Chain. By that we mean that the Markov Chain, �t; is not observed. However, we
decide to analyze the case in which the transition probabilities are time invariant and
known with certainty. In other words, to keep the exposition simple and clear, we
decide not to consider the possibility that the policymaker can learn and update the
transition probabilities as new observations are revealed. The procedure relies on the
fact that the sensitivity function, the object of interest in the Bode integral constraint
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formulation, will be derived from the knowledge of the spectra as described in (7),
rather than from the transfer function, as it is usually done in linear frameworks (that
is, through Formula (6)). In regime switching cases, indeed, the transfer function is
inherently non linear. We show that in this way we can still use the same linear
framework powerful tools brie�y described above.

3 The Spectral Density of MSARMA

Following Pataracchia(2008a), we consider the MSARMA(p,q) model of the following
type:

xt =
pP
i=1

ai (�t)xt�i + "t +
qP
j=1

bj (�t) "t�j (8)

where xt is a zero mean purely indeterministic process in RK , "t � WN (0, 
),
�t = 1; 2 is an irreducible, aperiodic and ergodic two states Markov Chain with �nite
space � = f1; 2; :::; dg with stationary transition probabilities denoted by p (i; j) =
pr
�
�t = j j �t�1 = i

�
and unconditional (or steady state) probabilities , �i = pr (�t = i),

1 � i � d, where
Pd

i=1 �i = 1
9: Neither the noise ("t) nor the Markov Chain (�t) are

observed (the latter is said to be hidden).
In our previous work, we showed that, given global10 stationarity, we can derive

the spectral density by simply applying the Riesz-Fisher Theorem.
Let�s start the formal discussion by stating the necessary and su¢ cient for global

stationarity. Model (8) is stationary if and only if, given the dK2 (p+ q)2�dK2 (p+ q)2

matrix P

P =

26664
p11 f� (1)
 � (1)g p21 f� (1)
 � (1)g � � � pd;1 f� (1)
 � (1)g
p12 f� (2)
 � (2)g p22 f� (2)
 � (2)g � � � pd2 f� (2)
 � (2)g

...
...

...
p1d f� (d)
 � (d)g p2d f� (d)
 � (d)g � � � pdd f� (d)
 � (d)g

37775 ;
9On the calculation of the ergodic probabilities �i see Hamilton (2004), page 684. In the simple

two-states case, given the Markov Chain M =

�
p11 p21
p12 p22

�
; the steady state probabilities are such

that �1 =
(1�p22)

(2�p11�p22) and �1 + �2 = 1:
10As in Pataracchia(2008), we use the adjective �global� referred to the MSARMA model. For

instance, by global stationarity we mean the stationary of the MSARMA to distinguish it from the
stationarity of the underlying modes.
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where each � (�t) is a matrix K (p+ q)�K (p+ q) de�ned as follows

� (�t) =

266666666666666664

a1 (�t) � � � ap (�t) b1 (�t) � � � � � � bq (�t)
IK 0 � � � 0 0 � � � � � � 0

0 IK � � � 0
...

...
...

. . . . . . . . .
...

...
...

0 � � � IK 0 0 � � � � � � 0
0 � � � 0 0 � � � � � � 0
0 � � � � � � 0 IK 0 � � � 0

0 0 IK 0
...

...
...

. . .
...

0 � � � 0 0 0 � � � � � � IK 0

377777777777777775
;

� (P ) < 1

where � (P ) is the spectral radius of the matrix P. In other words, model (8) is
stationary if and only if all the eigenvalues of the associated matrix P are less than
one in absolute value.
Given global stationarity, the spectral matrix of model (8) can be de�ned as follows

Fx (!) =
1X

�=�1
(e0 
 f 0)P ��W (0) fe�i!�

where

P � =

26664
p11� (1) p21� (1) � � � pd1� (d)
p12� (2) p22� (2) � � � pd2� (d)

...
...

...
p1d� (d) p2d� (d) � � � pdd� (d)

37775
is a dK (p+ q)� dK (p+ q) square matrix, e = (1; :::; 1)0 2 Rd and f 0 = (IK ; 0; :::; 0)
is a K � K (p+ q) matrix. The matrix W (0) is the dK (p+ q) � K (p+ q) matrix
whose ith block, for i = 1; ::; d; is given by �iE (ztz0t j�t = ij), associated to the second
order moments of (8)11. The spectral densities of each element of the state variable
vector xt correspond to the diagonal elements of Fx (!) :
For instance, in the simple univariate case of a MSAR(1) of the form

xt = a (�t)xt�1 + "t (9)

where "t is supposed to be a white noise with zero mean and known and constant
variance �2" and �t is a 2 � 2 Markov Chain, the spectral density has the following
form

fx
�
e�i!

�
=
�2"
2�

 
K 1

(1+�21�2�1 cos!)
+

H 1

(1+�22�2�2 cos!)

!
(10)

11See Pataracchia(2008) for further details on the construction of the matrix W (0) :

10



whereK and H are functions of a (i) and pij;8i; j = 1; 2; explicitly derived in Patarac-
chia(2008a).
In order to appreciate the well behaving properties of (10), let�s recall the linear

framework. In the linear case, any stationary ARMA model with the following Wold
representation

yt = G (L) �t (11)

with �t being a white noise with zero mean and known and constant variance �
2
�, has

the following spectral representation

fy
�
e�i!

�
=
�2�
2�

��G �e�i!���2 (12)

Comparing (10) and (12) we notice that the structure of the spectral density of
Markov Switching model (with a model independent shock process) is similar to any
other linear stationary ARMA model. Indeed, rewriting (10) as follows

fx
�
e�i!

�
=
�2"
2�
A (!) (13)

we can state that A (!) "plays the role" of the complex and conjugate product in
(12). This observation opens the way to possible extensions of the frequency domain
criteria usually used in linear frameworks to the case of MSARMA models. One
example may be the analysis of the frequency e¤ects of the robust monetary policy
rules, which we leave for future research.
In what follows we exploit (13) to characterize the design limits of regime switching

models. While we recognize that the MSAR(1) is a very simple example which hardly
allows a relevant economic application, we think it is important to consider it as a
starting point because, while calculations remain tractable, it allows to derive quite
general considerations.

4 Design Limits in MSAR(1)

The goal of this section is the derivation of the design limits in the case of the
MSAR(1). Before going on, we need to make some assumptions regarding the control
rule. When a feedback-type control is considered, (9) may be rewritten as

xt = a (�t)xt�1 � & (�t)ut + "t (14)

For the sake of simplicity, we just assume & (�t) not only state-independent but also
equal to one. The generic rule is on the form ut = F (L)xt�1; and we suppose
F (L) = F so that we can �nally rewrite (14) as

xt = (a (�t)� F )xt�1 + "t = (15)

= aC (�t)xt�1 + "t
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and we can still work in a MSAR(1) framework. Given (10), we compare:

fxjNC
�
e�i!

�
=
�2"
2�

 
K 1

(1��1e�i!)(1��1ei!)+

H 1
(1��2e�i!)(1��2ei!)

!
(16)

with

fxjC
�
e�i!

�
=
�2"
2�

 
Kc 1

(1��c1e�i!)(1��c1ei!)
+

Hc 1
(1��c2e�i!)(1��c2ei!)

!
(17)

where, as in our previous work, c and nc correspond, respectively, to the case in
which we suppose the policymaker intervenes through the choice of F and the case in
which ut = 0. We are interested in these two cases because, as we showed before, the
Bode�s integral represents an aggregate measure of design limitations the policymaker
must face with the respect to the case without control.
In linear time invariant (LTI) frameworks (for instance, considering model (11)),

we are used to consider fyjnc (e�i!) and fyjc (e�i!) in the following form:

fyjNC (!) = f� (!) j G (!) j2 (18)

and
fyjC (!) = f� (!) j Gc (!) j2 (19)

where f� (!) =
�2�
2�
and j G (!) j2and j Gc (!) j2 are the complex and conjugate

products of the transfer functions of the, respectively, unconstrained and constrained
systems. As described in (6), in linear frameworks, the sensitivity function is derived
by the knowledge of the transfer functions of the controlled and uncontrolled process.
In our case, even if we deal with nonlinear objects, we can still de�ne the complex
and conjugate product of the sensitivity function via the knowledge of the spectra,
as described in (7):

j S (!) j2=
fxjC (!)

fxjNC (!)

where

fxjC (!)

fxjNC (!)
=

 
Kc 1

(1��c1e�i!)(1��c1ei!)
+

Hc 1
(1��c2e�i!)(1��c2ei!)

!
�

�
 
K 1

(1��1e�i!)(1��1ei!)+

H 1
(1��2e�i!)(1��2ei!)

!�1
We are �nally interested in the Bode�s integral constraint

KB =
�R
��
log j S (!) j2 d!
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Taking the log of j S (!) j2, we end up with an expression on the form

log j S (!) j2= logX (!) + log Y (!)� logZ (!)� logW (!)

where

X (!) = Kc
�
1� �c2e�i!

� �
1� �c2ei!

�
+

Hc
�
1� �c1e�i!

� �
1� �c1ei!

�
Y (!) =

�
1� �1e�i!

� �
1� �1ei!

�
��

1� �2e�i!
� �
1� �2ei!

�
Z (!) =

�
1� �c1e�i!

� �
1� �c1ei!

�
��

1� �c2e�i!
� �
1� �c2ei!

�
W (!) = K

�
1� �2e�i!

� �
1� �2ei!

�
+

H
�
1� �1e�i!

� �
1� �1ei!

�
and

KB =
�R
��
logX (!) d! +

�R
��
log Y (!) d! �

�R
��
logZ (!) d! �

�R
��
logW (!) d!

Let�s investigate each term. First, let�s consider Y (!) : We may write it as

logY (!) = log
�
j 1� �1e�i! j2j 1� �2e�i! j2

�
= log

�
j ei! � �1 j2j ei! � �2 j2

�
Following Brock et al.(2006), we can now exploit the Wu and Jonkheere lemma:

Lemma 4
�R
��
log j ei! � r j2 d! = 0 if j r j< 1; 2� log j r j2 otherwise.

Now we can write

�R
��
log Y (!) d! = 4�

P
vi

log j �vi j; i 2 vi if j �i j> 1;8i = 1; 2

Similarly, we can do the same calculations for Z (!) and �nally get:

�R
��
log Y (!) d! �

�R
��
logZ (!) d! =

4�

�P
vi

log j �vi j �
P
ri

log j �cri j
�
; (20)

i 2 fvig if j �i j> 1; i 2 frig if j �ci j> 1;8i = 1; 2
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Some observations are needed at this point. From (20) one is tempted to conclude
that one part of the Bode�s integral formula resembles the linear framework�s result:
it will be zero in the case of a (global) stable free dynamics. Notice, however, that,
contrary to Brock et al.(2006), we used the notion of the spectral representation to
get the complex and conjugate product of the sensitivity function and the condition
of stationarity is necessary to derive the spectral representation. Therefore, the con-
dition of global stationarity must hold in both the uncontrolled and controlled model
in order to conclude that expression (20) implies that the value of the Bode�s integral
is zero. This observation does not necessarily rule out interesting comparisons with
positive Bode values in the underlying models: instabilities in each AR(1) model
are neither a necessary nor a su¢ cient condition for global instability (Costa et al.
(2005)).
We are now left with the terms X (!) and W (!) : Let�s start from the former.

X (!) = Kc
�
1� �c2e�i!

� �
1� �c2ei!

�
+

Hc
�
1� �c1e�i!

� �
1� �c1ei!

�
which is on the form

X (!) = Ac +Bc cos!

so that
�R
��
logX (!) d! =

�R
��
log (Ac +Bc cos!) d! (21)

where

Ac = Kc(1 + �c22 ) +H
c
�
1 + �c21

�
Bc = �2 (Kc�c2 +H

c�c1) (22)

Similarly
�R
��
logW (!) d! =

�R
��
log (A+B cos!) d! (23)

From Gradshteyn and Ryzhik (1980)12

�R
��
log (a+ b cos!) d! = 2� log

a+
p
a2 � b2
2

(24)

so that
�R
��
logX (!) d! �

�R
��
logW (!) d! =

�R
��
log (Ac +Bc cos!)�

�R
��
log (A+B cos!) d! =

12See Gradshteyn and Ryshink (1880), page 527.
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= 2� log
Ac +

p
Ac2 �Bc2

A+
p
A2 �B2

13

We are now able to state the following Theorem.

Theorem 5 Given model (15), the value of the Bode�integral corresponds to

KB = 2� log
Ac +

p
Ac2 �Bc2

A+
p
A2 �B2

+ 4�

�P
vi

log j �vi j �
P
ri

log j �cri j
�

(25)

i 2 fvig if j �i j> 1; i 2 frig if j �ci j> 1;8i = 1; 2

where A;Ac; B and Bc are de�ned as in (22).

Formula (25) provides a measure of design limits for MSAR(1). Its generic analytic
formula depends on the policy rule; a (i) and pij with i; j = 1; 2: This leads us to notice
two important di¤erences with the respect to the LTI cases. First, the Bode�s integral
is model speci�c, and therefore subject to model misspeci�cations, even in backward
looking cases. Second, the presence of the terms Ac and Bc suggests that the value of
the Bode�s integral can be a¤ected by the policy rule. The latter observation allows
to associate to the Bode�s integral the role of an endogenous constraint, similar to an
externality e¤ect, rather than the exogenous constraint that has been traditionally
associated to it in linear frameworks. This certainly constitutes an additional reason
to consider the analysis of design limits as important in any policy evaluation exercise.
In the next Section, we present some simulations in order to understand the

behaviour of the Bode�s integral. Unless otherwise stated, we consider the variance
minimizing rule as the candidate one:We think it is useful here to make a digression on
the characteristics of the variability of our MSAR(1) and on the ability of any rule of
the type described in (15) to control them. In regime-switching cases, total variability
can be decomposed in two parts: the variability-within the underlying models and the
variability-between the models, linked, respectively, to the shock process "t and the
Markov Chain, �t. The variability-within depends, of course, on the autoregressive
coe¢ cients of the underlying models, a (1) and a (2). The variability between the
models may, in turn, be decomposed in two aspects. One is related to the measure
or amount of the switching, once it occurs. In other words, the closer the models in
terms of variability (in our simple case, the closer ja (1)j and ja (2)j) the lower will be
amount of the transition variability. There is, however, a second component of the
transition variability, which is given by the probability of the switching. The higher
p12 and p21 (or correspondingly, the lower p11 and p22), the higher is the probability
of the switching. The unconditional probability of switching is given by �1p12+�2p21:
Notice that, by (15), the policy rule cannot a¤ect (reduce) the transition probabilities
and therefore, the switching probabilities. Those observations will turn out to be
important for what follows.
13Notice that the explicit solution of the integral exists only for A � jBj and Ac � jBcj : This

restriction, however, is not binding in any of the simulations presented next.
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5 The dynamics of the Bode�s integral

Given the complexity of analytical formulas, we present some simulations related to
model (15), with F corresponding at the variance minimizing rule and �2" = 1 . In
Section 5.1.1 we consider the case in which the transition probabilities p11 and p22
are both set equal to 0:5 while we consider di¤erent combinations of a (1) and a (2) :
We call it the case of symmetric transition probabilities. In Section 5.1.2 we propose
the same analysis in the case in which the transition probabilities are both greater
and less than 0:5; so to investigate the e¤ects of the Bode�s integral constraint when
the probability of the switching varies.

5.1 The Bode�s integral across the models

5.1.1 The case of symmetric transition probabilities

In this section we suppose symmetric transition probabilitites ( p11 = p22 = p21 =
p12 = 0:5). The following �gures represent three simulated cases. For each case we
use three graphs: the �rst one refers to the global MSAR(1), while the other two
refer to the respective underlying models. In all of them the solid line represent the
spectral density of the free dynamics of the model while the dashed line illustrates the
spectrum of the constrained processes when the variance minimizing rule is applied.
Figure (3) shows that the control is able to eliminate all the temporal dependences.

In this case the two underlying models are close to each other and the variation due to
the switching appears to be negligible: the total variability of the controlled process
is only slightly above 114.

Figure 3: Spectrum of
MSAR(1), a (1) = 0:5;

a (2) = 0:2:

Figure 4: Spectrum of the
underlying model 1:
AR(1) with a = 0:5:

Figure 5: Spectrum of the
underlying model 2:
AR(1) with a = 0:2:

14In the limiting case, in which the models are identical (so that there is no variation due to
the switching), the controlled process would result a white noise with unit variance. 1 constitutes,
therefore, the lower bound for the variance of the controlled regime switching model.
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The Bode�s integral is negative, even if the controlled spectrum presents some fre-
quency trade-o¤s (stabilization is improved at the low frequencies but exacerbated at
the high ones). A negative Bode�s integral implies that, even though some frequency
trade-o¤s of the chisen policy appear, overall, the frequency-speci�c variability con-
tributions are reduced in comparison to the free dynamics case, in the sense that,
while we are able to reduce the overall variability, the frequency-speci�c trade-o¤s
that result appear diminished.
In the underlying models we observe very di¤erent frequency-speci�c dynamics.

Even if, in our set up, the policymaker cares only about global dynamics, he may
want to take into account the spectra of the underlying models, both of which viable,
given the assumption of ergodicity of the Markov Chain, in particular, if he associates
di¤erent losses to di¤erent frequency ranges.

Figure 6: Spectrum of
MSAR(1), a (1) = �0:8;

a (2) = 0:2:

Figure 7: Spectrum of the
underlying model1: AR(1)

with a = �0:8:

Figure 8: Spectrum of the
underlying model 2:
AR(1) with a = 0:2:

Figures 6, 7 and 8 refer to the second simulation. This time we consider a
MSAR(1) composed by one model (model 1) quite persistent, while the second one
is stabler. In this case the variation between the models is higher with the respect to
the previous case and the variance of the controlled process, whose spectrum is de-
picted by the dashed line in �gure 6, is 1.333. The Bode�s integral is, again, negative
and lower than the Bode�s integral of the �rst case. Figure 6 shows how the control
exacerbates the variability at the low frequencies. This is due, in particular to the
bad performance in correspondence of the low frequencies in the model 2, as shown
by Figure 8.
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a (2) -0.9 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 0.9
KB -0.256 -0.064 0 -0.016 -0.03 -0.016 0 -0.064 -0.256

Table 1: The Bodes�Integral constraint with a(1)=0.5 and �at transition probabilities

a (2) -0.9 -0.8 -0.6 -0.4 0 0.4 0.6 0.8 0.9
KB -0.041 0 -0.061 -0.149 -0.232 -0.149 -0.061 0 -0.041

Table 2: The Bodes�Integral constraint with a(1)=0.8 and �at transition probabilities

Figure 9: Spectrum of
MSAR(1), a (1) = 0:5;

a (2) = �0:5:

Figure 10: Spectrum of the
underlying model 1: AR(1)

with a = 0:5:

Figure 11: Spectrum of the
underlying model 2: AR(1)

with a = �0:5:

The last case, to which �gures 9, 10 and 11 refer, deserves particular attention.
The MSAR(1) behaves already as a white noise because the two underlying models
have opposite coe¢ cients and the transition probabilities are �at. Therefore, the
best response in terms of the minimization of the variance is not to intervene and
the Bode�s integral is zero by de�nition. The variation between the two underlying
models is not reduced at all, so that the variance of the controlled global process
reaches quite high values compared to the �rst case.
Next we investigate the behavior of the Bode�s integral value across di¤erent

models: we keep �xed model 1�s autoregressive coe¢ cient, a (1) ; and consider the
dynamics of the Bode�s integral constraint as the second model�s coe¢ cient (a (2))
changes.
Tables 1 and 2 show the values of the Bode�s integral, given p11 = p22 = 0:5; and,

respectively, a (1) = 0:5 and a (1) = 0:8.
Several considerations can be advanced. First, the Bode�s integral is always neg-

ative or equal to zero. This is, at �rst glance, conterintuitive: the assumption of
the switching regimes introduces an additional source of uncertainty and it is reason-
able to think that this may cause an exacerbation to the limits of the policymaker�s
intervention. Second, in both tables, given a (1) ; the values of the Bode�s integral
are symmetric around a (2) = 0: they vary depending on the absolute value of the
di¤erence of the two autoregressive coe¢ cients. For instance, let�s consider �gure 12
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to which Table 1 refers: from very negative values, moving from a (2) = �0:9 towards
0 the Bode�s integral increases very fast till it reaches 0 when a (2) = �0:5: This is
the case we discussed in �gure 9: the policymaker does not intervene. Continuing
moving rightwards, the Bode�s integral slightly diminishes till a (2) = 0; after which
it increases again until it reaches 0 at a (2) = 0:5: Here the two models coincide, no
model uncertainty is present so that Bode is zero from Theorem 2.
In other words, as shown in the �gures 12 and 13, the Bode�s integral dynamics

with the respect to a (2) presents two peaks: one corresponds to the case in which
the MSAR(1) is already perceived as a white noise, the other one represents the case
in which there isn�t any switching and the two underlying models are identical.

Figure 12: The dynamics of the Bode�s integral
constraint with a (1) = 0:5; p11 = 0:5 and p22 = 0:5:
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Figure 13: The dynamics of the Bode�s integral
constraint with a (1) = 0:8; p11 = 0:5 and p22 = 0:5:

The dynamics of the Bode�s integral may have a meaningful interpretation. We
already know that the lower is the value of the Bode�s integral, the better is the
control in the sense of producing reduced frequency speci�c trade-o¤s. Our job is to
understand in which sense we may say that the introduction of model uncertainty, in
the form of switching regimes, may reduce design limits when p11 = p22 = 0:5. The
key point to understand the above dynamics is to recall the distinction of the two
types of variability the policy maker is subject to: the variability-between and the
variability-within the models.
One plausible interpretation of the qualitative dynamics of the �gures 12 and 13,

may be provided by answering the following question: how e¤ective is the policy-
maker�s control in the reduction of the variability between the models, that is, the
variability due to the transition from one model to the another one? A rough answer
is provided by the dynamics of the Bode�s integral, read with the opposite sign (or
we may consider the symmetry with the respect to the x�axis). The combination
of a (1) and a (2) for which KB is very negative corresponds to the situations in
which the policymaker is quite e¤ective in the reduction of the variability between
the models. This is possible because the two models behave in a very di¤erent way
and the fraction of the total variability due to the transition is important. When
the two underlying models are close to each other, the control of the policymaker
cannot be so e¤ective in the reduction of the transition probability which is already
limited. We can now reinterpret the two points in which Bode is zero: in the case
of no switching, there is no transition probability to reduce, in the case in which
a (1) = �a (2) the models behave in the opposite way, the transition probability is
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very high but it cannot be reduced because the policymaker doesn�t intervene. The
fact that the Bode�s integral can take negative values does not imply that the intro-
duction of model uncertainty has improved the performance. The Bode�integral is
a measure of relative performance (with the respect to the unconstrained case) and
the negative values represent those cases in which the policymaker is able to reduce
the frequency-speci�c trade-o¤s, even if such trade-o¤s are still present.
If the variation between the models seems a good candidate for the explanation

of the qualitative dynamics of the Bode�s integral in �gure 12 (�gure 13) , it can-
not explain why Bode dynamics is not symmetric with the respect to the points
a (2) = �0:5 (a (2) = �0:8) and a (2) = 0:5 (a (2) = 0.8): In other words, focusing
on �gure 12, when a (1) = 0:5; why do we observe di¤erent Bode values if a (2) = 0:8
or a (2) = 0:2? The reason is plausibly due to the reduction of the variability within
the models. Technically, given the particular functional form of the spectra of the
constrained system and the free dynamics, the e¤ective reduction in variance is going
to a¤ect, through �i and �

c
i ; i = 1; 2; the quantity determining the Bode�s integral be-

cause, given p11 and p22; 2� log A
c+
p
Ac2�Bc2

A+
p
A2�B2 is, ultimately, a function of the respective

eigenvalues of P matrix, which determines the stability and the unconditional variance
of the model. For instance, when a (1) = 0:5 and a (2) = 0:2 the uncontrolled process
has an unconditional variance equal to 1.1696, while the variance-minimizing rule
allows the policymaker to reduce the variance to 1.023. When, instead a (2) = 0:8;
while the controlled process has the same variance as before, 1.023, the uncontrolled
process has total variance equal to 1.8018, much higher than the previous case. In
this sense we say that in the latter case the reduction of the variability within the
models is more e¤ective (compared to the uncontrolled case).

Figure 14: The dynamics of the Bode�s
integral constraint with a (1) = 0; p11 = 0:5

and p22 = 0:5:
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To conclude this Section, we present in �gure 14 the limiting case in which the
combinations of models for which there is no switching occurring and at the same time
no need for policymaker�s intervention (a (1) = a (2) = 0), highlighted in the graphs
above, coincide. This case will result important as a comparison for the following
analysis.

5.1.2 The Bode�s integral across the probabilities of switching

In this Section we analyze the three cases considered before (a (1) = 0:8; 0:5; 0) but
we set di¤erent values for the transition probabilities. In particular we consider two
cases. In the �rst, we diminish the overall unconditional probability of switching
by setting p11 = p22 > 0:5 and equal to 0:8: In the second one the unconditional
probability of switching is set to 0:2:

Figure 15: The dynamics of the Bode�s integral
constraint with a (1) = 0:8; p11 = 0:8 and

p22 = 0:8:
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Figure 16: The dynamics of the Bode�s integral
constraint with a (1) = 0:5; p11 = 0:8 and

p22 = 0:8:

Figure 17: The dynamics of the Bode�s integral
constraint with a (1) = 0; p11 = 0:8 and

p22 = 0:8:

If we compare �gures 15, 16 and 17 with the respective cases analyzed in the
previous section, we realize that the qualitatively dynamics inside each graph does
not vary, but, quantitatively, the values of the Bode�s integrals are always reduced
when the probability of switching is lower (except for the cases in which the Bode�s
integral is zero). In order to drawmore general considerations, we propose next �gures
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18, 19 and 20 which depict our candidate three cases in presence of high probability
of switching, 0:7 (p11 = p22 = 0:3).

Figure 18: The dynamics of the Bode�s integral
constraint with a (1) = 0:8; p11 = 0:3 and

p22 = 0:3:

Figure 19: The dynamics of the Bodes�integral
constraint with a (1) = 0:5; p11 = 0:3 and

p22 = 0:3:
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Figure 20: The dynamics of the Bode�s integral
constraint with a (1) = 0; p11 = 0:3 and p22 = 0:3:

When the probability of switching is increased, the Bode�s integral value takes pos-
itive values. In other words, the presence of an highly uncertain state of the economy,
in which there occurs frequent switching between one model and the other, impedes
the action of the policymaker to be e¤ective in reducing (or, at least, non exacer-
bating) the aggregate measure of the design limits, characterized by the value of the
Bode�s integral. This consideration appears very interesting, because it contributes
in the understanding the links between the Bode�s integral and the uncertainty faced
by the policymaker, given, in our case, by the high probability of switching. In lin-
ear frameworks, it has been shown that the Bode�s integral associated to a certain
model corresponds to the di¤erence of the information (or Shannon) entropy of the
controlled model and the entropy of the free dynamics. It is possible to prove that
the information entropy interpretation of the Bode�s integral still holds in regime-
switching cases (Pataracchia 2008b). In other words, high probability of switching
corresponds to high level of entropy of the regime switching model as if the action of
the policymaker is not only not able to reduce the uncertainty associated to it, but
it exacerbates it.

5.2 The Bode�s integral across the policy rules

In the previous sections we stressed how the dynamics of the design limits in Markov
Switching contexts depends on the models�parameters (both in terms of autoregres-
sive coe¢ cients and transition probabilities).
A second important feature of design limits arising in switching regimes is the

dependence on the particular rule decided by the policymaker: through the choice
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of the policy the policymaker not only shapes the spectral characteristics of the
model, but he does it in a way which a¤ects also the measure of frequency trade-
o¤s, therefore the constraint he is subject to. Figure 21 shows the dynamics of the
Bode�s integral across several models when di¤erent policies of the type described
in (15) are considered. We suppose a (1) = 0:8; p11 = 0:2 and p22 = 0:8 and we
compare di¤erent policies with the variance minimizing rule. In absence of switching
(a (1) = a (2) = 0:8), the dynamics of the Bode� s integral converges to zero (we
are back to the linear framework). As we move leftwards, the variability between
the models becomes important and the dynamics of design limits varies substantially
according to the policy rule. Notice that the variance minimizing rule (the solid line
case) always dominates all the other proposed rules while the further is the policy
rule from the optimal one, the worst the performance in terms of design limits.

Figure 21: The dynamics of the Bode�s integral
constraint for di¤erent policies.
[a (1) = 0:8; p11 = 0:2; p22 = 0:8] :

In general cases, however, there is no exact correspondence of the variance mini-
mizing rule and the design limits minimizing one, as �gures 22 and 23 show 15. They
depict the dynamics of the Bode�s integral versus F:

15We do not make any precise statement on the eventual equivalence or relation between the
policy rule which is optimal (variance-minimizing) and the rule which minimizes the Bode�s Integral
on purpose. Those links, are analyzed in details in a current work on progress of the author in which
the above relation is considered in the much more general framework of the robust policies (a� la
Hansen and Sargent(2008)) where the variance minimizing rule represents the limiting case where
there is no concern for robustness.
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Figure 22: The dynamics of the Bode�s integral
across F with a (1) = 0; a (2) = 0:5; p11 = 0:8
and p22 = 0:8 (low switching probability case).

Figure 22 shows the values of the Bode�s integral constraint when a (1) =
0; a (2) = 0:5 and the transition probabilities are such that there is a low proba-
bility of switching (0.2). The set of rules which correspond to minimum values of
Bode contains the minimizing variance rule, so that no trade-o¤s between the mini-
mization of the variance of the state and the minimization of the design limits arise.
In more general cases related to the low switching probabilities, but no necessarily
with equal p11 and p22; it is possible to see how, even if the optimal policy does not
correspond to the minimization of frequency trade-o¤s, among the stabilizing policies
the shape of the Bode�s integral is quite �at ensuring good values of performance.
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Figure 23: The dynamics of the Bode�s integral
across F with a (1) = 0; a (2) = 0:5; p11 = 0:3 and
p22 = 0:3 (high switching probability case).

Figure 24: The spectral representation for the
MSAR(1) with a (1) = 0; a (2) = 0:5, p11 = 0:3
and p22 = 0:3 (the solid line). The dashed line
refers to the controlled case with F = 0:25

(variance minimizing rule).

Di¤erent is the case depicted by �gure 23. In this high switching probability case,
the optimal policy is among the ones which contribute most to increase design limits.
To see why we compare the spectra of the controlled and uncontrolled cases when
F corresponds to the optimal rule (F = 0:25) in �gure 24. This case is important
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because it helps understanding the implications of conceiving the minimization of the
design limits as an object. In low switching probability case, the minimization of the
Bode�s integral can be conceived as a plausible objective, since the optimal policy is
always associated with the lowest values of the design limits (in �gure 22 where the
special case of equal p11 and p22 is considered, the two criteria indicate the same rule
as optimal).
In presence of important amount of switching between the models, this is no more

true. The main reason relies on the fact that, as already noticed, the stabilization
has a price in terms of performance: �gure 24 shows that the variance minimizing
rule, while tends to �atten the frequency response of the model, it does so creating
quite large frequency ranges where the contributions to the total �uctuations are
exacerbated ([1:2; �][[��;�1:2]). This interval is larger than the one shown in �gure
25 ([2,�][ [��;�2]) where F is set to 1.2 which, according to �gure 23, amongst the
stabilizingones, implies low values of the Bode�s integral.

Figure 25: The spectral representation for the
MSAR(1) with a (1) = 0; a (2) = 0:5; p11 = 0:3
and p22 = 0:3 (the solid line). The dashed line
refers to the controlled case with F = 1:2 (design

limits minimizing rule).

Recalling the general formula of the Bode�s integral constraint (see De�nition
1) and the fact that the derivative of the log function is much greater when the
argument (of the log function) is smaller than one, we realize that, in general, the
Bode�s integral is a measure of frequency trade-o¤s which tends to overweight those
intervals in which fc(!)

f(!)
< 1 and underweight the ones in which the relation is reversed.
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However, general considerations on performance of the variance minimizing rule in
terms of frequency trade-o¤s cannot be formulated and that its general characteristics
depend, in particular, on the probability of the switching across the regimes.
This suggests that proposing the minimum Bode�s integral as an object is certainly

a too strong argument. Design limits may, nonetheless, constitute an important
externality e¤ect to take into consideration along with conventional monetary policy
exercises.

6 Conclusion

In this paper we extend the theory of design limits in regime-switching contexts, deriv-
ing the analogous of the Bode�s integral value, recently introduced in macroeconomic
studies �rst by Brock and Durlauf (2004). The Bode�s integral value quanti�es the
amount of the frequency trade-o¤s (also called design limits) the controller (typically,
a central bank) has to face in stabilizing the economic system under exam. Positive
values of the Bode�s integral imply necessary exacerbations of the contribution of
some frequency ranges to the total �uctuations of the model. Negative values do not
imply the absence of frequency trade-o¤s, but denote less stringent limits.
The main message we want to convey is that the analysis of the design limits in

regime switching cases can be viewed as a general framework in which, the linear case
constitutes just a special case in which the potential models coincide.
While we described the general procedure, we show explicitly the computation for

the simple case of a Markov Switching model with two possible AR(1) states where
the policymaker has to chose a stabilizing, model-invariant rule before knowing the
realization of the Markov Chain.
Two main features, peculiar to design limits in regime-switching cases are revealed.

First, the Bode�s integral value behavior strongly depends on the particular model
considered. Second, di¤erent policy rules shape the spectral density of the process
under exam a¤ecting the measure of design limits. Therefore, contrary to the linear
framework, design limits are not independent from the control of the policymaker.
Given the optimal variance-minimizing policy rule, the dynamics and the sign of

the Bode�s integral is strictly related to the probability of switching. When the tran-
sition probabilities of the Markov Switching model are such that, once the economy
�nds itself in one model is it very likely that it is going to stay rather than switch to
the other model, the optimal policy is associated to less stringent frequency trade-o¤s
and the value of the Bode�s integral is typically negative. The key point is that there is
an additional source of variability that the control may reduce: the variation-between
the models. By that we refer to the variation due to the diverse characteristics of
the underlying models. The more similar are those, the lower the variation-between.
The more the control is able to reduce it, the lower the Bode integral value.
Di¤erent is the conclusion when the transition probabilities are such that there is

an high unconditional probability of switching between the models. In those cases,
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the stabilization has a price in terms of frequency speci�c performance. The values
of the Bode�s integral are typically positive.
Model uncertainty in the form of Markov Switching regimes has, therefore, two

main e¤ects in terms of design limits. The introduction of an additional potential
model enlarges the sources of variabilities that may be controlled so that the optimal
rule is able to reduce the additional source of variability between the models and
the Bode�s integral is typically negative. The variance minimizing rule, however,
cannot a¤ect or reduce the variability due to the probability of switching because,
by construction, it cannot modify the transition probabilities. It follows that in the
cases in which the probability of switching is high, there is an important source of
variation that cannot be controlled. In this case, the stabilization has a price in terms
of frequency-speci�c performance.
The second peculiar characteristics of the Bode�s integral value is its dependence

on the policy rule. In this sense, the frequency-speci�c performance plays the role
of an externality of the policymaker�s action. This observation can open the way to
a reconsideration of the Bode�s integral constraint and a possible further extension
in which the minimization of the frequency trade-o¤s may be associated a relative
weight in the target vector of a monetary economic analysis. The examples shown
make clear that general conclusions cannot be derived and that each particular case
should be evaluated in order to derive policy relevant considerations.
In any case, we do not have the conceit to propose the minimization of the Bode�s

integral values as a pure object. However, we regard the communication of the
frequency speci�c e¤ects of any policy rule, including the knowledge of the design
limits, as an important practise which should contribute to a more complete monetary
authority�s policy evaluation analysis.
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