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ABSTRACT. Short term load forecasting is fundamental for the safety and reliability of the 
electric system. Exponential smoothing methods and, in particular, the Holt-Winters method and 
its variations, are appropriate in this context, since they are highly adaptable and robust tools to 
forecast different horizons. This paper presents an univariate model to forecast very short term 
demand for a large electricity distributor in the southeast of Brazil. The model produces 15- 
minute-ahead forecasts for the next 15 days, i.e., a total of 1440 steps ahead forecasts and uses a 
variation of the Holt-Winters approach with double cycles (daily and weekly). 
 
Bank holidays were considered separately with an exogenous intervention. Separate rules were 
proposed for each 15 minutes period of the holiday and also for the days before and after the 
holiday. In addition, another exogenous correction was included in the model, to account for 
extreme temperatures. 

 
KEYWORDS. Short-term load forecasts; Double Seasonal Exponential Smoothing Methods; 
Exogenous Interventions; Holiday Effects; Temperature Effects. 

 
 
1. INTRODUCTION 
 

 
In Brazil, electricity consumption has grown at an average 7% yearly rate for the past 30 years. 
Hydroelectric plants are responsible for roughly 80% of the country’s total energy production 
and thermal plants had been built on the past few years to serve as a hedge against unfavorable 
hydrological conditions.  
 
In the mid-nineties, the government decided to privatize the sector, inspired by the model used in 
the United Kingdom. However, the privatization process in the UK occurred at a stage of almost 
stagnant demand, while in Brazil it was carried out at a time of fast growing consumption. This 
might explain why the privatization process in Brazil has suffered drawbacks, including the 
difficulty of attracting new investments. Until the mid-nineties, the Brazilian electric sector was 
primarily a government-owned enterprise. Expansion planning was centralized and determined 
by government-made demand forecasts (Kawabata, 2002). Investment and capital needs were 
projected based on historical consumption growth rates, often as a function of projected GDP 
growth rates. The primary objective of the privatization process was to define a model capable of 
transferring the responsibility for the new enterprises to the private initiative. 
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The liberalization process is still incomplete. Currently, the Brazilian power sector includes a 
mix of publicly held companies controlled by the state and federal governments and privately 
held companies.  
 
The inability to attract new and much needed investments was one of the reasons that led 
President Lula’s government to forsake the model conceived by the previous government and 
impose new rules, the so called “New Electric Sector Model” in 2004. 
 

 
When President Lula took office in 2003, there was concern about the small amount of new 
private investments in power generation brought about by the privatization model started in the 
previous government. The power rationing in 2001/2002 clearly exposed the weaknesses of the 
privatization process. The reform initiated in Lula’s government transferred the liability of 
energy purchases from distributors to the Federal government. Distributors are required to 
inform their long term projected demands and the government acquires the total necessary 
amount of energy in auctions. There are severe penalties for distributors who under-purchase 
energy, and the maximum amount of overbought energy allowed is 103% of actual demand. 
These limits are thought of as very narrow, especially in what concerns longer term forecasts, as 
distributors are forced to declare their demands ten years in advance. Electricity distributors, 
thus, are subject to immense risks derived from inaccurate medium and long term load forecasts. 
However, their operational and financial feasibility is also affected by short-term load risks.    

 
Short-term demand forecasting, the subject of this paper, is essential for the reliable and efficient 
operation of electrical grids, and it can point out local anomalies, such as those due to special 
events (holidays, major sport events) or unusual temperatures. The importance of such forecasts 
grows as safety limits and margins become tighter, as a consequence of companies seeking 
profitability in an environment of higher financial constraints.  Good short term forecasts are also 
fundamental to improve current internal processes in distribution companies and to ensure the 
smooth operation of the electric grid. 
 
In this work we apply a version of Holt-Winters method, originally developed by Taylor 
(2003b). Exponential smoothing methods provide a robust strategy to forecast series of different 
characteristics and periodicities. The models developed in this work are currently in their final 
testing stage to be implemented in real time in one of Brazil’s largest electricity distributors. 
Thus, the choice of exponential smoothing methods was also a choice for simplicity – we needed 
a class of models that would be relatively easy to implement and maintain, and that would be 
robust and provide reasonable forecasts even if the model would not be re-adjusted for a couple 
of days. Current specification requires us to provide quarter hourly forecasts up to 15 days in 
advance. When in operation, models should be re-adjusted on a daily basis, in the morning. The 
first forecast produced corresponds to 00:15h, so that when the model is “run” (say, typically at 
10:00), the shorted term forecasts will not actually be used for scheduling purposes, just for 
comparison with the actual, already observed loads in the first morning. However, the electricity 
distributor considers these forecasts as important, as their comparison with the actual, recently 
observed load, may provide hints as how the load should behave in the first predicted afternoon, 
and how it would be expected to deviate from the produced forecasts. 
 
It is widely known that short-term load is severely influenced by temperature. However, from a 
practical standpoint, it is no trivial task to incorporate such information in a system designed to 
run in almost real time. Moreover, temperature forecasts in Brazil are inaccurate and unavailable 
with the desired degree of geographical granularity. Here we present an exogenous correction of 
the load forecasts produced by the Holt-Winters procedure that takes into account deviations 
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from monthly averages computed from maximum and minimum daily data since, as previously 
noted, high frequency temperature data is unavailable.  
 
We include interventions to account for holiday effects. These are treated exogenously, and we 
correct the forecasts after they’ve been produced by the model. Holidays that occurred on 
Sundays were considered “regular” Sundays, and not accounted for. We created different rules 
for holidays in different weekdays, but we could not treat the monthly/daily holiday effect 
separately due to the insufficient amount of historical data. Thus, for example, a Monday holiday 
would always lead to the same percentage decrease in load, irrespective to the month when the 
holiday occurred. This is, in our opinion, undesirable, but it was the only possible choice at 
present. The holiday rules were applied in quarter-hour periods, that is, different quarter-hours in 
a holiday suffered different percentage load reductions. Also, holiday corrections were applied to 
the preceding and following days. It should be noted that holidays are often ignored when 
developing forecasting models and accessing their accuracy. In our application, however, it was 
considered essential to obtain adequate forecasts for such unusual days, since the primary aim of 
our work was to produce forecasts to be used in an Operations Center for a large distributor. 
Thus, we couldn’t simply ignore holidays as an “academic nuisance” as some researchers often 
do, as the production of poor load forecasts in holidays could lead to severe operational 
problems. 
 
 
2. DOUBLE SEASONAL EXPONENTIAL SMOOTHING METHODS 
 
The standard Holt-Winters method is capable of handling a series with level, trend and a single 
cycle (seasonal pattern). Hourly (or quarter-hourly) load series possess two seasonal cycles: 
weekly and daily. Taylor (2006, 2003a, 2003b) conceived a multiple cycle version of Holt-
Winters method capable of handling such series (Esteves, 2003). Taylor (2003b) also presented 
an adaptation of a multiplicative ARIMA model to forecast hourly load. 
 
Consider a quarter-hourly series. Let t denote the time index. The daily and weekly seasonal 
periods are, respectively, s1 = 96 (24 times 4) and s2 = 672 (168 times 4). Let Xt denote the 
observed load, Xt(k) the k-step ahead forecast at time t and let  Dt and Wt represent the daily and 
weekly seasonal factors. Let St be the local level, and Tt be the local trend. Let α, γ, δ, ω denote 
the smoothing constants. Then, the updating equations for the multiplicative Holt-Winters 
Double Seasonal Model are given in Table 1 below, (Taylor, 2003b): 
 

Table 1. Updating and Forecasting Equations –  
Double Seasonal Holt-Winters 
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The smoothing hyperparameters α, γ, δ, ω are optimized using the minimum one step ahead 
mean squared error criterion. In this application, optimal values of the smoothing 
hyperparameters were obtained through a genetic algorithm search procedure. One should keep 
in mind that “naïve” forecasts are obtained when these parameters are set to one, which means 
that the forecast consists uniquely on the information contained in the most current observation. 
An additive Double Seasonal Holt-Winters Model can be obtained in a similar fashion from the 
basic (“usual”) additive Holt-Winters Model, by the addition of the corresponding seasonal 
effects and updating equations. 
 
 
3. APPLICATION 
  
In this study we present results for one of the largest electricity distributors in Brazil, located in 
the Southeast part of the country. The original data consisted of three years of quarter-hourly 
loads. However, due to the amount of time required for parameter optimization, we worked with 
much smaller samples. Our “in sample” periods ranged from one to six months, and we did not 
observe a significant improvement in forecasting ability when using larger samples. Thus, for the 
remainder of this work, we assume an “in sample” period of a single month. Forecasting horizon 
consists of 15 days on a quarter-hourly basis, a total of 1440 forecasts. As mentioned earlier, 
these shall be produced daily, and the first forecast will always correspond to 00:15h. 
 
3.1. Holiday Treatment 
 
In Brazil, as in other countries, the occurrence of holidays affects load in a dramatic fashion, and 
leads to a very different “daily load profile” than that observed on a weekday of the same month. 
However, holidays are often ignored when developing models and accessing their forecasting 
ability. A few publications address the need of correcting load for holiday effects, and they 
attempt to detect unusual behavior patterns in the load, for example: Cancelo, Espasa & Grafe 
(2007), Cancelo & Espasa (1996) and Papalexopoulos & Hesterberg (1990).  
 
However, it was observed that the occurrence of a holiday not only distorts the load of this day. 
Depending on the day of the week when the holiday occurs, it will alter the profile of the last 
hours of the preceding day and of the first hours of the following day, and sometimes it will 
completely change the load characteristics of several days before and after the holiday. 

 
We develop a database of load reduction factors to be applied to the forecasts in an exogenous 
fashion. This database contains the corrections to be applied to the forecasts generated by the 
Holt-Winters model of each 15 minutes period of holidays, preceding and following days. The 
corrected forecasts, after the application of these exogenous factors, should reduce forecast 
errors. 
 
Different load reduction factors were created for each weekday, and we also analyze the days (or 
portions of days) that are influenced by a given holiday, namely – the first hours of the day 
following the holiday and the last hours of the day before the holiday. 
 
The methodology consists in computing, for each 15 minutes period, the percentage variation in 
load between a holiday and a “regular” weekday. This allows us to verify the range of variation 
between holidays and non-holidays. The same calculation was done considering only regular 
(non-holiday) weekdays. Thus, we could estimate the reduction factors due to holidays and the 
effects on adjacent days. Figure 1 next presents the load reduction factors (in percentage points) 
computed for a holiday occurring on a Tuesday; we notice that the previous day is also affected 
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and, to a lesser extent, the earlier portion of the Wednesday. It was assumed that the load 
variations, estimated for regular weekdays for each 15 minutes follow, approximately a normal 
distribution, with zero mean and constant variance, whose unbiased estimator was obtained from 
the load variations for regular data mentioned above. Therefore, the significance of the variations 
between regular and holiday periods could be checked at the 95% level of confidence. 

Load Reduction Factors (%) - Holiday on Tuesday
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Figure 1. Load Reduction Factors – Holiday Occurring on Tuesday 

 
3.2. Holt-Winters Double Cycle Exponential Smoothing 
 
For the time horizon considered (15-day-ahead), there was no need to assume a linear growth for 
the trend model. Therefore, a further simplification in the formulation was considered, i.e., a 
constant model for the trend implying that only one smoothing constant for the trend need to be 
estimated. Thus, we use a more simplified structure than that on Table 1 was used, with 
smoothing constants α, δ and ω. 

Figure 2 below presents observed and forecasted loads for the period 15-29 July 2005. The in 
sample period used to obtained the smoothing parameters was June 15th, 2005 to July 14th, 
2005. The smoothing constants found by the optimization procedure were: 
α = 0.08, δ = 0.137 and ω = 0.627. 
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Figure 2. Real and Predicted Loads – 15/07/2005 to 29/07/2005 
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Figure 2 reveals a fairly good fit. The average MAPE (mean average percent error) for the entire 
forecasting horizon is 1.54%. Figure 3 presents average MAPEs over the entire forecasting 
interval. One can clearly notice that average daily errors, as measured by MAPE, do not 
uniformly increase with the forecasting horizon. In fact, the average error for the 15 day ahead 
forecast is 2.15%, below the 2.17% observed for the three day ahead forecast error. In fact, six 
and seven day ahead forecast errors (0.96% and 1.00%) are slightly below the forecast error for 
the first day (1.02%).  
 
Moreover, the model seems to perform differently at different times of the day, as shown in 
Figure 4 next, which presents the average MAPE at every hour during the entire 15 day out of 
sample forecasting period. For example, the value corresponding to hour 01:00h is the average of 
MAPEs for the following periods: 00:15h, 00:30h, 00:45h and 01:00h. 
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Figure 3. Daily Averages – Mean Absolute Percentage Error 

 
 

Hourly Mean Average Percentage Errors
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Figure 4. Hourly Average – Mean Absolute Percentage Error 

 
Clearly, forecasting errors are larger at around 16:00-20:00h. This corresponds to the daily peak 
load for the system. 
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We repeat the analyses using as an in sample period August 2005 to predict the first two weeks 
in September 2005. The optimization procedure yielded α = 0.1089, δ = 0.0225 and ω = 0.7618. 
This particular out of sample period was chosen to test the validity of our empirical, exogenous 
rule to account for holidays. September 7th is a fixed national holiday in Brazil, and we were 
interested in checking the effect of the holiday correction procedure. 
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Figure 5. Real and Predicted Loads – 01/09/2005 to 15/09/2005 

 
Figure 5 reveals a worse fit than that of Figure 2, especially on September 7th, the above 
mentioned holiday. The average MAPE for the period was 4.22%, and on the holiday alone, the 
average percentage error reached 27.97%. The application of the holiday correction rule 
improved significantly the quality of the forecasts. Overall MAPE for the 15 day period 
decreased to 2.30% and on the holiday the average MAPE fell to 2.92%. Figure 6 below 
compares the average hourly errors for the corrected and original (uncorrected) forecasts.  

Average Hourly Errors - Corrected and Uncorrected Forecasts
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Figure 6.  Hourly Average MAPEs – Corrected and Uncorrected Forecasts 

 
 
As shown in Figure 6, the effect of the holiday correction is dramatic, and average hourly errors 
decrease substantially at all periods. Next, figures 7 and 8 present average hourly and daily 
MAPEs for the out of sample period after the application of the holiday correction. 
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Hourly MAPE - Out of Sample Period: 01/09/2005 to 15/09/2005 - corrected forecasts
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Figure 7.  Hourly Average MAPEs – Corrected Forecasts 

 
Daily Mean Average Percentage Errors - corrected MAPEs
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Figure 8.  Daily Average MAPEs – Corrected Forecasts 

 
3.3. Temperature Effects 
 
Several previous studies (Cancelo& Espasa (1996), Cancelo, Espasa & Grafe (2007), Valor, 
Meneu & Caselles (2001), Engle, Mustafa, Rice (1992), Yan (1998), Taylor & Buizza (2003)) 
have shown that electricity consumption is affected by climate variables, particularly 
temperature. The effect of climate changes cannot be captured by univariate models, and we 
adopt an exogenous treatment of these effects, in a similar fashion to what was done to account 
for the effect of holidays. 
 
Temperature may be the most important climate variable to affect load, but it is certainly not the 
only one. Other variables, such as humidity, wind speed, rainfall and luminosity, could be 
considered. However, historical data for these variables is quite hard to obtain in Brazil, and 
even temperature data isn’t available in frequencies higher than daily observations. Moreover, 
forecasting these variables is no trivial task, and not readily available from weather data 
providers. On the other hand, temperature forecasts, up to 3 or 5 days ahead, are usually 
available free of charge for major Brazilian cities, with a reasonable degree of accuracy. 
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In this study, the available weather data consisted of maximum and minimum daily temperatures 
during a 4 year interval. Other studies, such as the one performed by Valor, Meneu & Caselles 
(2001) used temperature data in 30 minute intervals for an 8 year sample.  
 
It is a known fact that the relationship between energy consumption and temperature is 
nonlinear, and depends on the temperature level. For example, a 1oC change in temperature 
(from 27ºC to 28ºC, for example, has an entirely different effect on load than a change from 
34ºC to 35ºC). Moreover, the effect also depends on the season of the year; hence the 
temperature effect in the cold season is different than that during summer. We also believe on the 
existence of a saturation effect – above a certain temperature level, variations in temperature do 
no produce further increases in demand. Basically, one can summarize this effect by saying that, 
above a certain temperature, all refrigeration equipment has already been turned on. Finally, the 
temperature effect varies according with the day of the week, and also within the day of the 
week. 
 
When analyzing the effect of temperature on load in Brazil, one should note a major difference 
with respect to European countries and the USA. In the Northern hemisphere, seasons are clearly 
defined, and the differences between them are very marked. Moreover, there is a widespread use 
of heaters in the winter and air-conditioning in the summers, so the relationship between load 
and temperature is “U-shaped” – load tends to increase when temperatures are very low or very 
high. In Brazil, low temperatures are very rarely observed, and tropical weather characterizes 
most of the country. In the concession area of the distribution company under study, the use of 
heaters is uncommon, and the same applies to air-conditioning in residential units. Thus, the 
effect of temperature on electricity consumption tends to be felt in warm days – its effect is 
negligible in colder days. 
 
Thus, there exists a floor value for the temperature above which the temperature influences the 
load. There is also a ceiling level, which corresponds to the saturation effect already mentioned – 
if the temperature is above the ceiling, it has no further impact on the demand. It is necessary to 
separately analyze months due to the effect of the seasons of the year, and also it would be 
interesting to analyze the effect in the hours, but to do so we would need temperature data in 
higher frequencies than currently available. As only the daily maximum and minimum 
temperatures are available for this work, we decided to verify their impact on two distinct 
moments: in light load and heavy load hours. 
 
The first step in the procedure is to define a temperature threshold (or floor level) above which 
the temperature effect on load will be felt. The threshold level chosen was the average monthly 
temperature. This procedure was done twice, as two different temperature models will be 
obtained, one for the minimum daily temperature and one for the maximum daily temperature. 
 
Next we identify the days whose temperatures were below the threshold level. In those days, the 
temperature is assumed to have no influence on the load. 
 
Let: ,m yC  denote the average of maximum loads at month m and year y computed only from 
those days where the temperature was BELOW the threshold level for month m. Next, for each 
month, we compare the difference in loads between those days whose temperatures were below 
and above the threshold point. 
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average of maximum loads in the “cold” days of  the same month and year. 
 
For each month, a threshold temperature level has to be established, denote it by mT . For any 
given day whose temperature exceeded the threshold in month m, the “excess in temperature” for 
day j in month m and year y is written as: 
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Where TMm,y,j  is the temperature (daily maximum or daily minimum, depending of the model to 
be used) in day j, month m and year y and mT  is the temperature threshold defined for the m-th 
month. 
 
We propose the following model for the relationship between load and temperature: 
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In the previous equation, there are two parameters to be estimated, K1 and λ. K1 indicates the 
maximum effect of temperature on the load. After inspecting the data we set K1 = 1.2, thus the 
maximum effect of temperature would be a 20% increase on consumption. Thus, only one 
parameter remains to be estimated, which is done by ordinary least squares.  
 
Next we present the results for medium and heavy loads for different seasons. The correction 
algorithm is implemented for both minimum and maximum daily temperatures. One conclusion 
clearly emerges: there is no single best answer – sometimes the correction factor based on the 
minimum temperature works better than that based on the maximum temperature and vice-versa. 
 
Table 2 below exhibits the results of the temperature correction (in terms of daily MAPE) for 
February 2006. Two different time periods (medium and heavy loads) are examined and 
corrections based on rules created using minimum or maximum temperatures are shown. One 
should notice that “uncommon” days, in terms of temperature effects, depend on which 
temperature rule is being used. For example, when we base the temperature rule on daily 
maximum temperatures, day 3 is considered extreme – this does not occur when the minimum 
temperature rule is used. Overall, both temperature rules seem to work equally well for the heavy 
load. However, when we look at medium load periods, the rule based on the minimum 
temperature seems more effective and results in a larger decrease of forecast errors. 
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MAPE uncorrected MAPE corrected MAPE uncorrected MAPE corrected
Day 3 1.48 1.51 4.68 4.24
Day 6 3.34 3.22 7.12 5.88
Day 7 3.77 3.64 2.57 1.96

Average 2.86 2.79 4.79 4.03

MAPE uncorrected MAPE corrected MAPE uncorrected MAPE corrected
Day 6 3.34 1.71 7.12 5.88
Day 7 3.77 1.77 2.57 1.96

Average 3.56 1.74 4.84 3.92

Medium Load Heavy Load

Heavy LoadMedium Load
Rule based on MAXIMUM temperature

February 2006

Rule based on MINIMUM temperature

 
 

Table 2. Rules for Temperature Effect – February 2006 
 
Next on table 3 we present the analysis for September 2005. Only one point had temperature 
above the threshold level and therefore was subject to the correction. 
 

MAPE uncorrected MAPE corrected MAPE uncorrected MAPE corrected
Day 1 2.30 1.37 1.48 0.58

MAPE uncorrected MAPE corrected MAPE uncorrected MAPE corrected
Day 1 2.30 1.17 1.48 0.62

Medium Load Heavy Load

Rule based on MINIMUM temperature
Medium Load Heavy Load

September 2005
Rule based on MAXIMUM temperature

 
 

Table 3. Rules for Temperature Effect – September 2005 
 
Both rules are extremely effective in reducing forecast error, for both medium and heavy load 
periods. The rule based on the maximum temperature seems slightly more effective for the heavy 
load, and the other is slightly better for the medium load. 
 
The number of days which were candidates for correction varied according to the rule used and 
the month of the year. In some months, there were no “candidate days” using one set of rules or 
the other (sometimes both). This is certainly due to the fairly small sample of temperature data 
used to generate the “threshold” levels. Only 4 years of daily maximum and minimum 
temperatures were available, from which monthly averages were computed, and we believe the 
temperature threshold may be set more appropriately as more data becomes available. 
 
However, as the previous results show, even a very simple exogenous rule, that does not use high 
frequency temperatures, can substantially improve the forecasting ability of the model. One of its 
main advantages is ease of use and the ability to incorporate weather forecasts generated 
externally. 
  
  
4. CONCLUSIONS 
 
In this paper we presented an application of Holt-Winters Double Seasonal Exponential 
Smoothing Model to forecast quarter-hourly loads in Southeast Brazil. The results for two “out 
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of sample” periods were shown, and we also presented two exogenous corrections, one for 
holiday effects and another to account for extreme temperatures. Both corrections are useful and 
substantially improve forecasts. 
  
Overall, the model performs well, and it does not seem to produce significant deterioration of the 
forecasts as the forecast horizon increases, even when we use a small “in sample” period to 
estimate the smoothing constants in the model.  
 
The results obtained are promising, and we feel there can be further improvement, especially as 
more weather data becomes available and we can further improve the corrections for temperature 
effects. In summary, we believe exponential smoothing methods are a robust and adaptable 
methodology that can yield reliable forecasts in critical situations, such as the operations of 
electrical systems. 
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