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This paper aims at finding the relation between the shifts in volatility 

and the changes in sign predictability for the daily changes in Euro/USD 

quotes. Previous research (Fatih Yilmaz, Sweet spots for directional 

trading, Bank of America) found certain relations between these two 

variables and identified optimal Sharpe ratio levels around 1.4 for a 

strong use in forecasting. The objective of this paper is to model the 

relation between these two variables in order to provide a dynamic 

process and then to test this process on real currency data. 

 

 

The changes in currency rates are very important for a Forex trader. Besides forecasting 

the conditional distribution of the size of the future currency changes, a great deal of 

focus has been done in analyzing the changes in signs. Forecasting the sign probability of 

the future rate could provide us a powerful tool for taking currency positions. 

The models used for the returns of the financial assets are constructed based on the 

stylized facts observed by many analysts, Cont (2001) among others. They are basically 

highlighting the facts that financial returns have fat tailed distributions and negative 

skewness generally, and also that the autocorrelations of returns are not statistically 

significantly different from 0, while the autocorrelations of volatilities are very 

significant up to a number of lags. These observations fed the need for models from the 

GARCH family and then the stochastic volatility. Hsieh (1991) looks at the power of 

these two models to filter the nonlinearities out of the data for a series of financial returns 

by using the BDS test to check for the randomness of the residuals. He found out that the 

stochastic volatility model performs better than the GARCH even if it is harder to 

compute. However the resulted benefit added by the stochastic volatility may not explain 

the need to use it against the GARCH due to the computation problems. 

Lupu (2006) provides an analysis for the use of the jump-diffusion model as in Maheu 

and McCurdy (2003) for US dollar versus Euro rates by using the same BDS test.  

In a recent paper Yilmaz (2007) explains that for an active manager, directional 

predictability necessitates ex-post returns (after adjusting for risk, skew and tails) that are 



better than a buy and hold strategy. This means that actively managed returns need to 

dominate underlying unconditional returns at the distributional level. 

We will use the stochastic volatility model to filter the nonlinearity out of the data and 

then use the BDS test for the residuals in order to see if our model succeeded in 

extracting all the non-linear relations in the data. The resulting residuals will be used in a 

future paper to check if the stochastic volatility model can be used to forecast the sign of 

the returns. 

 

1. The stochastic volatility model (SVOL) 

The specification of the stochastic volatility model is the same as in Hsieh (1991). The 

log of the standard deviations of the returns follows an AR(p) process where p will be 

determined by an Akaike information criterium. 
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where vt follows a standard normal distribution. Hsieh (1991) evaluated this model as an 

alternative to the ARCH family models in the sense that it allows for the innovations vt in 

the variance process. Hsieh analysed the existence of nonlinear deterministic processes in 

asset returns. Thus the residuals of the ARCH type models were tested for IID and Hsieh 

concluded that these models do not account for all the deterministic relations existing in 

the returns while the stochastic volatility model behaves better. As such the stochastic 

volatility model may be considered as the best fitted model. The objective of this paper 

provide a possible method for the implementation of the jump-diffusion model in options 

bound computation but the stochastic volatility model may provide an evidence for the 

performance of the jumps model by means of the BDS test. 

 

2. Brock, Dechert, and Scheinkman (1987) – BDS test 

The BDS test is in close relation with the use of chaotic maps for time series inference. 

Chaos is a nonlinear deterministic process which “looks” random. According to Hsieh 

(1991), in general, chaotic maps are obtain by a deterministic rule: xt = f(xt-1, xt-2, … ) 

where f must be a nonlinear function and xt is a scalar or a vector. The need to test for the 



existence of chaos in a certain time series revealed an interesting feature of a process 

following a chaotic map as opposed to a pure random variable – at a certain number of 

dimensions the random variable fills the space uniformly while the nonlinear function 

(the chaotic map) leaves certain areas uncovered. The tent map is the simplest form of 

chaotic map: 

Xt = 2Xt-1 if Xt-1 < 0.5 

Xt = 2(1 - Xt-1)  if Xt-1 > 0.5 

The tent map will fill all the space in the first dimension but leaves wide areas uncovered 

in the two-dimension space while the random variable following a uniform distribution in 

the (0,1) interval will fill all the space in both situations as in figure 1 below: 

 

Thus, when the chaotic process becomes more complex we need to analyse the data in 

higher dimensions. A chaotic process can fill up the first n dimensions but leave large 

“holes” in the n+1 dimension. Grassberger and Procaccia (1983) derived the dimension 

integral C(εεεε), an instrument which counts the number of pairs of points close to each 

other (the distance between them is less than ε) in the analyzed dimension.  
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The correlation dimension (vn = logCn(ε)/logε) was developed by the same authors with 

the scope to measure how much space is “filled up” by a string of data. This instrument 

still does not provide a way to test for the existence of a nonlinear function in the process. 

Brock, Dechert, and Scheinkman (1987) developed the BDS test from the result that the 

correlation dimension should increase with the number of dimensions for a random 

variable and should remain constant or converge to a certain value for the nonlinear 

deterministic process. For the example with the tent map and the uniform random 

variable this result is provided in figure 3. 
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Thus the value of the correlation dimension for the case of the random variable should be 

C1(ε)
n
 (the value of the correlation dimension in the one-dimensional space at the power 

of n – the number of the dimensions in the analysed space). The BDS statistic analyses 

the difference between the value of the correlation dimension in the n
th                    

-

dimension space and the and C1(ε)
n
 and is asymptotically standard normal. Under the null 

hypothesis the process is a random variable, so the numbers analysed are IID, while 

under the alternative, the process is not IID – we have a certain deterministic function 

which generates the values of the process. 

 

3. Application to exchange rates 

The 1011 daily exchange Euro/USD rates were provided by quotes published by Saxo 

Bank, for the period the 4
th

 of January 1999 until the 31
st
 of December 2003. The 

parameters for the two models were computed from the log-returns. For the stochastic 

volatility model these daily quotes were used in blocks for the computation of 202 
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weekly returns volatilities. The jump-diffusion model used the weekly returns as the 

difference between the Friday log-return and the Monday log-return. 
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The highest value (0.141713464118) occurred on the 3
rd

 of January 2002 and it records 

the moment when the value of the Euro exceeded 1. 

 

 

Fig. 3  
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4. SVOL estimation 

We will estimate the values of the parameters for the stochastic volatility process in order 

to use this process as a filter and apply the BDS test to the residuals. This is why we will 

first remove any linear deterministic dependence from the process. We compute an 

AR(p) process for the daily log-returns and use the residuals to compute the second 

moment dependence. The number of lags (p) was determined by the Akaike information 

criterion and an AR(3) was used. For the volatility we used an AR(10). 

 

Table 1
1
       Returns     Volatility 

p Akaike 

1 lag -6.875825 

2 lags -6.877685 

3 lags -6.877944 

4 lags -6.877383 

5 lags -6.875086 

6 lags -6.873464 

7 lags -6.873434 

8 lags -6.870474 

9 lags -6.869888 

10 lags -6.867183 

 

Table 2   AR(3) results for the log-returns 

 Coefficien

t 

Std. Error t-Statistic Prob.  

C(1) 7.24E-05 0.000244 0.296395 0.7670 

C(2) 0.038072 0.031533 1.207382 0.2276 

C(3) 0.057041 0.031477 1.812127 0.0703 

C(4) -0.054922 0.031504 -1.743337 0.0816 

R-squared 0.007420     Mean dependent var 7.57E-05 

Adjusted R-squared 0.004451     S.D. dependent var 0.007769 

S.E. of regression 0.007751     Akaike info criterion -

6.877944 

Sum squared resid 0.060263     Schwarz criterion -

6.858422 

                                                 
1
 Akaike info criterion was computed as -2(l/T)+2(k/T), where l is the loglikelihood and k is the 

number of parameters. The best fit is provided by the minimum value of the Akaike. 
 

p Akaike 

1 lag 2.693677 

2 lags 2.705715 

3 lags 2.694237 

4 lags 2.707740 

5 lags 2.706011 

6 lags 2.687764 

7 lags 2.693174 

8 lags 2.689740 

9 lags 2.871425 

10 lags 2.683677 



Log likelihood 3467.045     Durbin-Watson stat 1.993582 

 

AR(10) results for the log-returns 

 Coefficien

t 

Std. Error t-Statistic Prob.  

K(1) -6.798787 1.804949 -3.766747 0.0002 

K(2) 0.050044 0.073062 0.684958 0.4942 

K(3) 0.016673 0.073657 0.226365 0.8212 

K(4) -0.037252 0.073123 -0.509434 0.6111 

K(5) 0.010065 0.072839 0.138179 0.8903 

K(7) 0.116121 0.071223 1.630397 0.1047 

K(8) 0.103323 0.071729 1.440476 0.1515 

K(9) -0.131853 0.071138 -1.853474 0.0654 

K(10) -0.065552 0.071689 -0.914394 0.3617 

K(11) 0.182775 0.071899 2.542098 0.0119 

R-squared 0.083090     Mean dependent var -

8.999275 

Adjusted R-squared 0.037748     S.D. dependent var 0.915709 

S.E. of regression 0.898259     Akaike info criterion 2.673962 

Sum squared resid 146.8503     Schwarz criterion 2.843623 

Log likelihood -246.7003     Durbin-Watson stat 2.021411 

 

A bootstrap type test was used for the computation of the BDS on the residuals of the 

stochastic volatility model. We run 10 000 simulations for the stochastic volatility model 

and we compute the BDS on each of the residuals series from 2 up to 10 dimensions for 

an ε equal to the value of the standard deviation recorded for each series of residuals. We 

are interested in computing the number of rejections as a percentage of the total number 

of computations. We expect the BDS to be rejected 5% of the time if we consider a 95% 

confidence interval. This will provide evidence for IID residuals. The results presented in 

table 3 below show the percentage of the cases when the BDS was in the 95% confidence 

interval – when we do not reject the null. 



Table 3    
 

SVOL residuals
 

Random Number 

Generator sample
 

Number of 

dimensions 

The percentage of the 

situations when we 

accept the null for the 

BDS test 

The percentage of the 

situations when we 

accept the null for the 

BDS test 

2 92.97 91 

3 92.96 89.4 

4 92.73 86.6 

5 92.43 84.9 

6 91.28 80.7 

7 89.52 74 

8 87.86 64.2 

9 85.77 51.8 

10 83.22 31.5 

 

We notice that the percentage is decreasing when we increase the number of dimensions 

which means that we have more rejections at higher dimensions. So we can conclude that 

the residuals behave more as high dimensional nonlinear deterministic processes. We 

should take into account though the pseudo-random number generator provided by the 

software package which is itself a chaotic map. For comparison we make 1000 draws 

from the normal distribution by using the pseudo random number generator in the 

software package. The results for a BDS test for 2 up to 20 dimensions are provided in 

table 4. We can see that they are behaving even worse than the results provided for the 

BDS test in our case. 

���� ���� 

The paper estimates the parameters of the stochastic volatility model according to Hsieh 

(1991) for the Euro/USD exchange rates from January 1999 until December 2003. The 

residuals form this model were tested with the BDS test for IID. We can say that the 

model is capable of capturing the most part of the deterministic component in the 

exchange rates leaving the residuals to account only for the random variability of the 

data. The next step in our research will be to adjust the stochastic volatility model in 

order to be able to come up with model that can forecast the median of the residuals 

obtained from the stochastic volatility model. This will provide a way to take into 

account the signs of the returns. 
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