
April 2007

THE ALCOHOL PRICE AND THE FLEX CARS

Alex Luiz Ferreira,1

(University of São Paulo, Department of Economics, FEARP, Brazil)

Fernando Pigeard de Almeida Prado,
(University of São Paulo, Department of Physics and Mathematics, FFCLRP, Brazil)

Jaylson Jair da Silveira
(University of São Paulo, Department of Economics, FEARP, Brazil)

Abstract

The “flex” car is an innovative automobile that is able to run with either gasoline or
alcohol. For flex cars owners, there is perfect substitutability between the two kinds of
goods. Differences regarding fuel prices will now depend on the proportions of alcohol,
gasoline and flex cars in the total stock. Conversely, the demand for each type of car
will also depend on the expected future prices of alcohol and gasoline (in addition to the
car prices). We build a model that incorporates this feedback and shows the long term
relationships between the two types of energies. It also explains the actual trend for the
predominance of flex cars in the domestic market. The model reflects our findings that
energy prices are tied in the long run and that causality runs stronger from gasoline to
alcohol. The estimated error correction parameter is stable, implying that the speed of
adjustment towards equilibrium remains unchanged. The latter result is probably due to
a still small fraction of flex cars in the total stock (approx. 5%), despite the fact that its
sales nearly reached 100% in 2006.
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1 Introduction

As renewable energies are being developed as an alternative to oil, the understanding
of their price behavior becomes increasingly interesting to producers, consumers, policy
makers and environmentalists. This paper draws on the dynamics of hydrate alcohol
prices (a type of ethanol used by automobiles) in Brazil relative to the price of its close
substitute, gasoline. Alcohol and gasoline fueled cars have coexisted in Brazil since the
1980s. However, the Brazilian automobile industry launched an innovative technology in
2003: a car that is able to run on either gasoline or hydrate alcohol (a type of ethanol),
but not a mix of both. Because of its flexibility in terms of the energy choice, some car
producers have coined the term ‘̀flex” for this type of automobile and this has also become
their popular name. Hence, we will refer to this type of car simply as flex.

Alcohol automobiles started to be sold in 1980. The degree of substitutability between
hydrate alcohol (simply alcohol, hereafter) and gasoline during the 1980s and 1990s was
limited: the owner of a gasoline automobile could only use this fuel and the same would
apply to alcohol car owners. Price differences between the two types of fuel would induce
car substitution. The decision to substitute automobiles would depend on the expected
discounted present value of fuel cost savings and price differences between automobiles.
Alternatively, a consumer could also adapt the engine of its alcohol car for gasoline and
vice-versa in a garage. Nonetheless, this decision would involve not only a sunk cost but
also higher costs of depreciation, because of technical problems resulting from the fact
that the mechanics of an alcohol car were not designed to use gasoline and vice-versa. Put
simply, changing the type of car or the engine in order to benefit from price differences per
Km (between the two types of fuel) would involve a sunk cost and take time to happen.

On the other hand, the unique flex car allows for quick fuel substitution, which rep-
resents an advantage to the consumer. This seems to be reflected in the sales of new
cars as the proportion of flex automobiles grew from 3.7% in 2003 to 21.6% in 2004 and
reached 50.2% in 2005. Between 2006 and 2007 sales have increased substantially and
are now very close to 100% (which corresponds to approximately two million cars). The
share of flex cars in the total stock is also growing. Depending on the production deci-
sion of automobile industries, and in the absence of government regulations, this trend
might be irreversible. As technology does spread across borders, the flex engine could
also reach developed economies relatively soon, especially due to recent government talks
(particularly between Brazil and USA) and prospects of a mounting demand for clean and
renewable energy. Hence, the new technology could imply important changes concerning
the prices of substitute energies to oil derivatives and the future of single fuel engines. For
these reasons, our study might also be interesting and relevant for other countries besides
Brazil.

Given the current state of technology, either the flex or the alcohol car fueled by alcohol
have an inferior performance in terms of Km per liter than a car fueled by gasoline. The
advantage for the owner of a flex car, as publicized by the car industry, is that a consumer
can choose to buy one or the other type of energy in order to “profit” from differences
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in price per Km. Intuitively, and disregarding other non-economic motivations,2 the
consumer will decide which fuel to use depending on the price of alcohol relative to the
gasoline’s weighted by the car’s loss of efficiency. A recommendation from the car industry,
to ensure economic efficiency, is to buy alcohol only if its price is set below 70% of the
gasoline price.3 This proportion corresponds to the average loss of technical efficiency, as
estimated by the car industry, when alcohol is used instead of gasoline.

In the following pages, we explain that this recommendation is rather a corollary of
consumer’s rational behavior, given that automobile owners are perfectly informed about
their car’s performance. We have also developed a partial equilibrium model representing
the interaction between consumer’s demand (for cars and fuel) and an oligopolistic supply
side. This model helps to explain the price behavior of the two types of fuel and also the
recent trend for an escalating proportion of flex cars in the total sales of new cars.

There are two main motivations for our work: one theoretical and the other empiri-
cal. The first relates to the modeling of a) the producer’s price decision for a good that
presents a discontinuous demand curve; b) the consumer’s demand decision for alcohol,
gasoline and flex automobiles and c) their interaction in order to determine prices in par-
tial equilibrium. The second motivation refers to the examination of the data generating
process of relative prices through the use of econometric procedures. Empirically, the
substitutive character of alcohol and gasoline as alternative fuels may imply a cointegrat-
ing relationship between their price level and the stationarity of their relative price. If
this relationship holds, variables will be tied in the long run and the understanding of the
alcohol price cannot be disentangled from the behavior of gasoline. On the other hand,
short-run dynamics can provide us with important information concerning the relation-
ship between these prices. In fact, we suspect that the increase of flex cars in the total
stock will result in faster adjustment towards an equilibrium relative price. This intuition
will be further investigated for the pioneer case of Brazil.

Finally, the objective of this paper can be summarized in four main questions: How can
we explain alcohol price dynamics? How can consumers’ car buying decision be explained
and how does it affect the market for fuel? Has the introduction of flex cars changed the
nature of the dynamic process of relative prices? We believe that the answers provided
in this paper will be relevant for academics, policy makers and environmentalists.

To the extent of our knowledge, there are no studies in the international literature
that attempt to answer the questions posed above. It follows that the contribution of our
paper is twofold: 1) the investigation of the short and long run behavior of the relative
price and 2) the building of a model that bring interesting insights and explain relevant
facts about the Brazilian automobile and fuel market.

The paper is divided as follows: in the next section we present the model empha-
sizing supply and demand conditions; in the subsequent section we discuss the long run
properties of the model. In section 4 we show and discuss the results regarding the data

2Such as to avoid negative externalities imposed to others from the pollution of the smoke from
gasoline.

3Another recommendation is to load the tank with one or the other type of fuel, but not a mix of
both.
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generating process of the relative price between alcohol an gasoline. Finally, we conclude.

2 The model

Let Ft, Gt and At be the fraction of flex, gasoline and alcohol cars in the total stock,
respectively. The subscript t stands for time. In what follows, we will model the rela-
tionship between alcohol and gasoline prices at time t, based on the values of Ft, Gt and
At. Instead of modeling this dependence in terms of energy prices, we do in terms of
the Km (Kilometer) price of alcohol and gasoline. We define the Km price of alcohol as
the monetary amount a consumer has to pay in order to run one Km exclusively with
alcohol. An analogous definition follows for the Km price of gasoline. The advantage of
proceeding in this manner will become clear in the next paragraph.

Let p 7→ D(p) be the direct aggregated demand for Km. In order to simplify the
exposition, let us assume a monopolistic structure for the alcohol market.4 Since there is
a fraction of Ft flex cars and a fraction of At alcohol cars at time t, the alcohol monopolist
(who sells Kms) faces the following demand function at time t, given that the Km price
of gasoline at time t is g:

Dt(a) =

{
(At + Ft)D(a), if a ≤ g
AtD(a), if a > g

(1)

The demand function a 7→ Dt(a) in (1) reflects the rational behavior of flex car owners.
In fact, as long as a (the Km price of alcohol) does not exceed g (the Km price of gasoline),
both alcohol and flex car owners will demand exclusively alcohol (instead of gasoline)5.
If a exceeds g, only alcohol car owners (i.e. the proportion At) will demand alcohol.

Representing x 7→ C(x) as the cost function of the alcohol monopolist in terms of Km
production, the Km price of alcohol at time t will be given by a∗ where

a∗ = ArgMaxa

{
Dt(a)a− C(Dt(a))

}

Due to (1), we see that a∗ is a function of g, At and Ft. The function (g, At, Ft) 7→
a∗(g, At, Ft) depends on the functions p 7→ D(p) and x 7→ C(x). Several choices of
p 7→ D(p) and x 7→ C(x) lead essentially to the same results that we are going to present.
To come to the point, let us suppose that p 7→ D(p) and x 7→ C(x) are piecewise linear
functions, that is, the former being linear and strictly decreasing for 0 ≤ p ≤ pmax and
D(p) ≡ 0 for p ≥ pmax and the latter being strictly increasing, where

C(x) = cx and 0 < c < pmax

4This assumption is innocuous for our qualitative analysis. The results of our benchmark monopolistic
model in comparison to one assuming localized oligopoly of the Hotelling type, are analogous [Hotelling,
H. (1929)]. The assumption is used for simplification purposes as the oligopolistic model is cumbersome
to present.

5We assume an asymmetric preference for alcohol when a = g. This is done just to facilitate the
presentation of our results. The same qualitative results can be reached if we assume that the demand
for energy of flex car owners is split into 50% alcohol and 50% gasoline when a = g.
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The condition c < pmax above just ensures that the alcohol supply might be positive.
Otherwise, if the monopolist marginal costs already exceeds the maximum price of the
Km, the model results would be trivial (there would be no supply of alcohol and 100%
gasoline cars in the long run).

A straightforward computation leads to a∗(g, Ft, At) = a∗
(
g, g∗(Ft/(Ft + At)

)
where

a∗
(
g, g∗(Ft/(Ft + At)

)
=





(c + pmax)/2 if 0 ≤ g ≤ g∗

g if g∗ < g < (c + pmax)/2

(c + pmax)/2 if (c + pmax)/2 ≤ g

(2)

where g∗ = g∗
(
Ft/(Ft + At)

)
, the discontinuity point of g 7→ a∗

(
g, g∗(Ft/(Ft + At)

)
,

depends only on the proportion of flex cars in the stock of cars that are able to run with
alcohol, i.e. Ft/(Ft + At). We present g∗ explicitly:

g∗
(
Ft/(Ft + At)

)
= (pmax + c)/2− [(pmax − c)/2]

√
Ft/(Ft + At)

Due to pmax > c, the discontinuity point g∗
(
Ft/(Ft + At)

)
is decreasing in Ft/(Ft + At)

as can be seen in Figure 1.
Note that for 0 < g < g∗, the emerging Km price of alcohol is higher than the Km price

of gasoline. For g∗ < g < (c+pmax)/2 both Km prices are equal and when (c+pmax)/2 < g
it is more advantageous to use alcohol than gasoline. Thus, a consumer who is going to
buy a new car and faces the choices F, G or A takes into account the expected variability
of g, car prices and real interest rates.

The car market. One of our main goals is to model the functional dependence between
alcohol and gasoline prices in the long term. In the short term (at time t), this functional
dependence is already explained by the function g 7→ a∗(g, At, Ft), see (2). In the long run,
however, the relationship between alcohol and gasoline prices should take into account
the dynamics of (Ft, Gt, At). Hence, we need to show how the fractions of flex, alcohol
and gasoline cars evolve in time. Suppose that the three types of cars are permanently
available at prices ΠF , ΠG and ΠA which corresponds to the marginal cost of each type
F , G and A, respectively (this assumption is reasonable if we assume that the supply of
cars is structured as a price competition oligopoly of the Bertrand type, where firms have
the same marginal costs and produce under constant returns to scale, see Mas-Colell et.
al. (1995).

The dynamics of (Ft, Gt, At) depends on the consumers discrete choices [see Anderson
et. al. (1992)] for either flex, alcohol, or gasoline cars. On the other hand, the consumer’s
discrete choice for a flex, gasoline or alcohol car depends on the expected future Km prices
of each type of energy (gasoline and alcohol) during the whole car lifetime.6

6Even if the car is sold before it is fully depreciated, its value on the market will depend on the type of
the car (flex, gasoline or alcohol) and the expected future prices of alcohol and gasoline during the car’s
remaining lifetime. By fully depreciated, we mean that the car cannot produce any Km out of energy.
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g

*
a        tF tAg; ,
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a        tF tAg; ,

Figure 1: g 7→ a∗
[
g, Ft, At

] (
= a∗

[
g, g∗(Ft/(Ft + At))

] )
and g 7→ g
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Let us assume a finite population of consumers (car owners) labeled by 1, 2, . . . n which
does not vary over time. Suppose that each consumer keeps her car, and does not buy
any other, during the whole cars’s lifetime.7 At the moment the car is fully depreciated it
is subtracted from its respective stock: F , G or A (F = flex, G = gasoline, A = alcohol).
Immediately after having discarded the old (depreciated) car, the consumer buys a new
one that is added to its corresponding stock (F , G or A). The consumer uses this new
car until it is fully depreciated, and so on.

We assume that all cars lifetimes are continuous, independent and identically dis-
tributed random variables, supposedly limited by a positive constant Tmax (the maximum
possible lifetime of a car). This assumption leads to two implications:

1. After the time Tmax, all consumers have already faced the decision to buy a new car
F , G or A (A if available).

2. At each real time t ≥ 0, there is at most one consumer who changes the car at
time t. The time interval between two subsequent car changes has positive range.

Recall that Ft, Gt and At are the corresponding fractions of flex, alcohol and gasoline
cars at time t ≥ 0. These fractions are well defined for each t at which no change occurs.
For the model to be complete, we need to specify the values of Ft, Gt and At when a car
change occurs at time t. Taking into account the second implication mentioned above, we
define the values of Ft, Gt and At by the corresponding fractions immediately after the
car change at time t.

Following, we explain which type of car (F , G or A) will be chosen at time t, given
that a car change occurs at time t. For this purpose, let us assume that each consumer
demands (in average) K kilometers per unit of time. The quantity K is a parameter that
measures the long term expected consumption of Kms made by the consumers themselves.
If a car is chosen at t, then its type is xt ∈ {F,A, G}, where xt minimizes the expected
discounted costs Ct(x), x ∈ {F, A, G}, where

Ct(x) = Et

(
Πx +

t+T∑
s=t+1

(1 + r)t−sK P (x)
s

)
x ∈ {F,A, G} (3)

Et denotes the conditional expectation operator given all the information available at time
t, Πx is the price of the car type x (x ∈ {F, A, G}), T is the random life time of a car,

P
(x)
s the price for one kilometer at time s when the car type is x (x ∈ {F,A, G}) and r is

the real interest rate.
Let gt = P

(G)
t be the Km price of gasoline at time t. Taking into account that the Km

price of alcohol is a function of the Km price of gasoline, we have

P
(G)
t = gt, P

(A)
t = a∗(gt, At, Ft), P

(t)
F = Min{gt, a∗(gt, At, Ft)} (4)

7This assumption does not impose any restriction in the modeling of the long term relationship between
energy prices and the fractions of the cars. In fact, it does not matter whether the original owner sells
or not a new car before the end of its lifetime. What is important here is that we consider only the
acquisition of new cars and the discards of depreciated ones.
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For simplicity, let gt, t = 0, 1, 2, . . . be independent and identically distributed contin-
uous random variables (whose variability depends on uncontrolled external shocks in the
oil market - this approach can be extended to the case where {gt : t = 0, 1, 2, . . .} is a
stochastic process with memory). Let

f be the density function of g0 (5)

According to (3), (4), (5) and assuming that consumers do not internalize changes in
(Ft, At, Ft) in their evaluation [this is consistent with a “myope” collective dynamics of
agents, already suggested by Brock, W. and Durlauf, S. (2001) and Moshe, L. (2005)], it
follows that

Ct(G) = ΠG + λ−1
∫∞

0
gf(g)dg, Ct(A) = ΠA + λ−1

∫∞
0

a∗(g, Ft, At)f(g)dg

and

Ct(F ) = ΠF + λ−1
∫∞
0

Min{ a(g, Ft, At), g}f(g)dg
(6)

where λ−1 = K
∑E(T )

t=1 (1 + r)−t.

The computation of Ct(G) stems from the fact that g0, g1, g2, . . . are independent and
identically distributed random variables having density function f and that the probability
distribution of the cars’ random lifetimes are homogenous in time t and independent of
the random variables g0, g1, g2, . . . Similarly, we deduced the computation of Ct(A) and
Ct(F ) as indicated in (6).

Let us assume the following preference order for the case when the expected costs
coincides:

F Â G Â A (7)

The above preference order means that: F is chosen when Ct(F ) ≤ Ct(G) and Ct(F ) ≤
Ct(A); G is chosen when Ct(G) < Ct(F ) and Ct(G) ≤ Ct(A) and A is chosen when
Ct(A) < Ct(F ) and Ct(A) < Ct(G).

Let us denote by Dt (Dt ∈ {F,G, A, }), the decision of a consumer who chooses a car
of any type at time t. According to (2), (6) and (7), it follows that

Dt =





F if I1(γt) ≥ λ(ΠF − ΠA) and I2 ≥ λ(ΠF − ΠG)

G if I1(γt)− I2 ≥ λ(ΠG − ΠA) and I2 < λ(ΠF − ΠG)

A if I1(γt) < λ(ΠF − ΠA) and I1(γt)− I2 < λ(ΠG − ΠA)

(8)

where γt = g∗
(
Ft/(Ft + At)

)
and I1(γt), I2 are the following integrals:

I1(γt) =

∫ γt

0

((c + pmax)/2− g)f(g)dg, I2 =

∫ ∞

(c+pmax)/2

(g − (c + pmax)/2)f(g)dg
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In order to understand the relations implied by the decision rule (8), observe Figure
2. In this figure, we represent the case where the random variables g0, g1, g2, . . . are
independent and identically distributed over the interval [0, gmax]. Let us measure the
price of the Km in unities of gmax, that is [0, gmax] = [0, 1]. The value of the integrals I1

(= I1(γt)) and I2 correspond to the indicated hachured areas in Figure 2. The average
price of the Km of a flex car, denoted by PF , corresponds to the area indicated below the
hachured areas. If PA and FG are the average prices of the Km of the alcohol and gasoline
cars, respectively, we have PA = PF + I1 and PG = PF + I2. It follows that PA−PF = I1,
PG − PF = I2 and PA − PG = I1 − I2. The first line of decision rule (8) states the
following: if the price difference between a flex and an alcohol car is compensated by the
corresponding expected savings on Km prices, that is, by the difference PA − PF (= I1),
then the consumer will prefer a flex car instead of a alcohol one. If it also holds that the
price difference between a flex and a gasoline car is compensated by the corresponding
expected savings on Km prices PG−PF (= I2), then the consumer will definitively decide
for a flex car. The two subsequent lines of the decision rule (8) can be analogously
explained.

Figure 3 illustrates the case when the next consumer decision is a flex car. In Figure
3, the two values of λ(ΠF − ΠA) and λ(ΠF − ΠG) correspond to two additional areas,
that are subsets of the two hachured areas in Figure 2. Thus, λ(ΠF − ΠA) < I1 and
λ(ΠF − ΠG) < I2, hence the next consumer decision will be a flex car.

Note that the advantage of a flex car over an alcohol one is given by the difference
I1

(
g∗( Ft/(Ft + At))

) − λ
(
ΠF − ΠA

)
. The latter is represented by the difference of the

areas seen on the left side of Figure 3. Since x 7→ I1(g∗(x)) is a decreasing function, the
advantage of a flex over an alcohol car decreases when Ft/(Ft + At) increases.

3 The long term behavior

In the previous section we defined a model revealing the links between alcohol and gasoline
prices and the fractions of each type of car. In this section, we study the long term behavior
of these variables in the model.

First of all note that I1(γt) are I2 are non negative numbers. According to this, the
following implication holds:

ΠF − ΠA ≤ 0, ΠF − ΠG ≤ 0 ⇒ Dt = F, ∀ t ≥ 0

which necessarily implies

ΠF − ΠA ≤ 0, ΠF − ΠG ≤ 0 ⇒ lim
t→∞

(Ft, Gt, At) = (1, 0, 0).8

A more interesting case is

I1(g∗(1)) < λ(ΠF − ΠA) < I1(g∗(0)), ΠF − ΠG ≤ I2 (9)

8Actually, we have: ΠF −ΠA ≤ 0, ΠF −ΠG ≤ 0 ⇒ (Ft, Gt, At) = (1, 0, 0) for t ≥ Tmax.
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tA

tF (            )tF tA+
g

*
a        tFg; ,

maxc + p 2

maxg
*

g

g*
a        tF tAg; ,

I1

I2

PF

P = P +  A I1F P = P +  G I2F

Figure 2: PF , PG and PA are the expected Km prices of flex, gasoline and alcohol cars,
respectively.
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tF (            )tF tA+
g

*
a        tF tAg; ,

maxc + p 2

Π  − ΠF Aλ

Π  − ΠF Gλ

*
g

maxg

α

*
g

g*
a        tF tAg; ,

I1

I2

Figure 3: λ(ΠF − ΠA) and λ(ΠF − ΠG) correspond to the left and right small hachured
areas respectively. I1 and I2 include the two small hachured areas and correspond to
the total hachured areas left and right, respectively. A equilibrium is reached when
Ft/(Ft + At) = α.
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For case (9), it holds that Gt = 0 and Ft/(Ft + Gt) = Ft for t > Tmax, and

lim
t→n

[
lim
t→∞

I1(g∗(Ft)) ] = λ(ΠF − ΠA)

or more specifically: if condition (9) holds, then for t ≥ Tmax, we have

0 < g−1
∗

[
I−1
1

(
λ(ΠF − ΠA)

) ]− 1/n ≤ Ft ≤ g−1
∗

[
I−1
1

(
λ(ΠF − ΠA)

) ]
+ 1/n < 1

Let us summarize the asymptotical behavior of (Ft, Gt, At) under condition (9): Gt →
0 and Ft → α, At → (1 − α). That is, gasoline cars disappears and the fraction of
flex cars approaches a proportion α according to which there is no advantage of flex over
alcohol cars and vice-versa. The fraction α is defined by I1(g∗(α))− λ(ΠF − ΠA) = 0, as
can be seen in Figure 3. From condition (9), it follows that 0 < α < 1.

Four possible cases summarize the asymptotical behavior for (Ft, Gt, At). Either
limn→∞

[
limt→∞(Ft, Gt, At) ] equals:

(1, 0, 0), (0, 1, 0), (0, 0, 1) or (α, (1− α), 0), where 0 < α < 1

Let (F∞, G∞, A∞) = limn→∞
[

limt→∞(Ft, Gt, At) ]. We present the table below, which
shows the car price relations that lead to each value of (F∞, G∞, A∞):

Relation (F∞, G∞, A∞)

λ(ΠF − ΠG) ≤ I2, λ(ΠF − ΠA) ≥ I1(g∗(0)) (0, 0, 1)

λ(ΠF − ΠG) > I2, λ(ΠG − ΠA) > I1(g∗(0))− I2 (0, 0, 1)

λ(ΠF − ΠG) ≤ I2, I1(g∗(1)) < λ(ΠF − ΠA) < I1(g∗(0)) (α, 0, 1− α)

λ(ΠF − ΠG) ≤ I2, λ(ΠF − ΠA) ≤ I1(g∗(1)) (1, 0, 0) (∗)

λ(ΠF − ΠG) > I2, λ(ΠG − ΠA) ≤ I1(g∗(0))− I2 (0, 1, 0)

(10)

where g∗(1) = c < (pmax + c)/2 = g∗(0) and I1(γ) =
∫ γ

0
((pmax + c)/2 − g)f(g)dg and

I2 =
∫∞

(pmax+c)/2
(g− (pmax + c)/2)f(g)dg (c is the marginal cost of the Km for the alcohol

monopolist).
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3.1 The current state and long term prospects

The actual flow of flex cars in Brazil is approaching 100% of the total sales of new cars.
Also, car prices do not vary significantly across types of fuel technology [the ”standard”
(alcohol and gasoline) and the innovative (flex)]. In terms of our model this corresponds
to the case represented by line (∗) in the table above. If the relation expressed by line (∗)
corresponds to reality, that is if λ(ΠF − ΠG) ≤ I2, λ(ΠF − ΠA) ≤ I1(c) (g∗(1) = c), then
the model would, ceteris paribus, suggest 100% of flex cars in the long run. In this case,
the dependence between the Km price of alcohol and gasoline approaches the function
g 7→ a∗(g, c), where c (the marginal cost of the Km for the alcohol monopolist) is the limit
of g∗(Ft/(At +Ft)) when Ft/(At + Ft) approaches 1. We notice that g∗(g, c) ≡ g holds for
a large range of values of g.9

In the empirical part of the paper, we found results that lend support to the conclusion
that prices are cointegrated. Hence, it seems natural to assume (in terms of our model)
that g0, g1, g2, . . . oscillates over the solution set of g = a∗(g, g∗(Ft0/(At0 + Ft0))), where
t0 correspond to the moment where this investigation was made. Now, the solution set of
g = a∗(g, c) (given by the interval [c, (c+P∗)/2]) includes all the solutions g = a∗(g, g∗(γ))
for all fixed values of γ ∈ [0, 1]. Thus, if the probability distribution of g does not vary
over time, then an even larger part of the support of the probability distribution of g will
overlap the solution set of g = a∗(g, c).

The above discussion suggests that the finding of cointegration is robust and will be
corroborated as time passes. That is, if the probability distribution of the gasoline price
does not change over time, the Km price of gasoline and alcohol tend to coincide in the
long run. In other words,

P a/ea =Km price of alcohol = Km price of gasoline = P g/eg

where Pa is the price of alcohol, Pg is the price of gasoline and eg, ea stand for the
efficiency of gasoline and alcohol, respectively. Efficiency is understood as the generation
of Kms per liters of fuel. As indicated in the equation above, the Km price of alcohol and
gasoline correspond to P a/ea and P g/eg, respectively. For example, if Pg = 2US$/liter
and eg = 10Km/liter, then the Km price of gasoline is 0.2US$/Km.

Note that P a/ea = P g/eg is equivalent to

P a = βP g

where β = ea/eg.
In the empirical part of the paper we investigate the relation P a = βP g both in the

short and the long run. However, before showing the results of the tests, we will make
some important remarks about the dynamics of our theoretical model.

9g∗(g, c) ≡ g for c ≤ g ≤ (c+P∗)/2, where c is the marginal cost of Km and p∗ is the reservation price
of Km. If 0 ≤ g < c or g > (c + P∗)/2, then a∗(g, c) ≡ (c + P∗)/2.
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3.2 Dynamics and misleading policies

It is interesting to see that the actual trend, characterized by a permanent increase of
Ft, is not necessarily irreversible. If the probability distribution of the random variable
g0, g1, g2, . . . changes, the actual trend may revert to a permanent decrease of Ft (and a
permanent increase of Gt). In this context, some interventions which could seem favorable
to ensure a market for alcohol, can be, in fact, innocuous.

In order to clarify this point, suppose, for example, that the car market is at the long
term equilibrium where the flex cars dominate at time t = 0 (F0 = 1). Suppose initially
that 0 < λ(ΠF − ΠA) < I1(g∗(1)), 0 < λ(ΠF − ΠG) < I2 and ΠG − ΠA = 0. Let the
random variable g0 (the Km price of gasoline at time t = 0) be uniformly distributed
over the interval [0, gmax]. As long as the preceding inequalities hold, we have Ft = 1,
t = 0, 1, 2, . . . Now, suppose that at some time t0 the gasoline price falls dramatically and
remains permanently oscillating at a low level, such that gt assumes another probability
distribution for t > t∗. Assume a uniform distribution over the interval [0, g′max] with
0 < g′max < gmax, where according to it, the new values of I1 and I2 are such that
I1(g∗(0)) > λΠG > I1(g∗(1)) > I2 = 0.10 Due to I2 = 0 and λ(ΠF − ΠG) > 0, gasoline
cars becomes more advantageous than flex cars, and due to I1(g∗(0)) − I2 = I1(g∗(0)) >
0 = λ(ΠG − ΠA) gasoline cars are also more advantageous than alcohol cars. Thus, from
t = t0 consumers start to demand only gasoline cars. In this case, gasoline cars would
ultimately dominate the market, assuming that no intervention occurs.

In order to guarantee an alcohol market, suppose that the government sharply reduces
the tax on alcohol cars (instead of reducing the tax on the flex car or on the consumption
of alcohol) such that the alcohol car price ΠA now satisfies λΠA < λΠG − I1(g∗(1)). The
effect on the dynamics of (Ft, Gt, At) is interesting. The tax reduction (or subvention) on
alcohol car price initially halts the demand for gasoline cars, and at the same time drives
the demand for alcohol cars up. This might give the impression that this is the correct
policy to guarantee the existence of the alcohol market. However, at a certain time t1
(t1 > t0) this movement reverts definitively and gives rise to 100% gasoline cars.

The reason for this is the following. Since λΠA < λΠG − I1(g∗(1)) and I2 = 0, we
have I1(g∗(1)) − I2 < λ(ΠG − ΠA) and alcohol cars becomes more advantageous than
gasoline ones. Since I2 = 0, gasoline cars are more advantageous than flex cars. Thus, by
transitivity, the tax reduction on alcohol cars will increase the demand for alcohol cars in
the first moment. As long as I1(g∗(Ft/(Ft + At))) − I2 < λ(ΠG − ΠA), flex and gasoline
car owners change their cars for alcohol ones. This reduces Ft/(Ft + At) even more.

Since I1(g∗(Ft/(Ft + At))) − I2 is decreasing in Ft/(Ft + At), there will be a decision
time t1 where I1(g∗(Ft1/(Ft1 + At1)))− I2 ≥ λ(ΠG − ΠA).11 Consequently, the consumer
who decides at time t1 chooses a gasoline car. Now, we do not know (deterministically)
what happens with the fraction Ft/(Ft + At) at time t1. If the acquisition of a new
gasoline car at time t1 corresponds to the discard of an old flex car, then this fraction will

10In order to have I1(g∗(0)) > I1(g∗(1)) > I2 = 0 it is sufficient that g′max < (c + pmax)/2
11That I1(g∗(Ft/(Ft + At))) − I2 reaches (or exceeds) λ(ΠG − ΠA) follows from I1(g∗(0))) − I2 >

λ(ΠG −ΠA), where the latter inequality is guaranteed by I1(g∗(0)) > λΠG > I1(g∗(1)) > I2 = 0.
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decrease, but if it corresponds to the discard of an old alcohol car it will increase. Thus,
in order to understand the dynamics of (Ft, GtAt), we must know which types of cars will
be discarded from t1 onwards. Since we started the analysis from a long run equilibrium
where the flex car dominates, and since alcohol cars were the ones most recently bought,
their remaining lifetimes will be (on average) larger than that of the flex cars. Accordingly,
with high probability,12 the remaining flex cars will be the next ones to be discarded.

Following this argument, at the next car change after t1, the fraction Ft/(Ft +At) will
(with high probability) satisfy Ft/(Ft +At) = (Ft1−1)/((Ft1−1)+At1) < Ft1/(Ft1 +At1).
Since γ 7→ I1(g∗(γ))) is decreasing, we have I1(g∗(Ft/(Ft + At))) − I2 > I1(g∗(Ft1/(Ft1 +
At1))) − I2 ≥ λ(ΠG − ΠA). Thus, the following consumer will also decide for a gasoline
car, and so on. After all flex cars have been changed to gasoline ones, say at t2, the
fraction Ft/(Ft + At) (= 0/(0 + At) remain at zero, whenever At > 0. Thus, after t2,
we haveI1(g∗(Ft/(Ft + At))) − I2 = I1(g∗(0)) − I2 > λ(ΠG − ΠA) leading to consecutive
changes of the remaining alcohol cars to gasoline ones.

4 Empirical results

This part of the paper aims to shed some light on the actual behavior of prices. Alves
and Bueno (2003) is the closest to our study in the international literature. Their work,
which draws on Ramanathan (1999), focuses on the estimation of the demand function
for gasoline. As explained by Alves and Bueno (2003), Brazil is the only major economy
with a significant renewable substitute fuel to gasoline. Hence, one of the determinants
of gasoline consumption is the alcohol price. Using annual data from 1984 until 1999 and
the natural logarithm of gasoline per capita consumption as the dependent variable, they
have estimated the cross price elasticities between gasoline and alcohol. Alves and Bueno
(2003) found that the long run cross price elasticity was low (0.48) and interpreted these
results as evidence that the degree of substitution between both goods was restricted.
Their conclusion was “Although the cross-elasticity is positive, its absolute value is low.
This is explained by the relatively high costs associated with changing from automobile
engines from gasoline-fuel to alcohol-fuel” [Alves and Bueno (2003), p. 196]. As explained
in the introduction, the flex technology has eliminated these costs.

Our empirical investigation consists in first applying unit root tests on the natural
logarithm of the price levels and their first differences, in order to investigate the order
of integration of these variables. Unit root tests on relative prices are performed, because
if alcohol and gasoline are cointegrated, their relative price should be well approximated
by a stationary process. Second, we tested for cointegration using the Engle and Granger
(1987) “two step” procedure and the maximum likelihood tests proposed by Johansen
(1991).

12We must make this statement in terms of probability, because car lifetimes are random variables.
So, there is a small probability that the next discarded car is an alcohol one (instead of a gasoline).
This causes a delay in the convergence of the proportions to (nearly) 100% of flex cars. An interesting
question, regards the speed at which the process reaches the equilibrium (close to 100% of flex cars).
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We have used two datasets in our tests. The first comprises higher frequency data13

of producer prices compiled by two institutions. Alcohol data is provided by Cepea,
the Centre for Advanced Studies on Applied Economics of the University of São Paulo.
Gasoline was obtained with the Brazilian National Agency of Petrol (ANP). Cepea cal-
culates the weekly average price of one liter of (hydrate) alcohol sold by the producer
in the state of São Paulo while ANP compiles and provides average prices of one liter
of gasoline sold by producers and importers in the southeast region of Brazil.14 Data
is for gasoline “A”, which is not mixed with an additive, made out of ethanol. Hence,
we avoided endogeneity by definition, since the gasoline sold in for the final consumer
in Brazil (gasoline “C”) is mixed with a proportion of 20% of ethanol. Both prices are
without state taxes. Weekly data on prices from the first week of 2002 until the last week
of 2006 were monthly averaged, hence, our period using high frequency data spans from
2002M1 until 2006M12. This is the largest sample period available for monthly data.

The second dataset was obtained from IPEA, the Institute of Applied Economic Re-
search, which belongs to the Federal Government of Brazil. This is a low frequency,
annual data of consumer prices, ranging from 1979 to 2004, which also corresponds
to the longest period available. There are other related studies that also go along the
lines of Ramanathan (1999) and Alves and Bueno (2003) in the domestic literature. They
concentrate on the estimation of structural models for the supply and demand for gasoline
and alcohol [for example, Marjotta-Maistro (2002)].

At this point, we need to make some important remarks about the database. Both
the alcohol and gasoline markets were strongly controlled by the government until the
end of the 1990s. In fact, cointegration before 1996 followed almost by definition as the
market price of alcohol was set by the Federal government as a percentage of the gasoline
price, which, in its turn, was also determined by the government. Because prices moved
together for most part of the period spanning from 1979 until 1996, cointegration tests
for that specific period would be meaningless. Gasoline and alcohol consumer prices were
liberalized in 1996 and 1999, respectively. However, part of the market chain was still
controlled by the government, especially gasoline producer prices, until 2002M1. The
whole chain was liberalized from that month onwards, explaining the beginning of the
higher frequency database.

Although we performed unit root tests using the annual dataset of relative prices,
we must alert that results should be read with caution. On the other hand, we also
understand that the sample period of the higher frequency data might be considered too
small. However, we must point out that there is no objective criterion established for a

13The findings concerning the monthly series are based on data that is not seasonally adjusted. However
when we use the seasonally adjusted one, using centered dummies, the results presented in the paper are
qualitatively the same. They can be obtained with the corresponding author upon request.

14These prices are largely the same ones sold by producers (for distributers) located in the state of
São Paulo. The southeast region of Brazil comprises four states, with São Paulo being the one with the
most economic importance. Furthermore, Petrobras is the main producer and prices without state taxes
vary by cents of Reais (the Brazilian currency), which corresponds to less than 1% of the total price.
Furthermore, gasoline price increases across Brazilian states are analogous. Hence, we have annual prices
of alcohol and gasoline producers for the state of São Paulo.
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minimum period for cointegration tests to be meaningful, especially if we do not know
for sure the length of the price cycles. We must stress that the choice of the databases,
including sample period and frequencies, was exclusively determined by data availability.
Although the database is not ideal, we understand that our tests can be very helpful
to understand price dynamics during the liberalized period. The annual results serve to
compare the controlled with the freed data generating process. If the reader is unconvinced
by the empirical results of cointegration that are later presented and discussed, we redirect
to the arguments put forward in the theoretical model, given its assumptions.

We first investigated the stationarity of the series. Table 2 presents the results of
unit root tests. ADF statistics, estimated using monthly data, imply that the level of
the natural logarithms of prices is I(1) whereas its first difference is I(0). Given the low
power of the ADF tests, the result of a stationary alcohol and gasoline inflation is robust.
In other words, if the unit root hypothesis is rejected using the ADF test, one can be
confident that the series do not contain a trend. On the other hand, the I(1) price level
is in line with the findings of the related literature [see Alves and Bueno (2003) and, for
oil prices, Cologni and Manera (2007)].

However, tests using annual data were not able to reject the null of a unit root either
for the level or for the first differences. The latter result is not puzzling after a visual
inspection of Graph 3 which plots the annual relative price. It is possible to note a break
in the intercept during the end of the nineties coinciding with the liberalization of the
alcohol prices to the consumer. As explained by Perron (1989), a date break could imply
the non-rejection of the null of a unit root when the series in question is indeed stationary.
The apparent break around 1997 contrasts with the no evident rupture in the graph using
monthly data (Graph 1). Our suspicion of a break-level was confirmed using Perron
(1997) tests, which have retrieved significant intercept dummies for the corresponding
break dates. Perron (1997) test finds the date break endogenously (in our tests we used
the method that maximizes the possibility of rejecting the null of a unit root) and is a
more powerful complement for the ADF test when the series in question contain a break.
Perron (1997) results, as shown in Table 3, lend support to the conclusion that first
differences are stationary whereas the level is non-stationary.

Our first set of cointegration results are the stationarity tests performed on the relative
price

β = P a/P g

where P a and P g represent the price level of alcohol and gasoline, respectively. If prices
are cointegrated, then their relative price should be well approximated by a stationary
process, i.e. the series would converge to an equilibrium. The advantage of this test is that
it precludes any knowledge of the order of integration of the log-level variables. In Table
3, we present these results. Using monthly data, we found strong evidence of a stationary
relative price and hence, cointegration between alcohol and gasoline. The equilibrium
level estimated for this period [0.52] is below the [0.70] implied by the suggestion of the
automobile industry. The explanation might be on the fact that alcohol cost structure is
lower than gasoline’s, and that demand has not yet pushed prices up. An investigation
about the stability of the root can be found in Graph 4. The root seems to increase
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steadily after the end of 2003 and then becomes stable. Although this result apparently
contradicts our intuition - that the flex will generate higher speed of convergence - it must
be said that the small number of observations is probably driving these findings (since
we are working with recursive estimates) and that the parameter is converging to its true
conditional value. However, it must also be noticed that the share of flex cars in the
market, although growing exponentially, is still small.

On the other hand, stationarity checks using annual data also suggest that there
is cointegration between the two variables after the liberalized period. A plot of the
relative price can be seen in Graph 3 and informal analysis would lead us to suspect that
a break occurred at around the end of the 1990s. This contrasts with the inspection
using monthly data in which no apparent break can be observed (see Graph 2). For
these reasons, we performed Perron (1997) unit root tests on the relative price and found
strong support for stationarity, which, as explained, can be interpreted as evidence of
cointegration between alcohol and gasoline. The date break also coincides with the initial
period of liberalized markets. For comparison, in Table 2 we also show the estimates of
the root and equilibrium value for the whole period and also from 1999 onwards (when
alcohol prices were liberalized).

We also examined the existence of cointegration by performing Engle and Granger
(1987) tests on the log-level of prices. We first estimated an autoregressive distributed
lag (ARDL) model. Lags were chosen to maximize the Schwarz Bayesian Criterion (SBC)
criterion. Using the price of alcohol as the dependent variable, this criterion retrieved an
ARDL (2,0). We also used the calibrated conservative strategy of the PcGets [see Hendry
and Krolzig (2005) and Krolzig and Hendry (2001)] in order to check for the lag dynamics.
It retrieved the same lag structure as the SBC, which tends to select a more parsimonious
representation in comparison to the Akaike criterion, for instance.

After estimating the ARDL(2,0) model, we investigated causality between the two
series based on Granger et al (2000)

∆pa
t = α0 + σ1(p

a
t−1 − β̂pg

t−1) +
k∑

i=1

α1i∆pa
t−i +

k∑
i=1

α2i∆pg
t−i (11)

∆pg
t = φ0 + σ2(p

a
t−1 − β̂pg

t−1) +
k∑

i=1

φ1i∆pa
t−i +

k∑
i=1

φ2i∆pg
t−i (12)

where pa and pg are the natural logarithms of P a and P g (the price levels of alcohol
and gasoline, respectively). The subscript t stands for time and the Greek letter ∆
represents first differences. The letters α1i, α2i,φ1i, φ2i are coefficients, whereas α0 and
φ0 are the intercepts. The term in parenthesis is the estimated (long run) cointegrating
relationship from the ARDL model lagged in one period, in other words it is the lagged
error correction mechanism; σ1 and σ2 are the speeds of adjustment and cointegration
implies |σ1|+ |σ2| > 0. Evidence of causality (in Granger sense) running from gasoline to
alcohol prices implies rejecting H01 : [α21 = α22 = · · · = α2k = 0 and σ1 = 0], whereas if
the hypothesis H02 : [φ11 = φ12 = · · · = φ1k = 0 and σ2 = 0] is rejected, then alcohol would
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Granger-cause gasoline prices. If we reject both hypotheses, then there is bi-directional
Granger-causality.

We do not show the results of the error correction representation of the ARDL (2,0)
because in Table 4, we present estimates of the Granger causality tests, which provide
information on both the short-run dynamics and the long-run ties between these two
variables. Following the Engle and Granger (1987) two-step procedure, we performed
unit root tests on the residuals of the estimated ARDL (2,0) and found that they were
stationary. As seen in the bottom of the first part of Table 4, the ADF test statistic with
one lag (which was chosen using a general to specific approach) is -5.81, a value that is
highly significant (for instance, it is significant at the 1% critical level).

As can be seen in Table 4, there is support for cointegration since the parameter
σ1associated with the error correction variable (ECMt−1) is also highly significant. For
instance, about 30% of the deviations from the long run equilibrium relationship are
eliminated every month by changes in the alcohol price. This parameter is relatively
stable as can be seen in Graph 5, which allow us to conclude that the escalating flow of
flex cars has not yet changed the price adjustment dynamics. One possible explanation
is that the share of flex is still small (approximately, five per cent in 2006 , although this
type of car dominates the automobile sales in Brazil).

Granger causality is found in one direction as implied by the Wald tests reported at the
bottom of each part of Table 4. The value of the Wald test statistic is such that we were
able to reject the null hypothesis of zero coefficients at the 1% significance level for the lags
of gasoline in the alcohol equation. On the other hand, alcohol does not cause gasoline in
the Granger-sense. This evidence lends support to the assumption that gasoline price is
not determined by alcohol but is possibly exogenously decided in international commodity
markets (as it depends on oil prices).

As there might be more than one cointegrating vector in the bivariate case, the stan-
dard theory suggests applying Johansen (1991) tests. These tests consist in estimating
the matrix of coefficients from the structural model, which represent a feedback relation-
ship between alcohol and gasoline prices. If the rank of this matrix is zero, i.e. there are
no independent cointegrating vectors, the matrix is null and (11) and (12) will become
a vector autoregression model in first differences. Our final set of results, based upon
Johansen (1991), is shown in Table 5. The general conclusion corroborates the previous
findings using Engle and Granger (1987) and the stationarity tests on relative prices. For
instance, results using monthly data in Table 5 reveal that the values of both the maxi-
mum eigenvalue statistic and the trace statistic are able to reject the null hypothesis of
no cointegrating relationship for the alternative of at least one. However, the hypothesis
that there are two cointegrating vectors is rejected.

Overall, we found that prices are cointegrated and that causality (in the Granger sense)
runs stronger from gasoline to alcohol. Hence, the conclusion is that relative prices are
stationary which is also corroborated by our unit root tests. This means that there might
be a higher degree of substitutability between both fuels than the one found by Alves and
Bueno (2003). The speed of convergence to equilibrium remains stable as suggested by
the recursive analysis. These stability checks allowed us to conclude flex cars have not
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yet changed price dynamics in a significant way.

5 Concluding Remarks

We performed a thorough analysis on the behavior of the relative price of alcohol and
gasoline and the consumer’s demand decision for automobiles when faced by two or more
types of fuel technology. Theoretically, we filled a gap in the literature as we developed
a model that took into account supply and demand conditions in both the fuel and car
markets. We analyzed the interaction between the proportions of cars and demand for
fuel, showing that alcohol and gasoline prices are tied in the long-run. Empirically, our
work complemented the studies that have estimated demand elasticities for fuel and,
especially in the case of Brazil, the cross price elasticity for alcohol. We shed light on the
short and long run relationships between alcohol and gasoline prices.

A straightforward conclusion emerged from both the theoretical model and the em-
pirical analysis regarding the dynamics of the alcohol price. The alcohol price cannot be
understood if disentangled from the behavior of gasoline and also from the current state
of the technologies that transform energy into Kms.

The model also captures the trend for the predominance of flex cars in the market.
Interestingly, when all cars are flex, the model predicts that the relative price of alcohol
will be a constant, equal to the technical marginal rate of substitution between the two
goods (given that the gasoline price is neither too high nor too low).

According to our model a consumer buys a flex car in order to ”benefit” from price
differences. On the other hand, the increase on the proportion of flex cars will eliminate
these differences. Then what will be the benefit of having a flex car in terms of economic
efficiency in the long run? Our model solves this puzzle by showing that it is always
going to be advantageous to have a flex car, assuming the price for all types of cars are
equal and that there is a reasonable variation in gasoline prices. However, if the price
of a flex car substantially exceeds the price of a standard automobile, then the model
predicts a convergence to an equilibrium fraction for each type of car, implying that they
will coexist.

Other interesting questions arise for future works. For example, what is the impact of
the growing flex trend on society’s welfare, if the car has a small technical disadvantage
over standard ones when fueled with either gasoline or alcohol? On an empirical level our
work suggests that new estimates of the cross-price elasticity will be interesting, especially
when the proportion of flex cars increase considerably.
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Graph 1: Monthly Prices (first difference of the log-level).
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Graph 2: Relative Prices - monthly data.
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Graph 5: Stability of the speed of adjustment σ1.
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 Monthly data 

Variable Nº of Lags 
 

ADF statistic 
 

Nº of Lags 
 

ADF statistic 

a
p   3 -2.49 

 

1 

 

-1.45 

g
p  6 -1.95 

 

1 

 

-1.37 

a
p∆  12 -3.15* 

 

0 

 

-1.93 

g
p∆  12 -3.96* 

 

0 

 

-1.95 

 

Annual Data

Table 1: ADF Unit Root Tests. Lags were selected through a general to specific
approach. The variables pa and pg represent for the natural logarithm of the price level
of alcohol and gasoline, respectively. The Greek letter ∆ stands for the first difference. ∗
indicates rejection of the null of a unit root at the 5% confidence level.

 
Nº of Lags 

 
Monthly 3 

 
-3.50* 

 
0.72 

 
2.1≅ months 

 
0.15 

 
0.52 

 

Annual 

 

0 

 

-1.73 0.78 
 

--- 0.15 
 

0.68 
From 

1999 

 

0 

 

-11.49* -0.29 
 

--- 0.80 
 

0.62 

 

ADF statistic Root Half Life** Intercept Equilibrium

Table 2: Relative Prices. Lags were selected through a general to specific approach.
The variables pa and pg represent for the natural logarithm of the price level of alcohol
and gasoline, respectively. The Greek letter ∆ stand for the first difference. ∗ indicates
rejection of the null of a unit root at the 5% confidence level. ∗∗ half-life is calculated as
ln(1/2)/ ln (estimated root).
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Variable Nº of Lags 

β  2 -9.12* 1997 

a
p   1 -2.04 1988 

g
p  1 -2.17 1988 

a
p∆  0 -6.66* 1993 

g
p∆  0 -6.74* 1993 

 

t-statistic Break Date

Table 3: Perron (1997) Unit Root Tests Using Annual Data. Lags were selected
through a general to specific approach. The variables pa and pg represent the natural
logarithm of the price level of alcohol and gasoline, respectively. The Greek letter ∆
stands for the first difference. Date breaks were chosen according to the method in which
the t-statistic to test the null of a unit root is minimized. ∗ indicates rejection of the null
of a unit root at the 1% confidence level.
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Error Correction Model obtained from the ARDL(2,0), using 
a

p∆  to estimate the cointegrating 

relationship ( )t
ECM  

Regressor Coefficient p-value 
a

p∆  
Intercept -0.23 

 

0.07 [.003] 

 
1

a

t
p

−
∆  0.41 

 

0.13 [.003] 

 
2

a

t
p

−
∆  -0.07 

 

0.14 [.579] 
 

1

g

t
p

−
∆  0.47 

 

0.54 [.388] 

 
2

g

t
p

−
∆  0.41 

 

0.53 [.439] 
 

1t
ECM

−  -0.29
 

0.07 [.003] 

ADF tests on the residuals of the ARDL(2,0), ADF(1) = -5.81 , 95% critical value =  -4.306        

 

Wald test of restrictions imposed on the coefficients 1

g

t
p

−
∆ , 2

g

t
p

−
∆  and 1t

ECM
− : 

Wald Statistic, 
2χ  (3) = 11.465[.000]  

 
 

Regressor Coefficient p-value 
g

p∆  
Intercept 0.01 

 
0.02 [.700] 

 
1

a

t
p

−
∆  0.08 

 

0.03 [.024] 

 
2

a

t
p

−
∆  -0.03 

 

0.03 [.354] 
 

1

g

t
p

−
∆  0.28 

 

0.13 [.038] 

 
2

g

t
p

−
∆  -0.05 

 

0.13 [.704] 
 

1t
ECM

−  -0.00 
 

0.02 [.991] 

Wald test of restrictions Imposed on the coefficients 2

a

t
p

−
∆ , 1

a

t
p

−
∆  and 1t

ECM
− : 

Wald Statistic, 
2χ  (3)= 2.563[.464] 

 

Dependent Variable Std. Error

Std. ErrorDependent Variable

Table 4: Granger et al (2000) Causality Tests using Monthly Data.

30



Null Hypothesis Alternative 

Hypothesis 

Statistics 5% Critical 

Value 

1% Critical 

Value 

  maxλ    

0r =  1r =  24.53 15.67 20.20 

1r ≤  2r =   8.77 9.24 12.97 

  traceλ    

0r =  1r ≥  33.29 19.96 24.60 

1r ≤  2r =    8.77 9.24 12.97 

 

Table 5: Johansen Cointegration Tests using Monthly Data. 58 observations were
used to estimate a second order V AR. The assumption is that there is no deterministic
trend in the data. Numbers in bold mean rejection of the null at the 1% critical level.
The letter r is the number of hypothesized cointegrating equations. λmax and λtrace are
the maximum eigenvalue statistic and the trace statistic, respectively.
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