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ABSTRACT
The accuracy of different types of forecasting models has been well-researched in the academic literature. In recent years researchers have emphasized the importance of looking at the true real-time performance of models and not simply an analysis of out-of-sample results. In this study we utilize real-time forecasts from the Western Blue Chip Economic Forecast to analyze and evaluate a host of different forecasters and models across time and 10 U.S. states to see if some models and forecasters consistently outperform others. We use the forecast accuracy criteria established by the Blue Chip publication following the forecast year, in which the forecast for job growth published in January of the forecast year is compared to the existing data for the forecast year. To evaluate accuracy we count the number of years that the forecaster/model was closest to actual and utilize standard measures such as the Root Mean Square Error and Theil’s inequality coefficient. 
Introduction.
Since the late 1980s the Western Blue Chip Economic Forecast (WBCF) has been publishing forecasts from a host of different forecasters for 10 Western U.S. states.  We examine this real-time forecast data to see if there are any models or modelers that persistently perform better than others.  If data were widely distributed and free and there were no benefit from using any given model or market experience than for any individual forecaster there would be little persistence in forecast accuracy over time and average forecast accuracy across forecasters in each state would be similar.  Our results show that for most states there are forecasters that persistently and on average do much better than others.  Based on an informal survey of forecasters it appears that many of the most accurate forecasters use a formal statistical model rather than pure judgment.
Based on our results, one of the most accurate models has been a model that the Dallas Fed has used to forecast job growth in Texas.  The Dallas Fed Texas regional forecasting model, which is a simple transfer function used with a Texas leading index, has been closest to the actual in forecasting Texas job growth in six out of the 9 years in the study, out of an average of 7.4 forecasters.  Since we have detailed information on the model and how it was used in real-time, we highlight the model and give some likely reasons for its level of accuracy.           
Methodology
One issue that arises in forecast evaluations is what forecast horizon and variable to focus on.  Many times a variety of forecast horizons and variables are chosen with a wide variety of differing results.  In the case of the WBCF however, the criteria for judgement is set forth by the publication.  Once a year, usually May, June or July, the state employment forecast published in January of the previous year is compared to the actual data for the previous year.  Forecasters who are closest to the actual are then recognized.  Since forecasters know in advance that they will be judged by this criterion it is expected that they will put the most effort into reaching this objective.  While forecasts are published 10 times per year many times forecasters do not change their initial forecast published in January even as data become available throughout the year.  This is likely due to the forecasters focusing on the criteria which they will be judged.  Because of this we focus our evaluation on the employment forecast published in January of the forecast year and use the data present at the time of the evaluation issue (May – July of the following year) to evaluate the accuracy of the forecasts. 
The simplest criterion to determine accuracy of a given model/forecaster over time is to count the number of times its forecast was closest to the actual. This is how the WBCF determines the most accurate forecasters for a given year. However, across years this could not be a very precise indicator because the margin of error can vary from year to year.

If a model consistently outperforms others over time, one would expect that model’s accuracy to be robust to different evaluation methods. Hence, we utilize three additional criteria to evaluate the performance of a sample of forecasters for the 10 U.S. states in the WBCF. Because we needed a consistent sample that went as far back as possible, some of the current forecasters are not included. Given this constraint, the numbers of forecasters as well as the number of years available for each state are not always the same. The evaluation measures utilized are: Root Mean Square Error (RMSE), Theil’s inequality coefficient (U), and a score that was built based on the probability of being the closest to the actual in the same number of years as occurred if being closest to the actual occurred by random chance.
Forecast Accuracy Measures
The Root Mean Square Error (RMSE) is defined as follows:
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Where Yts is the forecasted value of the series, Yta is the actual value and n is the number of periods of the forecast.   The main shortcoming of using the RMSE as a means to forecast evaluation is that it is only useful to compare models, that is, it is not reflective of how accurate a model really is because it does not have an upper bound.

A more useful measure to evaluate the predictive accuracy of a model is Theil’s inequality coefficient (Pindyck and Rubinfeld, 1998), which measures the root mean square error in relative terms, and is defined as
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The denominator imposes an upper bound to the U coefficient, which is bounded above by 1 and bounded below by 0, that is, 0 ≤ U ≤ 1. This is particularly useful since it gives a threshold to evaluate the accuracy of a model and not only compare it to other models. The closer to 0 the coefficient is, the more accurate the model is, while a coefficient equal to 1 indicates that the forecast performance of the model is as bad as it could be. The U coefficient can be decomposed into three proportions that provide useful additional information on the performance of the model.

Bias,
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Variance,


[image: image4.wmf]å

=

-

-

=

n

t

a

t

s

t

a

s

S

Y

Y

n

U

1

2

2

)

(

1

)

(

s

s


Covariance,
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The bias proportion measures the systematic error of the forecast; it gathers the share of the simulation error that comes from bias, that is, the difference between the averages of the forecasted series and the actual series. The variance proportion is intended to provide a measure of how well our forecast replicates the volatility of the actual series. The covariance proportion offers a measure of the unsystematic error in the forecast. The ideal distribution of proportions for any non-zero inequality coefficient would be UM=US=0, and UC=1. The results for these proportions are also included. 

Closest-to-Actual Score
While forecast accuracy is most often measured as the average or relative size of the error over time, we also use a measure that is based on having the forecast that is closest to the actual most often.  In the Western Blue Chip, forecasters that are closest to the actual get their name and affiliation listed in the evaluation issue.  It is possible for a forecaster to have the lowest mean squared error over time but never to be listed as a most accurate forecaster.  If one were to seek the notoriety of being the most accurate forecaster than one might alter his forecast up or down to increase his chances.  For example, if all the other forecasters were expected to forecast growth in the range of 2.5 to 3.0 percent and a forecaster’s model predicted 1.0 percent, than the forecaster, hoping to win, would send in a forecast of 2.4 percent so that any actual growth less than 2.5 would result in a win for the forecaster.

Since there is an incentive in some cases to alter the forecast to increase the chance of being closest to the actual, we also evaluate the models based on a how often a forecaster is closest to the actual relative to how often one would expect to be closest to the actual just by random chance.  If the number of forecasters (N) is fixed over the sample the problem is simple but in our case N varies from year to year; hence the probability of getting it right just by chance (1/Ni) varies across years as well. One way to get around this is, for any given model, to take the probability of having performed exactly as it did just by chance:
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where T is the number of years, and 
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if the forecast was not closest to the actual.  Then multiply P times the number of possible combinations of having performed as it did (C). Let X = 1- PC, then
S = X
If
Number of years closest to actual ≥ Y/Average(Ni),

            Otherwise,


S = PC-1 = -X
Where Y is the total years available for a given state and -1 < S ≤ 1 is the score assigned to the model. Notice that Y/Average(Ni) is the number of times a given model should have been closest to actual just by chance. Thus, any model that performs worse than just by chance gets a negative score. Then, a score close to 1 indicates a strong performance, while a score close to -1 indicates a weak performance. Results from this methodology, as well as the previous will be discussed in the following section. 
Results

The results for forecasters that consistently participated over a period of years are shown in Table 1.  The probability scores are based on the entire sample of forecasters for each year not just for the forecasters shown.  In general the results show that some forecasters consistently perform better than others.  The results indicate that in 7 out of 10 cases the models that have been closest to actual the most years are also those with the best RMSE and U coefficients. A survey of forecasting techniques used got only a small response although in general it appeared that the models with better RMSE and U coefficients are formal econometric models (ARIMA or structural), rather than purely judgmental.  

Dallas Fed Model

Another problem with using the results to compare different types of models is that while the published forecaster may be consistent over time, the person or model used may change.  However, from the comparison of results shown, the Dallas Fed model is shown to be quite accurate.  Out of the five consistent Texas forecasters, the Dallas Fed forecast had the best RMSE,  U-stat and closest-to-actual score and out of the 32 forecasters shown, the Dallas Fed forecast had the highest closest-to-actual score, and the fourth best U-stat.   Since we have complete information about this model, we highlight it.

One reason that the Dallas Fed model may have performed so well is that the Dallas Fed does several improvements to the non-farm employment data that improves it’s the quality.  A forecaster that has a better estimate of job growth in the current year has a better chance of predicting next year’s growth. 

The data series that is forecast in the Western Blue Chip is nonfarm payroll employment from the Current Establishment Survey (CES) program, produced by the Texas Employment Commission in cooperation with the Bureau of Labor Statistics.  No other regional series is as timely or provides as much industry detail as the payroll data.   One problem with the employment data, first discovered by Berger and Phillips (1993), is that the series is actually two different series spliced together and these two series have different seasonal patterns.  The bulk of the data is based on reports filed by firms covered by unemployment insurance (UI), while the most recent ten to twenty-two months of data are based on a survey of business establishments.  Running a standard census X-11 or X-12 seasonal adjustment procedure on the combined CES data series results in seasonal factors which are essentially based on the UI data.  When these seasonals are applied to the establishment survey data at the end of the series, it often results in a January jump and other irregularities that are revised away when the data are rebenchmarked to the UI data once a year with the release of the January data.

Berger and Phillips (1993, 1994) describe a two-step seasonal adjustment process that estimates and applies two separate seasonal adjustment factors for the two separate parts of the data.  In early 1994 the BLS, partly in response to the research by Berger and Phillips (BP), adapted a two-step adjustment procedure for the state employment data published at the one-digit SIC level.  The procedure used by the BLS, however, differs slightly from the procedure used by BP.  At the month that the survey data starts, often July, BP splice together the seasonal factors using the change in the survey data seasonals from June to July and then multiply this change by the June UI seasonal factor.  More precisely, they define the two core series as XB – the benchmark UI series, XS – the establishment survey (ES) series, and then define the hybrid series which is the final published series as XH .  The hybrid series first reflects the changes in XS in the transition month which is usually July.  For example, every year when the January data is released, the data from June of the previous year back 12 months is revised (benchmarked) to reflect the changes in the UI data (instead of changes in the ES).  The data from July through the current month of January is estimated with the ES data and, as new data is released through the following December, it is based on changes in the ES data.  Then when the January data is released the following year, another annual benchmark occurs and the process repeats itself.  Although officially the benchmark runs though only through March, most often the BLS has available and uses the UI data through June.  Each year the Dallas Fed calls to verify when the benchmark data ends.
 XH in the transition month 7 is calculated by the BLS as: 
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In order to seasonally adjust the series we divide by the appropriate seasonal factors (SF): 
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rearranging and substituting we get 
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which is the equation that we use. BLS, however, uses the equation:   

 (4)
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In month 8, the month after the transition month, we define 
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which is equal to the BLS value only if  
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.  From period 8 to the end of the series the seasonal factors change in the same way as the BLS seasonal factors but the level differs based on the difference between 
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Using equations 3 and 5 ensures a smooth movement in the seasonally adjusted series at the transition point but the restriction that for any twelve-month period the seasonal factors average to one no longer holds for the establishment survey part of the data.  Using equation 4 can cause an irregular movement at the transition point but retains the restriction that the seasonal factors average to one.

Another adjustment that BP make to the employment data is early benchmarking.  Once a year, concurrent with the release of the January CES data, the BLS revises the previously estimated data based on a years worth of UI data, a process called benchmarking.  The benchmark period covers from July two-years-prior to June of the previous year.  Preliminary UI data for Texas at the three-digit North American Industrial Classification System (NAICS) are available with about a three-quarter lag after the reporting quarter.  Berger and Phillips (1993) show that this preliminary data is very close to the final data used for the annual benchmark and thus can accurately be used to estimate the benchmark revision.  


Using this employment data that has incorporated both an early benchmark and the correct seasonal adjustment sharply reduces later revisions to the data and thus more accurately represents the data for the current year.  The structure of the Dallas Fed model is a transfer function model that utilizes the autoregressive pattern in the employment data along with a Texas Leading Index derived by Phillips (1990).  The first step in the transfer function is to specify the ARIMA model that best fits the employment data.  The best fit was determined to be a (1,1,1) model.  The next step is to pre-filter both the log employment series and the log Texas Leading Index by this (1,1,1) process and to analyze the cross-correlation matrix to look for statistically significant relationships between changes in the leading index and changes in Texas employment.  The prefiltering of the data ensures that the relationships shown in the cross-correlation matrix are not spurious due to the two data series following the same autoregressive process.  In analyzing the cross-correlation matrix there was a significant coefficient at a 3-month lead.  Thus there is a delay of three months between changes in the leading index and changes in Texas employment.  There were also some significant coefficients after the three month lead that tended to die off.  The relationship of changes in the leading Xt to changes in employment can be shown as either of the following forms where B is the backshift operator :
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In the model Xt is the first difference of the natural log of the Texas Leading Index.     Notice that in the transfer function that shocks to the leading index die out over time depending on the closeness of 
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is estimated to be .88 so that changes in the leading index have an impact on employment that die out slowly and thus the forecast tends to be rather smooth.  The delay in the model is three months so i=3.   The results from the most recent run of the model are shown in Table 2.  As shown here, the T-statistics are quite high, particularly for the lagged impact of changes in the leading index on changes in employment.  Also shown are the autocorrelation check of the models residuals and the cross-correlation of the residuals with changes in the leading index.  In this particular run of the model there is some evidence of some autocorrelation in the model that may indicate that the autoregressive part of the model may need some adjustment.  The cross-correlation results show that the predictive content of the leading index is contained in the model so that the error terms have no statistical relationship with the leading index.

One of the most impressive aspects of the Texas model is that it has been used since 1994 and has never produced any large errors and that the structure of the model has essentially remained the same.
Conclusion


An analysis of the real-time job growth forecasts across 10 major states in the U.S. reveals that some forecasters consistently outperform others.  Generally it seems that formal models outperform judgment.  One model that has performed well, the Dallas Fed Texas model, is a simple transfer function model which utilizes the autoregressive movements in employment and changes in the Texas Leading Index, an index which was designed to predict turning points in the economy. 
Table 1

Arizona




 
RMSE
    U-Stat        U-bias      U-var        U-cov   
Score

Arizona Public Service
  1.73
    0.2441        0.0918     0.4902      0.4180
-0.52
ASU



  1.66
    0.2360        0.1199
   0.5659      0.3142
-0.52
Dept. of Economic Security
  1.49
    0.2035        0.0422
   0.4471      0.5107
 0.64

Eggert Economic

  1.57
    0.2136        0.0173
   0.7254      0.2573
-0.52

Joint Leg. Budget Com.
  1.57
    0.2178        0.0566
   0.6642      0.2792
-0.52

The Maguire Company
  1.60
    0.2211        0.0410
   0.8247      0.1343
 0.66

NAU-BBER

        
  1.56
    0.2083        0.0040
   0.6248      0.3712
 0.88

Salt River Project

  1.74
    0.2402        0.0311
   0.6594      0.3095
 0.61

University of Arizona

  1.21
    0.1585        0.0011
   0.4090      0.5899
 0.98

Best RMSE



1.21
U of A

Best U-Stat



0.16
U of A

Most Unbiased


0.00
U of A

Best Variance



0.41
U of A

Best Score



0.98
U of A

Most times closest to actual
  3 out of 12
U of A

Expected Performance
 .7 out of 12

Average number of forecasters
17.1 



California





RMSE
    U-Stat        U-bias      U-var        U-cov   
Score


L.A. County Economic
  1.16
    0.2691       0.0020
   0.2627      0.7353  
 0.71

Development Corp


UCLA



  0.93
    0.2067       0.0223
   0.2967      0.6810
 0.86

Best RMSE



0.93
UCLA 

Best U-Stat



0.21
UCLA 

Most Unbiased


0.00
L.A. County 

Best Variance



0.26
L.A. County

Best Score



0.86
UCLA 

Most times closest to actual
  3 out of 12
UCLA 

Expected Performance
1.6 out of 12

Average number of forecasters
7.7

Colorado





RMSE
    U-Stat        U-bias      U-var        U-cov   
Score
Colorado Leg. Council
  1.75
    0.3158        0.0973
   0.6673      0.2354
 0.85

Office of State Planning
  1.89
    0.3458        0.1145
   0.5594      0.3261    -0.33

and Budgeting

Best RMSE



1.75
Colorado Legislative Council


Best U-Stat



0.32
Colorado Legislative Council


Most Unbiased


0.10
Colorado Legislative Council


Best Variance



0.56
Office of State Planning and Budgeting


Best Score



0.85
Colorado Legislative Council


Most times closest to actual
  3 out of 14
Colorado Legislative Council


Expected Performance 
1.8 out of 14

Average number of forecasters
  7.6

Idaho





 RMSE
    U-Stat        U-bias      U-var        U-cov   
Score
Idaho Division of Fin. Mgmt.
   1.35
     0.24
0.11
     0.62          0.27
 0.97

Idaho State Univ.

   1.65
     0.28
0.01
     0.59          0.40       -0.63

Best RMSE



1.35
Idaho Division of Financial Mgmt.



Best U-Stat



0.24
Idaho Division of Financial Mgmt.



Most Unbiased


0.01
Idaho State Univ.



Best Variance



0.59
Idaho State Univ.



Best Score



0.97
Idaho Division of Financial Mgmt.



Most times closest to actual
  4 out of 10
Idaho Division of Financial Mgmt.

Expected Performance
1.8 out of 10


Average number of forecasters
 5.4

Nevada





RMSE
    U-Stat        U-bias      U-var        U-cov   
Score
Legis. Council Bureau
  2.94
    0.2940        0.1160
   0.3201      0.5639
 0.73

Southwest Gas


  2.84
    0.2673        0.0218
   0.2265      0.7517
-0.11

Univ. of Nevada-Las Vegas     2.63
    0.2636        0.1836
   0.2574      0.5589
 0.63
Best RMSE



2.63
Univ. of Nevada at Las Vegas 

Best U-Stat



0.26
Univ. of Nevada at Las Vegas


Most Unbiased


0.02 
Southwest Gases


Best Variance



0.23
Legis. Council Bureau


Best Score



0.73
Legis. Council Bureau


Most times closest to actual
  2 out of 16
Legis. Council Bureau& U of N-Las Vegas 

Expected Performance
2 out of 16

Average number of forecasters
7.9

New Mexico





RMSE
    U-Stat        U-bias      U-var        U-cov   
Score
NMSU - CEMAF

  1.03
    0.2085        0.0002
   0.3817       0.6181
 0.72

University of New Mexico
  0.88
    0.1835        0.0916
   0.2306       0.6778
-0.79

Best RMSE



0.88
University of New Mexico - BBER

Best U-Stat



0.18
University of New Mexico - BBER

Most Unbiased


0.00
NMSU - CEMAF

Best Variance



0.23
University of New Mexico - BBER

Best Score



0.72
NMSU - CEMAF

Most times closest to actual
  3 out of 14
NMSU – CEMAF

Expected Performance
  3 out of 14

Average number of forecasters
  4.5

Oregon





RMSE
    U-Stat        U-bias      U-var        U-cov   
Score

Oregon Executive Dept.
 1.34
    0.2867       0.0040
   0.6203      0.3756
 0.78

US Bancorp


 1.26
    0.2654       0.0234
   0.8028      0.1738
 0.44

Best RMSE



1.26
US Bancorp

Best U-Stat



0.27
US Bancorp

Most Unbiased


0.00
Oregon Executive Department

Best Variance



0.62
Oregon Executive Department

Best Score



0.78
Oregon Executive Department

Most times closest to actual
  4 out of 14
Oregon Executive Department

Expected performance           2.5 out of 14

Average number of forecasters
  5.5

Texas





RMSE
    U-Stat        U-bias      U-var        U-cov   
Score

Econoclast


  1.62
    0.3487       0.0119
   0.8749      0.1132
-0.70

Dallas Fed


  0.99
    0.2045       0.0153
   0.7087      0.2761
 0.99

Ed McClelland

  1.63
    0.3455       0.0057
   0.7059      0.2884
-0.70

Perryman group

  1.46
    0.2975       0.0023
   0.7907      0.2070
 0.65

TX State Comptroller

  1.43
    0.3106       0.0331
   0.6391      0.3278
 0.86

Best RMSE



0.99
Dallas Fed

Best U-Stat



0.20
Dallas Fed

Most Unbiased


0.00
Perryman group

Best Variance



0.64
TX State Comptroller of Public Accounts

Best Score



0.99
Dallas Fed

Most times closest to actual
  7 out of 13
Dallas Fed

Expected performance           1.7 out of 13

Average number of forecasters
 7.7

Utah





RMSE
    U-Stat        U-bias      U-var        U-cov   
Score

Utah State Tax Commission
  1.49
    0.2694       0.4187
   0.2632       0.3181
-0.65

Thredgold Econ. Assoc.
  1.44
    0.2619       0.3979
   0.4451       0.1570
 0.98

Best RMSE



1.44
Thredgold Economic Associates



Best U-Stat



0.26
Thredgold Economic Associates



Most Unbiased


0.40
Thredgold Economic Associates



Best Variance



0.26
Utah State Tax Commission



Best Score



0.98
Thredgold Economic Associates



Most times closest to actual
   4 out of 7
Thredgold Economic Associates



Expected performance
   2 out of 7

Average number of forecasters            6.8

Washington





RMSE
    U-Stat        U-bias      U-var        U-cov   
Score

Dick Conway & Assoc.
  1.08
    0.2551        0.0136
   0.1622       0.8242
 0.98

Doug Pedersen & Assoc.
  1.02
    0.2325        0.0052
   0.2223       0.7724
 0.74

Office of Forecast Council
  1.05
    0.2524        0.0363
   0.2439       0.7199   -0.89

Best RMSE



1.02
Doug Pedersen & Associates

Best U-Stat



0.23
Doug Pedersen & Associates

Most Unbiased


0.01
Doug Pedersen & Associates

Best Variance



0.16
Dick Conway & Associates

Best Score



0.98
Dick Conway & Associates

Most times closest to actual
  5 out of 11
Dick Conway & Associates

Expected performance           2.2 out of 11

Average number of forecasters
     5

Across States

Best RMSE 


0.87578944
University of New Mexico - BBER

Best U-Stat 


0.158457783
University of Arizona

Most Unbiased 

0.000212894
NMSU - CEMAF

Best Variance 


0.162219906
Dick Conway & Associates (Washington)

Best Score 


0.999465631
Dallas Fed

Table 2
                          Conditional Least Squares Estimation

                             Standard                 Approx

Parameter      Estimate         Error    t Value    Pr > |t|     Lag    Variable    Shift

MU            0.0011558     0.0002351       4.92      <.0001       0    lntxnag         0

MA1,1           0.85236       0.10149       8.40      <.0001       1    lntxnag         0

AR1,1           0.92130       0.07406      12.44      <.0001       1    lntxnag         0

NUM1            0.06117     0.0081604       7.50      <.0001       0    lnleadi         3

DEN1,1          0.87980       0.01880      46.79      <.0001       1    lnleadi         3

Constant Estimate      0.000091

Variance Estimate       4.29E-6

Std Error Estimate     0.002071

AIC                    -2927.59

SBC                    -2908.94

Number of Residuals         308

* AIC and SBC do not include log determinant

Autocorrelation Check of Residuals

 To        Chi-             Pr >

Lag      Square     DF     ChiSq    --------------------Autocorrelations--------------------

  6       12.99      4    0.0113    -0.098    -0.035     0.131     0.041    -0.059     0.090

 12       13.26     10    0.2098    -0.007     0.009     0.012     0.014    -0.007     0.018

 18       23.05     16    0.1123    -0.006    -0.019    -0.029    -0.018     0.112    -0.125

                 Crosscorrelation Check of Residuals with Input lnleadi

 To        Chi-             Pr >

Lag      Square     DF     ChiSq    --------------------Crosscorrelations-------------------

  5        2.92      5    0.7122    -0.016     0.002    -0.011    -0.057     0.018     0.075

 11       16.42     11    0.1261     0.049     0.144    -0.073     0.115    -0.048     0.022

 17       20.36     17    0.2561    -0.011    -0.076     0.077    -0.019     0.028     0.006

 23       23.56     23    0.4286     0.009     0.001     0.077    -0.065     0.015     0.006

� EMBED Equation.3  ���
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