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Abstract 

The study proposes a methodology for estimating the responsiveness of conservation tillage 

use to changes in fuel prices. An integral component of the methodology is the explicit 

acknowledgment that there is an uncertainty in the estimates because of the uncertainty 

associated with the use of econometrically estimated models. The results of applying the 

method to a major crop production area, the Upper Mississippi River Basin in the central 

United States, are reported for two major crops in the region, corn and soybeans. The 

implications to carbon sequestration in agricultural soils are also considered. The approach 

proposed should be readily transferable to other geographic areas and conservation practices. 
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Responsiveness of conservation tillage use to changes in energy prices: 
empirical assessment for the Upper Mississippi River Basin 

 
 

1. Introduction 

In recent years, there has been a widespread discussion about the policies that might be 

adopted to foster the use of farming practices that sequester carbon in agricultural soils (e.g., 

Antle and McCarl, 2002). Among these practices, conservation tillage (CT) is regarded as one 

of the most effective in increasing carbon content in many agricultural soils.  Since scores of 

farmers use CT without policy intervention, a key question associated with any policy designed 

to increase the adoption of CT to induce higher carbon sequestration is the amount of carbon 

that can be directly credited to the program versus that which would have occurred anyway 

(Antle and McCarl (2002), Thomassin (2003), Murray (2004)).  To answer the question, the 

baseline which represents “business as usual” (BAU) conditions is needed to rightfully account 

for the additional carbon generated due to a policy, i.e. the carbon that would be sequestered in 

addition to the amount that would have been sequestered in the absence of the carbon 

purchasing project. 

This study proposes a methodology for estimating a BAU baseline for the adoption of 

CT in corn and soybean production and the associated carbon sequestered and empirically 

implements the procedures in the Upper Mississippi River Basin (UMRB) region in the central 

U.S.  An integral component of the methodology developed is the explicit acknowledgment 

that there is an uncertainty in the baseline originating from the use of an econometrically 

estimated model. As a consequence, rather than representing the baseline as a series of point 

estimates associated with baseline tillage and carbon sequestered, our method allows 
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presenting the results in the context of probabilities of adoption and distributions of carbon 

sequestered.  

The paper is organized as follows. Section 2 describes the study region and data. In 

sections 3, we present the methodology for estimation of the baseline and apply it for UMRB. 

In section 4, we summarize the main findings and discuss limitations. 

2. Study region and data 

The UMRB is a large watershed at the head of the Mississippi River covering parts of 

the central U.S. Cropland and pasture are the dominant land uses in the UMRB, which account 

for about two thirds of the total area.  The watershed is comprised of 14 sub-watersheds that 

coincide with the boundaries of U.S. Geological Survey Hydrologic Units, commonly referred 

to as 4-digit Hydrologic Unit Codes (HUCs) (Figure 1).  

The primary data used in the study is the 1997 Natural Resource Inventory (NRI) 

(Nusser and Goebel, 1997).  The NRI is a statistically based database that was updated every 

five years from 1982 to 1997 for the entire non-federal land in the U.S. with information such 

as soil type, landscape features, cropping histories, and conservation practices. Each NRI 

“point” represents an area, generally ranging from a few hundred to several thousand acres in 

size, which is assumed to consist of homogeneous land use, soil, and other characteristics. The 

1997 NRI contains information for 1982, 1987, 1992, and 1997. However, CT use information 

is provided only in 1992 and hence the 1992 data are initially used to fit CT adoption models.  

After the CT adoption models are estimated with 1992 NRI data, they are calibrated for use 

with 1997 NRI data. 
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The study uses over 28,000 NRI points that are reported in corn or soybean production 

in 1997 (Table 1). Overall, our sample covers 90% of the total UMRB cropland under corn and 

soybeans. 

3. Estimation of the CT and carbon sequestration baseline. 

We follow five steps in developing the baselines: 1) econometrically estimate a CT 

adoption model for each sub-region of the UMRB, 2) calibrate the estimated model to the most 

recent data on CT adoption rates available, 3) combine the adoption model estimates with field 

specific carbon sequestration estimates to generate a baseline assuming that all explanatory 

variables in the model remain fixed at 1997 levels, 4) generate confidence intervals around 

these point estimates , and 5) relax the BAU assumption and generate baseline estimates under 

a variety of assumptions about changes in explanatory variables. The remainder of the section 

details the five steps outlined. 

3.1. Econometric estimation of a CT adoption model draws heavily on the empirical 

estimates and methods developed in Kurkalova et al. (2005) and Sengupta et al. (2005).  The 

basic model from Kurkalova et al. (2005) assumes that a farmer adopts conservation tillage 

when 1 0 Pπ π> + , where 1π  represents the net returns to farming using CT, 0π is the net returns 

to the conventional practice, and P is a risk premium needed for adoption. Assuming a binary 

choice, an additive logistically distributed error, ε , with standard deviation multiplier, σ, to 

represent omitted variables, a linear net returns function,βx , and a premium function P(z), the 

probability of adoption is 
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where x and z are vectors of explanatory variables including a range of soil and land 

characteristics and the bar on 0π denotes that this variable is known.  The coefficients of the net 

returns to the CT can be recovered from maximum likelihood estimates of the model. 

 In addition to the specification (1), Sengupta et al. (2005) also consider a specification 

that describes the probability of adopting conservation tillage as a function of the difference in 

the net returns between conventional and conservation tillage. In this case, instead of viewing 

the returns to conventional tillage as being known and that to CT being unknown, it is assumed 

that the average returns to both tillage methods are known. Then the model can be written as 

[ ]Pr Pr[ ]
( )Pr[ ],

D

D

adopt P
P

π σε
πε

σ σ σ

= ≥ + +

= ≤ − −

βx
βx z     (2) 

where Dπ denotes the difference in net returns to conservation and conventional tillage. In this 

specification, βx  represents the point-specific deviation in the increment in returns to CT over 

conventional till from the average, rather than the total return to CT. We refer to models (1) 

and (2) as level and difference models, respectively. 

In estimation, the data from the NRI are augmented with information on net returns, 

climatic data and farm characteristics as detailed in Kurkalova et al. (2005). The conventional 

tillage net returns and, where needed, the CT net returns, are constructed for each NRI point 

through farm budget analysis, specifically by combining county-specific average yield data, 

state-specific price data, and region-, tillage-, and rotation-specific cost data. Finally, each NRI 

point is assigned to a weather station based on the county of location, and 1975-94 weather 

station data are used to construct growing season average temperature and precipitation data. 

Summary statistics for the data used in CT model estimation and baseline simulation are 

reported in Table 2. 
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Separate tillage models are fit to each of the 4-digit HUCs constituting UMRB to 

represent the distinct features of each area’s climate, landforms, and cropping practices. The 

information on the procedures followed and the resulting properties of the estimators are 

available in Sengupta et al (2005). 

3.2. Calibration of the estimated models to the most recent data on tillage adoption 

rates available for the region. The latest available 1997 NRI dataset does not have any 

information on the use of CT beyond 1992.  Thus, we use the 1997 region-average CT use 

estimates derived by Kurkalova and Carriquiry (2005) from Agricultural Resource 

Management Survey (ARMS) data (http://www.ers.usda.gov/data/arms/ ) and county-level 

estimates reported by Conservation Technology Information Center (http://www.ctic.purdue. 

edu/CTIC/CTIC.html ) to calibrate the 1992-estimated CT adoption model. Specifically, the 

models (1) or (2) used with 1997 NRI are assumed to have the additional additive shift 

parameters. The values of the parameters are chosen so that the region-average model-

predicted rate of adoption of CT is equal to that derived from the CTIC and ARMS data.   

3.3. Business as usual baseline is estimated as follows. We first assess the carbon 

sequestration potential of each cropland NRI point using the Erosion Productivity Impact 

Calculator (EPIC) model (Williams, 1990) and then combine the carbon estimates with the 

estimates of the probabilities of CT adoption from the calibrated model. The NRI point level 

carbon sequestration estimates are computed as the annual average difference of the total soil 

carbon pool under two scenarios: one assuming 30 years of CT and the other assuming 30 

years of CT. 

Our per acre estimates of carbon sequestration potential are at the lower end of those 

reported in the literature.  While our maxima are in agreement with West and Post (2002), the 
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means in our sample are lower, which is consistent with the way we model both conventional 

and conservation tillage. Instead of comparing extremes, i.e. conventional till and no-till as 

West and Post (2002) do, we deal with the whole spectrum of tillage systems. On the CT side, 

we consider ridge till and mulch till in addition to no-till. Similarly, on the conventional tillage 

side, we model conventional tillage both with and without moldboard plowing, yet this 

distinction is known to significantly impact soil carbon content (Almaras et al., 2000). Another 

reason for lower and sometimes negative estimates of carbon sequestration is that not all soils 

are expected to sequester carbon when conventional tillage is replaced with CT (Lal, 2001). 

Particularly, a reduction in tillage intensity on the soils with high clay content and colder 

and/or wetter climates may lead to crop failure and thus to a reduction in soil carbon content. 

The baseline watershed-level CT adoption rate is estimated as 

{ } { }
i i i

i watershed i watershed

p a a
∈ ∈
∑ ∑ , where ip is the probability of adopting CT at the i-th NRI point, 

and ia is the number of acres represented by the point. The baseline soil carbon sequestration in 

each of the watersheds is estimated as 

{ }
i i i

i watershed

p c a
∈
∑ .         (3) 

Here ic is the EPIC-estimated annual change in soil carbon content due to the change in 

farming practices from conventional to conservation tillage. In estimating the BAU baseline, 

we assume that all explanatory variables in the models remain unchanged in the future. This 

assumption is relaxed later as described in section 3.5. 

3.4. Confidence intervals and distributions around baseline point estimates are 

generated using a bootstrap-like procedure of Krinsky and Robb (1986). The approach builds 

on the observation that maximum likelihood estimators of the discrete choice (logit) model are 
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asymptotically unbiased and distributed as multivariate Normal random variables. Therefore, 

random draws from the multivariate Normal distribution with the mean equal to the estimates 

of the model parameters and variance equal to the estimated variance-covariance matrix of the 

parameters can be treated as the draws from the multivariate distribution of the parameters of 

the model. With a large number of draws, Monte-Carlo techniques can be used to describe the 

distributions of any smooth functions of the parameter estimators.  

To implement the procedure, we first randomly generate the parameters of the CT 

models. Next, we calibrate the CT models to the region-average CT adoption rates and use 

calibrated models to predict the probabilities ip of CT adoption at each NRI point in the 

analysis. Then we use formulas (3) to estimate the baseline in every watershed in the analysis. 

We repeat this process for 10,000 draws and then summarize the empirical distributions of the 

quantities of interest using Monte-Carlo techniques. 

The results for the BAU scenario are summarized in Table 3 and in Figure 2. 

Interestingly, we found tight confidence bounds on the baselines both for each watershed and 

for the UMRB area as a whole, both for CT adoption rates and for carbon sequestration. As 

expected, the baseline point estimates differ significantly across watersheds reflecting the 

differences in soils, landscape, and other factors affecting crop production and conservation 

tillage adoption, as well as in the area under crops (Figure 2). 

3.5. Baseline estimates for non-BAU scenarios are obtained by first estimating the 

trends in several explanatory variables of the CT adoption model and then using the estimates 

to estimate the trend in CT adoption.  Specifically, we use Census of Agriculture 

(http://www.nass.usda.gov/census/) county-level data to estimate the 1992 to 1997 change in 

four explanatory variables of the CT adoption model: proportion of county cropland operated 
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by tenants, proportion of county operators working off farm, county-average farm operator age, 

and proportion of county operators that are male, separately for each county in the analysis. 

The estimates of the changes are then used to predict the values of the four explanatory 

variables in 2007 under the assumption that the identified linear trend will continue. The 

baselines computed when the four 1997 explanatory variables are replaced with the predicted 

2007 values are summarized in Figure 3. We find that if the identified linear trend in the farmer 

characteristics continues, we may expect the UMRB baseline to increase, though the difference 

in the 1997 and 2007 baselines varies significantly by watershed (Figure not reported). 

To investigate the effect of changes in fuel prices, which contribute to other 

explanatory variables, the net returns to conventional tillage and those to CT, we use our 

estimates of the fuel costs. An increase (decrease) in fuel prices by 50% is modeled as a 

decrease (increase) in the net returns to conventional tillage by ( )0 10.5 f f⋅ − , where 0f is the 

1997 fuel cost under conventional tillage and 1f is that under CT.  Somewhat surprisingly, we 

do not find a significant effect of the fuel price changes on the baselines as reflected in the 

large overlap of the corresponding histograms in Figure 4. As with other baselines, the results 

vary significantly by watershed (Figure not reported). 

4.  Caveats and Summary 
 
 This paper proposes a methodology for developing a carbon sequestration baseline 

resulting from the adoption of CT.  The results of applying the method to a major crop 

production area in the central United States are reported for two major crops in the region, corn 

and soybeans. The approach to estimation of carbon sequestration baseline developed in this 

study should be readily transferable to other geographic areas and sequestration activities, both 

in the agricultural sector and forestry. 
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 In brief, the methodology begins with the econometric estimation of CT adoption 

model.  Second, due to limitations in the data, we calibrate the model parameter estimates to 

more recent data on tillage adoption rates available for the region, and combine the model 

estimates with field specific carbon sequestration estimates obtained from the EPIC model to 

generate a BAU baseline.  Given the sampling uncertainty resulting from an econometric 

procedure, we estimate confidence intervals for the BAU baseline estimates.  Finally, we 

recognize that the BAU baseline may not be the best estimator of the “without policy” baseline 

as changes in various exogenous variables may drive changes in the underlying adoption rates 

of CT, even in the absence of carbon promoting policies. Thus, we derive baselines estimates 

under changes in farmer characteristics and fuel prices. 

 A number of interesting and robust results appear. First, we note that there are wide 

variations in the BAU baselines across the fourteen sub-watersheds in the study region. Given 

the wide heterogeneity of soils, weather, crop rotations, and adoption rates of conservation 

tillage, this is probably not surprising. However, it does point out the importance of using 

models that capture the full spatial heterogeneity of soil, weather, and other characteristics in 

establishing baseline estimates. A second, and encouraging, finding is that the confidence 

intervals derived for the baseline are uniformly tight. This suggests that even if point estimates 

with no confidence bounds were considered in establishing baselines, there would be relatively 

little chance of greatly over- or understating the total carbon sequestered. This, of course, may 

not hold true in other applications. 

 A third finding of note is that the BAU can change considerably when explicit 

recognition is taken of the fact that average farmer characteristics will be changing in the 

future. In our particular case, recognition of these changes using Census of Agriculture data 
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results in an increasing carbon sequestration trend under the baseline.  The changes are large 

and clearly indicate that if account is not taken of these non-policy changes, the baseline would 

be incorrectly specified.  The final non-policy variable we consider in estimating baseline 

carbon adoption rates is the effect of fuel prices. Unlike farmer characteristics, we do not have 

a clear prediction as the magnitude or even direction of the change of fuel prices. While 

initially somewhat surprising, this result is consistent with the fact that fuel prices, while an 

important part of the cost of farming, are only one of many costs. 

 Several caveats are worth noting. First of all, as for any analyses of carbon 

sequestration in agricultural soils, our results are contingent upon the state of the art in physical 

simulation of carbon processes. As the EPIC model improves and is calibrated to the newest 

field trial data, the empirical results obtained may change. Also, the absence of reliable data on 

net returns and costs of production precluded us from expanding our analysis to the crops other 

than corn and soybeans. There may be significant carbon sequestration potential available from 

those crops. Work is currently underway to incorporate sorghum and wheat areas in future 

analyses of carbon sequestration potential in the UMRB. 
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Table 1. UMRB cropland analyzed: selected statistics 
    

Watershed 
Corn area, 
1000 acres 

Soybean area, 
1000 acres NRI points 

7010 704 538 555 
7020 2,645 2,769 2,501 
7030 269 41 198 
7040 1,144 524 1,263 
7050 505 0 217 
7060 1,663 513 1,429 
7070 654 0 331 
7080 5,605 4,377 6,436 
7090 2,536 759 2,409 
7100 2,920 2,861 3,351 
7110 888 1,290 1,326 
7120 1,948 1,355 2,339 
7130 4,231 3,772 4,511 
7140 1,398 1,480 1,877 

UMRB 27,110 20,277 28,743 
 

Table 2. Summary statistics for the data used in conservation tillage adoption model  
     

Variable Mean 
Standard 
deviation

Minimum 
of 

watershed 
means 

Maximum 
of 

watershed 
means 

Net returns to conventional tillage, $ per acre 110 29 56 154 
Net returns to conservation tillage, $ per acre 119 28 70 162 
Land slope, percent 28% 32% 15% 60% 
Soil permeability, inches per hour 1.3 1.7 0.9 3.0 
Soil available water holding capacity, percent 21.1% 3.2% 19.0% 22.0% 
Erodibility index 6 10 3 14 
Organic matter 4.3 5.4 2.5 6.4 
Soil acidity 6.52 0.48 6.01 7.06 
Mean of daily maximum temperature over growing 
season, Fahrenheit 78.6 2.7 74.8 82.4 
Mean of daily minimum temperature over growing 
season, Fahrenheit 55.5 2.8 50.8 59.3 
Mean of daily precipitation over growing season, 
inches 0.123 0.015 0.113 0.135 
Variance of daily precipitation over growing season, 
inches squared 0.097 0.020 0.082 0.110 
Proportion of county cropland operated by tenants 0.162 0.063 0.039 0.209 
Proportion of county operators working off-farm 0.526 0.051 0.469 0.604 
County average farm operator age, years 52.5 1.7 50.1 54.8 
Proportion of county operators that are male 0.970 0.012 0.949 0.981 
County rural code (0 to 9, 9 is for completely rural) 5.4 2.4 3.3 7.1 
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Table 3. Baseline conservation tillage adoption in the UMRB    
         

Watershed Minimum 
5th 

percentile 
50th 

percentile
95th 

percentile Maximum
Standard 
Deviation 

7010 0.086 0.234 0.312 0.369 0.467 0.043 
7020 0.151 0.201 0.247 0.295 0.328 0.028 
7030 0.143 0.200 0.264 0.340 0.403 0.043 
7040 0.181 0.217 0.265 0.319 0.440 0.031 
7050 0.317 0.371 0.432 0.495 0.553 0.038 
7060 0.226 0.385 0.461 0.556 0.834 0.059 
7070 0.178 0.314 0.400 0.523 0.856 0.069 
7080 0.487 0.527 0.578 0.630 0.674 0.031 
7090 0.191 0.327 0.391 0.468 0.860 0.056 
7100 0.368 0.453 0.513 0.574 0.633 0.037 
7110 0.292 0.353 0.422 0.493 0.550 0.043 
7120 0.393 0.434 0.473 0.512 0.548 0.024 
7130 0.471 0.502 0.537 0.573 0.609 0.022 
7140 0.380 0.422 0.463 0.505 0.554 0.025 

UMRB 0.424 0.445 0.463 0.481 0.508 0.011 
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Figure 1. 
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Figure 2. BAU baseline, by watershed

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

7010 7020 7030 7040 7050 7060 7070 7080 7090 7100 7110 7120 7130 7140

Watershed

1,
00

0 
M

T 
ca

rb
on

 p
er

 y
ea

r

5th percentile
50th percentile
95th percentile

 



18 

 

Figure 3. Effect of changes in farmer characteristics on UMRB baseline: 1997 versus 2007 
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Figure 4. Effect of fuel prices on UMRB baseline 

0

20

40

60

80

100

120

140

92
3.3

2

91
5

93
5

95
5

97
5

99
5

10
15

10
35

10
55

10
75

10
95

11
15

11
35

11
55

11
75

11
95

12
15

12
35

12
55

12
75

12
95

1,000 MT carbon per year

Fr
eq

ue
nc

ie
s 

ou
t o

f 1
,0

00
 d

ra
w

s

50% decline in fuel prices

BAU

50% increase in fuel
prices

 


