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Abstract: The paper focusses on the negotiations between the developed countries cur-

rently implementing emission permit markets versus the developing countries who want to

join this market. We model the negotiations according to the ’Alternating Offers Bargaining’

model. The objective is to obtain an efficient and fair allocation of tradeable emission permits

between these two players.

At each period, one player proposes a feasible allocation of the goods for both players.

Then the other player either ends the negotiations by accepting the proposal, or prolongs

them by rejecting it. The proposal is accepted if this player considers it fair. If rejected, there

is a certain probability that the next round is played and the other player making a proposal.

The equilibrium concept in this model is that of a subgame perfect equilibrium.
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1 Introduction

We model negotiations for the reduction of greenhouse gasses as negotiations for the division

of tradable emission permits. We consider a stylized infinite sequence of one-period economies

with production, here modelled by the GTAP-E model, that are stationary over time, where

the emission permits enter as an endownment of the regional households. In contrast to

standard general equilibrium or CGE models, the total level of permits is endogenously de-

termined in the model. Since any agreement on the allocation of emission permits and the

global emission levels affects the allocation of goods in the world economy, this means that

the negotiations are over efficient allocations of goods that represent stationary contracts in

our setup. Our focus is on the negotiations between the developed countries currently imple-

menting emission permit markets versus the rapidly developing countries such as China and

India.

We model these negotiations between two monolitic agents according to the alternating

offers bargaining model of Rubinstein (1982) over streams of consumption and production de-

cisions, which is a game in extensive form with perfect information. One agent, the developed

world, is the aggregation of the developed regions that participate in an existing emission

permit market. The other agent, the developing world, is an aggregation of the developing

regions, mainly China and India, who want to join the emission permit market. This game is

played between the two players over an infinite and indexed set of time periods. The objective

is to obtain an efficient and fair allocation of tradeable emission permits in this two players

economy. At each odd numbered period of time, the developed world proposes a feasible

allocation of the goods in the economy for both players. Then the developing world either

ends the negotiations by accepting the proposal, or prolongs the negotiations by rejecting it.

The proposal is accepted if it is considered a fair allocation − with fair as defined in Mariotti

(1999) − by the developing world. If rejected, economic life continues and the agents take

inefficient decisions due to the existence of externalities in the current round before we enter

the negotiations at the next (even) round, which is played with a certain probability, hence

incorporating the possibility of a break-down of negotiations. At each even numbered period

of time, the developing world proposes a feasible allocation of the goods in the economy for

both players, which the developed world then either accepts − if considered fair − thereby

ending the negotiations, or rejects, and thereby accepting an inefficient allocation for at least

one more round. In this way, the negotiations are prolonged into the next (uneven) round

with a certain probability. The equilibrium concept in this model is that of a subgame perfect

equilibrium. As stated in Rubinstein (1982), there exists a unique pair of stationary subgame

perfect equilibrium proposals in this bargaining model that requires a solution to a fixed point
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problem, which is computationally a hard problem.

Thus far, this fixed point problem was circumvented by either resorting to the Nash

bargaining solution or to assume a finite time horizon, often limited to avoid the heavy

computational burden. Recently, Houba (2005) proves that the pair of stationary subgame

perfect equilibrium proposals in the alternating offers bargaining model also corresponds to

the maximum of the asymmetric Nash product in a single convex program. Convergence as

time between rounds vanishes is immediate by the Maximum Theorem and the axiomatization

of equilibrium proposals for all discount factors becomes trivial.

More interestingly, the single program also specifies financial transfers between players and

allows for an implementation of production and consumption decisions through decentralized

market prices, an aspect that was thus far neglected in bargaining theory. If the sufficient

conditions for uniqueness in Houba (2005) are satisfied, the negotiation process ends in a

unique subgame perfect equilibrium allocation of emission permit endowments that is both

efficient and fair. The model can be easily extended to allow for lobbying that affects the

equilibrium proposals.

The main question with applying tradable emission permits to reduce global greenhouse gas

emissions is how much permits to allocate to each member. In practice, most allocations

occur to some grandfathering rule. Such an allocation follows a certain allocation rule. For

example, one can provide a country a number of permits according to its historical output

or based on past emissions. Providing a country with emission permits reduces the cost of

adjustment but will not do enough to reduce emissions. The latter still causes too much costs

on the economy due to climate related damages. Under grandfathering, permits are given

away for free which results in a loss of surplus to the one distributing the permits, often the

government.

As an alternative, one often proposes to auction a certain amount of permits to the

polluters. In this way, these polluters are expected to express their real values for the permits

and this value is transferred to the government. This positive budget effect could lead to

reductions in taxes or to a possible financing of cleaning activities. Hence, auctioning could

take away some of the dead weight loss associated with grandfathering rules. This however is

no rule.

Under auctioning, the permit allocation is the outcome of a bidding process, but in order

to avoid dead weight losses it requires that the total amount of permits auctioned is the

Pareto efficient total amount. If the auctioned amount of permits falls short, the price of

permits is socially too high, if permits are provided in abundance, then the permits will be

priced too low to obtain the Pareto efficient emission level. So, the real issue in the auctioning
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of permits is to establish the Pareto efficient total amount of permits. This amount should

be equal to the Pareto efficient level of emissions, which is endogenous and depends upon

the countries’ welfare weights. Contrary to auctioning the permits, any bargaining approach

implicitly endogenizes the countries’ welfare weights as the outcome of some kind of strategic

bargaining process.

When choosing for the bargaining option as an alternative to auctioning or grandfathering

the permits, the welfare weights of the players in a social welfare function are determined

endogenously as the outcome of the bargaining process. These welfare weights provide an

endogenous allocation of permisable emissions which can be subsequently translated into

allocated permits. Hence, ideally, no permit trade will take place under the clearing permit

price because the efficient allocation of permits has been determined already as the outcome

of the bargaining process. Furthermore, there will be no deadweight losses under this rule.

In a bargaining model, the fall-back position or disagreement point plays an important

role. Since this disagreement point reflects the currentÊ(meaning historical) Pareto inefficient

use of energy, this point implicitly reflects an inefficient grandfathering scheme. However, the

negotiated equilibrium agreement − like trade − improves upon the disagreement point and

the division of the associated net gains will in general not reflect a grandfathering solution.

2 The Alternating Offers Bargaining Model

Two players bargain over the allocation of emission permits. The players’ preference relations

are defined on the set of ordered pairs of the type (x, t) where x = (x1, x2) with x1 refering

to the amount of permits allocated to the developed world (player 1), and x2 refering to

the amount of permits allocated to the developing world (player 2). We assume that the

preferences over (x, t) satisfy the following assumptions:

A-1 emission permits are desirable,

A-2 ’time’ is valuable,

A-3 continuity,

A-4 stationarity (the preference of (x, t) over (y, t+ 1) is independent of t),

A-5 the larger the portion the more ’compensation’ a player needs for a delay of one period

to be immaterial to him.

Assumption A-2 implies the existence of a discount factor for each player. Let δi denote player

i’s one period discount factor, which is assumed to be fixed over time.

4



Nash (1953) defines a bargaining problem as consisting of a set S of alternatives described

by the utilities that the players can obtain when choosing these alternatives, and a point d

of disagreement. The latter point describes the utility of both players when the bargaining

process does not end in agreement. A bargaining solution can then roughly be defined as

the solution to one of the many possible bargaining problems φ ∈ Π defined on a compact

and convex set S. The Nash Bargaining Solution ν(S) specifies this particular solution as

the most efficient one on the subset of S consisting of nonnegative elements, hence the Nash

Bargaining Solution (NBS), ν : Γ→ IR2, is defined as follows:

ν(S) = arg max
s∈S∩IR2

+

s1s2.

Nash (1953) proved that the NBS ν is the only solution on Γ that satisfies the following

well-known properties:

Weak Pareto Optimality: s > φ(S)⇒ s 6∈ S.

Covariance with Positive Scale Transformations: Let τ : IR2 → IR2 be a positive, lin-

ear, component by component transformation given by τ(x) = (λ1x1, λ2x2), with λ1, λ2 > 0,

for all x ∈ IR2, and for any X ⊂ IR2 let τ(X) = {y ∈ IR2 | y = τ(x) for some x ∈ X}. Then,

φ(τ(S)) = τ(φ(S)).

Symmetry: Suppose that the problem is symmetric (that is, s ∈ S ⇒ (s2, s1) ∈ S). Then

φ1(S) = φ2(S).

Independence of Irrelevant Alternatives: S ⊆ T and φ(T ) ∈ S ⇒ φ(T ) = φ(S).

There exists a significant body of research concerning bargaining within the field of economics

and game theory. In this paper, we use one of the models proposed in this literature, the Al-

ternating Offers model. The original alternating offers model has been defined in Rubinstein

(1982). It concerns a stylized example of a procedure to divide a dollar among two players by

letting the players alternatingly propose such a division. Rubinstein (1982) formulated this

problem as a game in extensive form assuming that both players have perfect information.

Instead of representing the game by a matrix (normal form), an extensive form represents the

game in a tree form where each node denotes a state in the game. Play begins at a unique ini-

tial node, and flows through the tree along a path determined by the players until a terminal

node is reached, where play ends and payoffs are assigned to all players. Each non-terminal

node belongs to a player; that player chooses among the possible moves at that node, each
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possible move is an edge leading from that node to another node. Under perfect information,

at any stage of the game, every player knows exactly what has taken place earlier in the game.

Negotiations for the reduction of greenhouse gases are modelled as negotiations between two

monolithic agents for the division of tradable emission permits. One agent, the developed

world, is the aggregation of the developed regions that participate in an existing emission

permit market. The other agent, the developing world, is the aggregation of the developing

regions, mainly China and India, who want to join the emission permit market. This game

is played between these two players over an infinite and indexed set of time periods. We

assume it is a game in extensive form with perfect information. The assumption of per-

fect information implies that each player has complete information about the preference of

the other. The bargaining costs of each player is therefore assumed known to the other. The

objective of the game is to obtain an efficient and fair allocation of tradable emission permits.

This paper applies the alternating offers model of Rubinstein (1982) to possible negotiations

for letting developing countries China and India enter an emission permit market with the

Annex B countries. We model the assignment of carbon emission targets as a negotiation

game for the division of tradable emission permits. The economic model consists of an infi-

nite repetition of the static GTAP-E model. In contrast to the standard computable general

equilibrium, the total level of permits and its distribution over the regional households are

endogenously determined by the negotiation game. Since any agreement on the allocation

of emission permits and the global emission levels affect the efficient allocation of goods in

the world economy, this means that the negotiations are over efficient allocations of goods

that represent stationary contracts in our setup. Our focus is on the negotiations between a

player that represents the developed countries currently implementing emission permit mar-

kets versus another player representing the rapidly developing countries such as China and

India.

The negotiations between Annex B, and China and India follow the alternating offers bar-

gaining model of Rubinstein (1982) extended to allow for an infinite stream of consumption

and production decisions in an economy that is modelled using the GTAP-E model introduced

in Burniaux and Truong (2002). One agent, Annex B, is the aggregation of the developed re-

gions that participate in an existing emission permit market. The other agent, the developing

world, is an aggregation of the developing regions, mainly China and India, who contemplate

joining the emission permit market. This game is played between these two self-interested

agents (or players) over an infinite and indexed set of time periods. The objective is to obtain

an efficient allocation of tradable emission permits over these agents in the economy.
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At each odd numbered period t of time, the developed world proposes a feasible allocation

(x∗, t) of emission permits in the economy for both players. Then the developing world either

ends the negotiations by accepting the proposal x∗, or prolongs the negotiations by rejecting

it. The proposal is accepted if x∗ is considered a fair allocation − with fair as defined in

Mariotti (1999) − by the developing world. If rejected, economic life continues and the agents

take inefficient decisions due to the existence of externalities in the current round before we

enter the negotiations at the next (even) round. In this equilibrium, there is an excess supply

of emission permits, requiring a permit price equal to zero. The regions do not take account of

their emissions causing the associated externalities to persist. The next round is played with

a certain probability πt+1, hence incorporating the possibility of a break-down of negotiations

with probability 1− πt+1.

At each even numbered period t of time, the developing world proposes a feasible allocation

(x∗, t) of the emission permits in the economy for both players, which the developed world

then either accepts x∗ − if considered fair − thereby ending the negotiations, or rejects,

and thereby accepting an inefficient allocation for at least one more round. In this way, the

negotiations are prolonged into the next (uneven) round t+ 1 with a certain probability πt+1.

The equilibrium concept in this game is that of a subgame perfect equilibrium. Subgame

perfectness is a refinement of the Nash equilibrium. A set of strategies is a Nash equilibrium,

if no player can do better by unilaterally changing his or her strategy. A strategy profile is

a subgame perfect equilibrium, if it represents a Nash equilibrium of every subgame of the

original game. More informally, this means that if (1) the players played any smaller game

that consisted of only one part of the larger game and (2) their behaviour represents a Nash

equilibrium of that smaller game, then their behaviour is a subgame perfect equilibrium of

the larger game. The concept of subgame perfectness is attributed to the work of the German

Nobel prize winner Reinhard Selten (see Selten (1965)).

Rubinstein (1982) proves that the alternating offers procedure has a unique subgame

perfect equilibrium and that this equilibrium is stationary. A stationary strategy is history-

and time-independent. Stationary equilibria represent the simplest forms of behaviour that

is consistent with rationality. Equilibrium proposals are Pareto efficient and there will be

agreement on the first proposals. Under stationarity, a player will make the same proposal

which is then accepted by the other player. The proposals of the players can differ. The

computation of such a stationary subgame perfect equilibrium can be formulated as a fixed

point problem.

Houba (2007) proves that the fixed point problem representing a subgame perfect equilib-

rium in the alternating offers model is equivalent to a certain convex optimization program

with the Nash product as its objective function. This equivalence extends to general equi-
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librium models with convex production technologies. Houba (2007) also proves that the

Pareto-efficient proposals resulting from such a bargaining process can be supported by Wal-

rasian prices.

Each player accepts a proposal that he thinks is fair. Here we interprete fairness of a bar-

gaining solution in the sense of Mariotti (1999). A bargaining problem can be described as a

set S ⊆ IR2. A bargaining solution to the collection Π of bargaining problems, is a function

φ : Π→ IR2 such that φ(S) ∈ S for all S ∈ Π, with S restricted to the set Γ of compact and

convex sets such that there exists an s ∈ S̄ such that s > 0, for each S̄ ∈ Γ.

Mariotti (1999) states that a possible interpretation of these axioms is as properties that

should be satisfied by the choices of a fair arbitrator. The included axiom on the independence

of irrelevant alternatives may be viewed as a relevant criterion on rationality or consistency

in choice, but it hardly has no ethical interpretation, ant therefore it can hardly be seen

as a requirement of fair arbitration. Mariotti (1999) therefore replaces the independence of

irrelevant alternatives axiom by a criterion of impartiality in distributive justice known as

Suppes-Sen Proofness, see Suppes (1966) and Sen (1970).

Suppes-Sen Proofness: (s2, s1) > φ(S) or s > φ(S)⇒ s 6∈ S.

The equilibrium concept in this model is that of a subgame perfect equilibrium. A perfect

equilibrium is one where not only the strategies chosen at the beginning of the game form

an equilibrium, but also the strategies planned in every subgame. As stated in Rubinstein

(1982), there exists a unique pair of stationary subgame perfect equilibrium proposals in this

bargaining model that requires a solution to a fixed point problem.

3 The Global Trade and Analysis Project: Energy (GTAP-E)

model.

The GTAP-E model is a multi-sector, multi-regional, computable general equilibrium model.

For information on computable general equilibrium models I refer to Shoven and Whalley

(1992) or, more recently, Ginsburgh and Keyzer (1997), which are a sort of standard works

on the area. The GTAP-E economic model is based on the GTAP5 database, for which we

refer to Dimaranan and McDougall (2002). The GTAP5 database is a product of the Global

Trade Analysis Project at Purdue University (see GTAP (2007)).

8



Regional aggregation: The GTAP5 database aggregates the world into 66 regions. We

take a further regional aggregation into 3 regions as depicted in Table 1. Let R denote the

set of all regions in the second column of Table 1, indexed with r. The developed regions are

given by the countries that signed the Annex B to the Kyoto Protocol. We denote this region

with AnnexB and number it with 1 in the set R. CHIND refers to China and India, as the fast

developing regions that will be the focus of this paper, and number it with 2 in the set R.
The remaining regions constitute the underdeveloped world, and we aggregate them into the

’Rest of the World’ (RoW) region.

Nr. r Region Description Comprising GTAP5 Regions:
1 AnnexB Annex B regions United States, Austria, Belgium, Denmark, Finland,

France, Germany, United Kingdom, Greece,
Ireland, Italy, Luxembourg, Netherlands,
Portugal, Spain, Sweden, Australia,
New Zealand, Japan, Canada, Switzerland,
Rest of EFTA, Hungary, Poland,
Rest of Central European Association,
Former Soviet Union

2 CHIND China and India China, India
3 RoW Rest of the World Hong Kong, Korea, Taiwan, Indonesia,

Malaysia, Philippines, Singapore, Thailand,
Vietnam, Bangladesh, Sri Lanka,
Rest of South Asia, Mexico,
Central America and Caribbean, Colombia,
Peru, Venezuela, Rest of Andean Pact,
Argentina, Brazil, Chile, Uruguay,
Rest of South America, Turkey,
Rest of Middle East, Morocco,
Rest of North Africa, Botswana, Rest of SACU,
Malawi, Mozambique, Tanzania, Zambia,
Zimbabwe, Rest of Southern Africa, Uganda,
Rest of Sub-Saharan Africa, Rest of World

Table 1: The regional aggregation.

Sectoral aggregation: The GTAP5 database distinguishes 57 tradable goods in each re-

gion. GTAP-E takes a further aggregation into the production sectors, summarized in Table 2.

Among these tradable goods, we distinguish the fossil fuels coal, oil, gas, and petroleum. The

economic model further contains a global bank and a transport sector, the latter one contain-

ing air, land, and sea as transport modes. These three transport modes are aggregated into

one production sector. Let S denote the set of all goods indexed with s, whose elements are

depicted in the second column of Table 2. This set contains a subset Strad of tradeable goods,
which excluded the nontradeable capital good (cgds). Then there is a subset of non-coal

fossil fuels, Sncoal = {gas, p_c, oil}, a subset Sf = Sncoal ∪ {coal} of fossil fuels, a subset
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Se = Sf ∪ {ely} of energy goods, and a subset Sne = Strad \ Se of non-energy goods. The

set Smargin = {ois} denotes the set of margin goods, or transport sectors. These transport

sectors only add a margin to the export price of each good.

Nr. s Sector Description Comprising GTAP5 Sectors:
1. rice Rice paddy rice
2. crops Primary Agriculture,

and Fishing
wheat; cereal grains n.e.c.; vegetables, fruit,
nuts; oil seeds; sugar cane, sugar beet;
plant-based fibers; crops n.e.c.; fishing

3. livestock Livestock products bovine cattle, sheep and goats;
animal products n.e.c.; raw milk;
wool, silk-worm cocoons;

4. forestry Forestry forestry
5. coal Coal Mining Coal
6. oil Crude oil Oil
7. gas Natural gas extraction Gas; gas manufacture, distribution
8. pc Refined oil products Petroleum, coal products
9. ely Electricity Electricity
10. ois Other industries and services minerals n.e.c.; bovine cattle, sheep and

goat; meat products; vegetable oils and
fats; dairy products; processed rice; sugar;
food products n.e.c.; beverages and
tobacco products; textiles; wearing
apparel; leather products; wood products;
paper products, Chemical, rubber, and
plastic prod.; publishing; mineral products
n.e.c.; ferrous metals; metals n.e.c.;
metal products; motor vehicles and parts;
transport equipment n.e.c.; electronic
equipment; machinery and equipment n.e.c.;
manufactures n.e.c.; water; construction;
trade; transport n.e.c.; water transport; air
transport; communication; financial services
n.e.c.; insurance; business services n.e.c.;
recreational and other services; public
administration and defence, education;
ownership of dwellings

n.e.c.= ’not elsewhere classified’

Table 2: The sectoral aggregation in GTAP-E, Traded Commodities.

Production factors: GTAP considers the goods in Table 3 as the primary means of pro-

duction. They are allocated as initial endowments to the consumer household representing a

region as its source of income.

Capital is considered internationally mobile, land and natural resources are tied to the

production sector in which they serve as an input. Land is currently only used as an input to

the agricultural production sectors. Labour is only regional mobile
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Nr. Production factor Sector Description
1 capital Capital
2 land Land
3 natres Natural resources
4 SkLab Skilled labour
5 UnSkLab Unskilled labour

Table 3: The production factors in GTAP-E.

Functional forms: Computable general equilibrium modelling extensively makes use of

constant elasticities of substitution (CES) functional forms and its special cases such as Cobb-

Douglas (CD) and Leontief functions. In order to differentiate among groups of consumption

and input goods of different substitution elasticities, often nested CES functions are applied.

Such nested CES functions could be represented in a tree structure where the expenditure

or cost to obtain a certain good is disaggregated along different levels of aggregation towards

the set of goods and endowments in Tables 2 and 3. The use of such nested CES structures

dates back to Armington (1969). The model in this section is written down in its dual form,

i.e. using cost functions to describe the producers behaviour and using expenditure functions

to describe the consumer’s behaviour.

The simplest functional form is a so-called Leontief functional form, denoted with leontief(p1, . . . , pn).

We define the associated cost or expenditure function by

leontief(p1, . . . , pn) =
n∑
i=1

αipi

for certain productivity parameters α1, . . . , αn. The function leontief denotes the cost c.q.

expenditure to obtain one unit of the output good given prices p1, . . . , pn of the n input

goods, assuming a production function or utility function of leontief type. The elasticity of

substitution between each pair of input goods is uniformly equal to infinity.

The Cobb-Douglas functional form is denoted with cd(p1, . . . , pn). We define the associ-

ated cost or expenditure function by

cd(p1, . . . , pn) =
n∏
i=1

pαii

for certain productivity parameters α1, . . . , αn such that
∑
i αi = 1. cd denotes the cost c.q.

expenditure to obtain one unit of the output good given prices p1, . . . , pn of the n input goods,

assuming a production function or utility function of Cobb-Douglas type. The elasticity of

substitution between each pair of input goods is uniformly equal to one.

The Constant Elasticity of Substitution functional form is denoted with ces(p1, . . . , pn).

We define the associated cost or expenditure function by
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ces(p1, . . . , pn) =

(
n∑
i=1

αip
1−σ
i

) 1
1−σ

for certain productivity parameters α1, . . . , αn and elasticity of substitution σ. ces denotes

the cost c.q. expenditure to obtain one unit of the output good given prices p1, . . . , pn of the

n input goods, assuming a production function or utility function of CES type. The elasticity

of substitution between each pair of input goods is uniformly equal to σ.

Regional (consumption) household: Final demand in each region is modelled by intro-

ducing a regional consumption household. Each region is endowed with a certain amount

of each production factor. GTAP-E distinguishes among capital, labour, land, and natu-

ral resources in Table 3 as the economy’s production factors. He obtains income from the

payments on these endowments. The consumer’s income consists of the value of his total

time endowment offered for labour, pr(UnSkLab)UnSkLabr +pr(SkLab)SkLabr, the value of his

(sector-specific) land endowments
∑
s p

F
s,r(land)Ls,r, the value of the region’s available natural

resources
∑
s p

F
s,r(natres)Rs,r, and the value of his capital endowment pr(capital)Kr. Fur-

thermore, we assume that the income from taxes and tariffs accrue as income to the regional

household.

The regional consumption household obtains utility from spending his income on private

consumption goods, on government consumption goods, and on savings. Government con-

sumption refers to the region’s consumption of publicly provided goods.

Let pUr denote the consumer price per unit of util to regional household r. This consumer

price is determined as the minimal expenditure to obtain one unit of util at given prices.

GTAP-E specifies this relation by

pUr = cd
(
pGr (cons), pPr (cons), pI

)
⊥ ur (1)

where phr (cons) denotes the consumer price for government consumption (h = G), or private

consumption (h = P ). pI denotes the price of the investment good. GTAP-E assumes that

the decomposition uses a Cobb-Douglas utility function. The complementary variable to this

equation is the amount of utils, ur, demanded by region r. This implies a constant share

of government expenditures, and a constant share of private expenditures, in the regional

household r’s total expenditures. The remaining (fixed) share of income is spent on savings.

In GTAP, these savings are modelled by assuming that the regional household buys the output

good of a global bank. Utility maximizing amounts of government consumption, uGr (cons),

private consumption, uPr (cons), and savings, uIr , per unit of util, follow by Shepherd’s Lemma
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as the first-order derivative of the expenditure function in equation (1) to their respective

prices.

The set C := {cons, ec, nec} denotes the set of aggregates of all consumption goods

in each consumer household. In C, cons refers to an aggregate consumption good, which

is disaggregated into an energy composite ec and a nonenergy composite nec. Let phr :

C → IR map each composite ` ∈ C onto its consumer price phr (`) respectively. It follows

with expenditure minimization, that each composite’s price is determined by the minimum

expenditure to obtain one unit of this good. Hence,

phr (cons) = ces
(
phr (ec), phr (nec)

)
⊥ chr (cons)

phr (ec) = cd
(
phr (s) | s ∈ Se

)
⊥ chr (ec)

phr (nec) = cd
(
phr (s) | s ∈ Sne

)
⊥ chr (nec)

(2)

for household’s consumption h ∈ {G,P}. Utility maximizing amount of household h’s con-

sumption chr (s) of each good s ∈ S and consumption chr (`) of each of its composites ` ∈ C,
per unit of util, follow by Shepherd’s Lemma as the first-order derivative of the appropriate

expenditure function in equation (2) to the corresponding consumer price.

Production sector households: Each commodity in Table 2 is assumed to be the unique

output good of a particular production sector in each region. A production sector is endowed

with a constant returns to scale production technology that produces its output good using the

goods in Table 2 as intermediate inputs and the economy’s endowments as primary goods.

Under these conditions, the usual assumption of profit maximization is equivalent to cost

minimization. The production structure is derived from the GTAP-E model in Burniaux and

Truong (2002).

Let pOs,r denote the producer price per unit of output of production sector s in region r.

Then pOs,r = (1 + tO(s, r))ps,r including output taxes tO(s, r) put onto the market price ps,r
of region r’s good s. This producer price is determined as the minimal cost to produce one

unit of the output good at given prices. GTAP-E specifies this relation by

ps,r(1 + tO(s, r)) = leontief
(
pFs,r(eva), pFs,r(Sne)

)
⊥ ys,r (3)

where pFs,r(eva) denotes the producer specific price per unit of the composite ’Energy-Value-

Added’ good and pFs,r(Sne) the producer specific price of each non-energy input good.

Value-added is obtained from the costs of including the natural resource good, land, labour,

capital, and energy into the production process. Notice that GTAP-E modifies the original

GTAP modelling of the energy input into the production technologies. The standard GTAP

model as described in Hertel and Tsigas (1997) treats energy inputs in the same manner as
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non-energy intermediate inputs. Burniaux and Truong (2002) proposes to shift energy from

being an intermediate input to being a value-added component in the production technology.

To this end, Burniaux and Truong (2002) introduces a capital-energy component in the value-

added nest of production. This component is a composite of capital and an energy composite

to allow for the substitution between capital and energy in the production process on the long

term. On the short term, capital and energy are complementary goods. GTAP-E assumes

a positive elasticity of substitution between the energy composite and capital, making these

goods substitutes inside this nest.

The set P := {eva, labour, ke, e, ff, nc} denotes the set of aggregates of all input goods

in the production nested function. The coal good and a ncoal composite of all noncoal fossil

fuels constitute an aggregate fossil fuel good ff. The fossil fuel aggregate, together with the

electricity input makes up an energy composite good e. Energy e and capital combine into

a capital-energy composite ke, which forms a part of the Energy-Value-added composite eva

together with the primary factor composite Labour and goods natres. Let pFs,r : P → IR+

map each producer’s composite input in P to its associated producer specific price, such that

pF
s,r(eva) = ces

(
pF

s,r(ke), pF
s,r(labour), (1 + tFs,r(land))ps,r(land), (1 + tFs,r(land))pF

s,r(natres)
)
⊥ as,r(eva)

pF
s,r(labour) = leontief

(
(1 + tFs,r(SkLab))ps,r(SkLab), (1 + tFs,r(UnSkLab))ps,r(UnSkLab)

)
⊥ as,r(labour)

pF
s,r(ke) = ces

(
(1 + tFs,r(capital))ps,r(capital), pF

s,r(e)
)

⊥ as,r(ke)

pF
s,r(e) = leontief

(
pF

s,r(ff), pF
s,r(ely)

)
⊥ as,r(e)

pF
s,r(ff) = ces

(
pF

s,r(coal), pF
s,r(nc)

)
⊥ as,r(ff)

pF
s,r(nc) = ces

(
pF

s,r(Sncoal)
)

⊥ as,r(nc)

(4)

Then, we can obtain the cost minimizing amount as,r(s̄) of input good s̄ ∈ S or amount as,r(`)

of input composite ` ∈ P from the first-order derivative of the appropriate cost function in

either equation (3) or equations (4) to the corresponding producer specific price.

Savings: The global bank is an abstract production sector which produces the investment

good in the economy, using net investments of each region as inputs. The investment of a

production sector is modelled as the part of the output level of this sector which is produced

specifically for investment purposes. Regional net investments are given by the total invest-

ments by each production sector, net of capital goods supplied by the regional household.

The cost of each unit of the investment good is decomposed into the costs of obtaining the

output share of each production sector meant for investments.
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pI = leontief
(
pcgds,r | r ∈ R

)
⊥ I (5)

The first-order derivatives of the cost function in (5) to the price of capital services in region r

provides the global bank’s cost minimizing demand aI(r) for region r’s capital services good.

The variable complementary to this equation is the output level of the global bank, I, which

represents global investments.

Transport: The GTAP5 database distinguishes three transport modes, air, land, and sea

transport. Each transport mode is an abstract production sector that produces a composite

transport good which is an aggregate of the supply of this transport mode by the production

sector in each region. Each regional margin production sector produces an amount meant for

transport with this mode of transport.

pTm = cd
(
pXm,r | m ∈ Smargin

)
⊥ yTm (6)

The first-order derivatives of the cost function in (6) to the price of transport services of

type m in region r provides transport’s cost minimizing demand aTm,r for transport of type

m by region r. The variable complementary to this equation is the output level of the global

transport sector m, yTm.

Foreign trade: The tradable goods produced by a production sector are traded interna-

tionally. This implies that, for each tradable good, there exists a variant produced in each

region. Following Armington (1969), we assume that these goods are substitutable but not

perfectly. Hence, each tradable good has a domestically produced equivalent and imported

equivalents. The literature often refers to such goods as Armington goods.

pFs,r(trad) = ces((1 + tdFs,r(trad))pDtrad,r, p
m
trad,r) ⊥ as,r(trad)

phr (trad) = ces((1 + tdhs,r(trad))pDtrad,r, p
m
trad,r) ⊥ chr (trad)

(7)

for households h ∈ {G,P}. This indicates that the price of each ’Armington good’ is de-

pendent on the household that consumes it. Then we can obtain the expenditure c.q. cost

minimizing amount chtrad,r(d) for households h = G,P and atrad,s,r(d) for producer s, of each

domestically purchased or chtrad,r(i) for households h ∈ {G,P} and atrad,s,r(i) for producer s,

of each imported version of each tradeable good in Strad from the first-order derivatives of the

appropriate expenditure or cost function to the corresponding price, by Shepherd’s Lemma.

The price of the import aggregate in each region is constructed from the regionally different

export prices of this good, using a CES functional form.
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pmtrad,r = ces
(
(1 + tmstrad,r(r̄))p

cif
trad,r(r̄) | r̄ ∈ R \ {r}

)
⊥ ymtrad,r (8)

We can now obtain the cost minimizing amounts btrad,r(r̄) of region r̄’s good trad per unit

of region r’s trad import composite. This specification assumes that the import composite is

equal among consumer and producer households in region r.

The traded goods are often supposed to have different prices depending on whether they

are produced for domestic use or for export. The revenue per unit of a traded good is

decomposed into the revenue of selling this good on the domestic market at a domestic price

pDtrad,r, and the revenue of selling the composite export good abroad at an export price pXtrad,r.

The exported goods are sold on the world market.

ptrad,r = cet
(
pDtrad,r, p

X
trad,r

)
⊥ ys,r (9)

We can now obtain the revenue maximizing amounts aXtrad,r of region r’s good trad exported

to the world market or aDtrad,r produced for domestic sales from the first-order derivative of

the unit revenue function in equation (9) to the corresponding price.

The export of region r’s good trad incurs a transport margin, depending on the region r̄

where it is exported to. The value of the transport margin to region r̄ is assumed to be a fixed

fraction of the total export value of region r’s good trad. We therefore use a CD function to

determine the price region r’s good trad when arriving in region r̄:

pciftrad,r(r̄) = leontief
(
(1 + txstrad,r(r̄))pXtrad,r + pTm | r̄ ∈ R \ {r}

)
⊥ aXtrad,r(r̄) (10)

Market clearing equations. While the prices of each tradeable good are determined by

the marginal cost to produce these goods, the prices of the endowments are such that they clear

the market for the underlying endowment good. Land is taken as specific to the production

sector in which it is used as an input good. GTAP currently only considers agricultural

land. Similar to the land market, GTAP assumes a market for natural resources which also

is specific to the production sector in which it is used. The labour market is assumed to be

region specific. GTAP assumes that capital is not sector-specific, and only regional mobile.

Ls,r = as,r(land)ys,r ⊥ pFs,r(land),

Rs,r = as,r(natres)ys,r ⊥ pFs,r(natres),

SkLabr =
∑
s as,r(SkLab)ys,r ⊥ pr(SkLab),

UnSkLabr =
∑
s as,r(UnSkLab)ys,r ⊥ pr(UnSkLab),

Kr =
∑
s as,r(capital)ys,r ⊥ pr(capital).

(11)
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Domestic production of good trad in region r suffices to cover total domestic demand by the

private and government households as well as the total demand for this good as an intermediate

in the other production sectors in region r.

aDtrad,rytrad,r =
[
cPtrad,r(d) + cGtrad,r(d)

]
ur +

∑
s a

F
trad,s,r(d)ys,r ⊥ pDtrad,r. (12)

Total imports of good trad into region r equals the demand for this import good by private and

government households as well as the total demand for this imported good as an intermediate

in the production sectors in region r.

ymtrad,r =
[
cPtrad,r(i) + cGtrad,r(i)

]
ur +

∑
trad a

F
trad,s,r(i)ys,r ⊥ pmtrad,r. (13)

Total exports of good trad of region r equal the demand for this good as import in other

regions r̄ and, in case the good is a margin good, as a part of transport demand.

aXtrad,r(r̄)ytrad,r = btrad,r(r̄)ymtrad,r̄ + aTtrad,ry
T
trad,r ⊥ pciftrad,r(r̄) (14)

The output of the transport sector m is determined by the use of this transport mode in the

export of each good between regions.

yTm =
∑
trad

∑
r

∑
r̄ φtrad,r,r̄(m)aXtrad,r(r̄)ytrad,r ⊥ pTm (15)

where φtrad,r,r̄(m) denotes the share of transport mode m in the export of good trad from

region r to r̄. This parameter is determined independently from the SAM.

The production of capital goods services in region r suffices to fulfill the demand for region

r’s capital goods by the global bank.

ycgds,r = aI(r)I ⊥ pcgds,r. (16)

The output in investment goods by the global bank covers all demand originating from the

savings by each regional household. This is a form of closure of the model. We could also

have chosen to let investments equal savings on the regional level instead of global level.

I =
∑
r u

I
r ⊥ pI (17)

Total expenditure in each region, pUr ur should in equilibrium equal this region’s total income.

Let Mr denote region r’s real income, using pUr as this region’s price index. Then,
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ur = Mr ⊥ pur (18)

Equilibrium: We assume that there is perfect competition on the markets. In our model

this means that the prices of these goods equal their marginal costs of production. The

markets are then cleared by the output levels of the production sectors. We take the capital

market and energy markets to be global markets, while the labour market is a regional market.

In the vector p we collect all the producer prices and in the vector q we collect all the

consumer prices of the goods in the economy. We can split these vectors into a part pG of prices

referring to goods, and pω of prices referring to the consumption household’s endowments

in production factors. In the vector y we collect all the activity levels of the production

sectors. Output of each production sector is either used for domestic production or for exports,

according to a matrix H. Total output for domestic and export purposes is then given by

H(p)y. From the production tree of each production sector, we construct an input-output

matrix A(p) where each column refers to the input-output vector that minimizes the cost of

producing one unit of this production sector’s output good at prices p in the economy. We

split the input-output matrix A(p) into a submatrix AG(p) referring to the goods input-output

submatrix, and Aω(p) referring to the production factor inputs. In the vector u we collect all

the utility levels of the regional households in the economy. From the consumption tree of

each regional household, we construct a consumption matrix C(p) where each column refers to

the consumption vector that minimizes the expenditure on goods to obtain one unit of utility

at prices p in the economy. Let ωr denote consumer r’s endowment vector of production

factors. Take ω = (ω1, . . . , ωR). Total expenditure, pUr ur, should equal region r’s income,

p>ω,rωr, according to this region’s budget constraint. We define real income Mr(pω,r) equal to
p>ω,rωr/pUr . Take M(pω) = (M1(pω,1), . . . ,MR(pω,R))>.

Definition 1 The producer prices p∗, activity levels y∗, and utility levels u∗ constitute an

equilibrium if,

1) (goods market clearing) the activity levels and consumption levels are such that demand

is met by total supply for each good:

C(p∗)u∗ − (H(p∗)−AG(p∗))y∗ ≤ 0 ⊥ p∗G. (19)

(factor market clearing) factor prices p∗ω are such that demand for each production factor

is met by its supply:
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ω −Aω(p∗))y∗ ≤ 0 ⊥ p∗ω. (20)

2) (income) for each consumer r, total expenditure on goods equals total income obtained

from selling its factor endowments:

u∗ −M(p∗ω) ≤ 0 ⊥ pU∗. (21)

3) (zero profits) the producer price of each good is determined by the minimum cost to

produce one unit of this good:

p∗> [H(p∗)−A(p∗)] ≤ 0 ⊥ y∗, (22)

and the consumer price of each good is determined by the minimum expenditure to obtain

one unit of this good:

p∗>G C(p∗G) ≥ pU∗ ⊥ u∗. (23)

Numeraire: Due to the homogeneity of degree zero in the excess demand and the supply

functions in the equilibrium equations, any positive multiple of an equilibrium price vector

will result in an equilibrium. We therefore have to choose a numeraire good. We could choose

one of the goods as the numeraire good, or fix a certain price index thereby imposing an extra

equation on the equilibrium. GTAP chooses the price of the savings good as its numeraire.

Computation of an equilibrium: Ginsburgh and Keyzer (1997) propagate the use of a so-

called Negishi format to compute an equilibrium. The Negishi theorem, Negishi (1960), shows

that a competitive equilibrium can be represented through a welfare optimum with nonzero

welfare weights αr, which are such that each consumer r satisfies his budget constraint. We

define the Negishi format in Definition 2.

Definition 2 The Negishi format is defined as the welfare optimum:

W (α) = maxxr≥0,∀r,yj≥0,∀j
∑
i αrUr(xr),

s.t.
∑
r xr −

∑
j yj ≤

∑
r ωr

yj ∈ Yj ,
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with welfare weights α such that the budget constraints

p>x∗r = p>ωr +
∑
j

θrjΠj(p),

with x∗r solving for the welfare optimum, hold for every consumer r.

The Negishi theorem, Negishi (1960), can now be stated as

Theorem 3.1 Under the assumption that the consumer household’s preferences can be de-

scribed by a continuous, strictly concave, nonsatiated utility function Ur that satisfies Ur(0) =

0, whose endowments in each good are strictly positive, and the assumption that each producer

has a compact and convex production set containing the possibility of inaction, there exists

nonzero welfare weights α∗ in Definition 2 such that the resulting allocation is a competitive

equilibrium.

The Negishi format provides a direct link to welfare analysis and the format makes it

possible to use weaker assumptions on the production technology. Sometimes, e.g. with

externalities or nonconvexities, it is easier to formulate a centralized welfare program such as

the Negishi format than to specify its decentralized counterpart, the excess demand or CGE

format. Notice that, choosing the Negishi format implies that only primal forms can be used.

Writing the equilibrium problem stated in Definition 1 in the Negishi format gives the

following optimization problem to solve in a price vector p̄:

W (α) = maxu,y
∑
r αrur,

s.t. u−M(p̄) ≤ 0

C(p̄)u− (H(p̄)−AG(p̄))y ≤ 0 (goods market equilibrium)

−ω +Aω(p̄)y ≤ 0 (factor market equilibrium)

u, y ≥ 0

(24)

Notice that the prices p are the dual variables to the market equilibrium constraints. Solving

optimization problem (24) results in an optimal solution (u∗, y∗, p∗) such that p∗>[H(p̄ −
A(p̄) ≤ 0 and p∗>Cr(p̄) − p̄Ur ≥ αr for any consumer r. While solving (24), we should only

consider prices p ∈ SnA to prevent (24) from becoming unsolvable.

The equilibrium in an economy with constant returns to scale production technologies is

now computed by solving the optimization problem (24) recursively. Take an initial value

for α0, for example give each consumer the same weight (1/R) ∗ 100. Choose an initial price

vector p̄0. In standard CGE modelling, p̄0 could equal e. For these initial values, we can solve
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optimization problem (24), to obtain an equilibrium (u∗0, y∗0) and associated prices p∗0 as the

values of the dual variables to the inequalities defining the feasible set. For this value, we can

compare expenditure p∗0C(p̄) with income p∗0Ω ω
r for each consumer r. In case expenditure,

exceeds consumer r’s income, then he obviously was assigned a too high value for αr and this

value should be reduced, and v.v.. This adjustments provides a new value for α. Take p̄ equal

to p∗0. For the new values, we can compute a new solution to equation (24).

Carbon emissions: CGE modelling practice associates carbon emissions with the demand

for fossil fuels by the economy’s production sectors. For each production sector s in region r, it

defines a coefficient co2shr(f, s, r) associated with the sector’s demand as,r(f) for fossil fuel f .

Define, for any setR, the matrix COF
2 (R) such that COF

2 (s, r) =
∑
f∈Sf

∑
s co2shr(f, s, r)as,r(f)

if r ∈ R and COF
2 (s, r) = 0 otherwise. Each of these coefficients measure the amount of carbon

emissions per unit of fossil fuel use.

Let us define an emission permit by the amount of carbon emissions that it allows to the

owner. Then we can refer to the total emissions of a production sector as the amount of emis-

sion permits demanded by this sector. We assume that there is a market for emission permits

among the developed regions. Region AnnexB has been provided with an initial endowment

of emission permits E under the Annex B of the Kyoto Protocol. These endowments refer to

the emissions allowed to the developed regions under the Kyoto Protocol. On the emission

permit market, there exists a price pE that equilibrates the market, i.e. such that

−E1 + e>COF
2 ({1})y = 0 ⊥ pE (25)

with e the | S |-dimensional vector with all unit components.

We have assumed that the endowments of emission permits are allocated to the regional

households of the developed regions. This allocation adds an income of pEE1 to the developed

region. Real income for the Annex B region’s consumer then becomes M1(pω,1, pE ;E1) =
pω,1ω1+pEE1/pU1

. There is a lively debate on how to reallocate the permit endowments over

the different housholds in each regions. There is mentioning of grandfathering, i.e. allocation

according to some rule, or auctioning.

The emissions of each production sector can be included into the nested cost functions

described above by letting the cost of each fossil fuel input f ∈ Sf consist of the cost on

this fossil fuel and the cost on emissions related to the use of this fossil fuel using a leontief

cost function with a parameter equal to 1/co2shr(f,s,r) associated with the fossil fuel use in

production input, and a parameter equal to 1 associated with the fossil fuel use itself in these

sectors:

21



pFs,1(f) = leontief(pFs,1(f), pE). (26)

Notice that the formulation in equation (26) is equivalent with putting a tax equal to pE/co2shr(f,s,1)

on the use of fossil fuel f in production input.

The economy’s CO2 emissions add to the CO2 concentrations in the Earth’s atmosphere.

These increased concentrations are responsible for changes in the climate indicated by changes

in the mean global temperature, regional precipitation, sun radiation, and sea level rises. If

Ē denotes existing concentrations of CO2 in the atmosphere, then economic activities will

increase these concentrations to a level of Ē + e>COF
2 ({1, 2, 3})y through its intensive use of

fossil fuels in the production processes. Climate models are applied to use these concentrations

and compute its effects on the global climate. The consequences of climate change are expected

to impose significant costs on the current economy in the form of reduced productivity or loss

of land, the decrease in population due to changed birth and mortality rates following health

risks, or changes in vegetation. We define what is commonly known as a damage function,

but would be better expressed as an impact function, D, that relates the economy’s total

CO2 emissions with the net damage on the economy. These damages are often measured

as a percentage of real income, but we temporarily follow a more general approach. D is a

composite of a reduced form representing a climate model, and a traditional damage function.

We choose a convex function D such that D′ > 0, assuming that increased emissions cause

more damage than benefits to the economy.

We distinguish between a damage on endowments matrix, Dω, and the damage to pro-

ductivity matrices, DA and DC . All these matrices are determined as functions of global

emissions, e>COF
2 ({1, 2, 3})y∗, and result in regional, c.q. sectoral damages. We can rewrite

the equilibrium equations in Definition 1 to include such damages and we thus obtain the

following equilibrium problem: find utility levels u∗, production levels y∗, and prices p∗ such

that

(E −Dc)� C(p∗)u∗ − (H(p∗)− (E −DAG)�AG(p∗))y∗ ≤ 0 ⊥ p∗G

(E −Dω)� ω − (E −DAω)�Aω(p∗)y∗ ≤ 0 ⊥ p∗ω

u∗ − (E −Dω)�M(p∗ω) ≤ 0 ⊥ p∗U

(27)

where E denotes the matrix with all components equal to one and � is a matrix operator

refering to component-wise matrix multiplication, i.e. A � B = [aij × bij ]. We assume that

the damage functions Dω, DA, and DC are chosen such that the underlying assumptions in

this exchange economy with constant returns to scale production remain valid.
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4 Bargaining for permits

The bargaining model applied in Houba (2005) extends the alternating offers model with

discounting in Rubinstein (1982) by replacing the dollar by a multi-dimensional bundle of

endowments in a two-person economy, called the economic environment in Roemer (1988).

The two players are the developed regions AnnexB, and the rapidly developing region CHIND on

the other hand. These two players negotiate the amount of permits allocated as an endowment

to each of them. The allocation of the other endowments of production factors over the

regional households are assumed to remain the same. The subject of negotiations is a feasible

allocation in the economy.

We index the set T of bargaining rounds with a time index t. We often refer to the

developed regions, or Annex B regions, as player 1 and the developing world, here China and

India together, as player 2. At t odd, the developed regions propose a feasible allocation

of emission permits εt =
(
ε1,t, ε2,t

)
, with εi,t denoting the total amount of emission permits

allocated to player i ∈ {1, 2}. Then the developing world either ends the negotiations by

accepting the proposal or prolongs the negotiations by rejecting it. If rejected, then the

probability of a next (even) round is e−r2∆, r2 ≥ 0, and ∆ ≥ 0, which implies a probability

of breakdown 1 − e−r2∆. At t even, the developing world proposes the feasible allocation

εt =
(
ε1,t, ε2,t

)
, which is either accepted or rejected by the developed world. The probability

of the next (odd) round is e−r1∆, r1 ≥ 0. This alternating offers procedure represents a game

in extensive form with perfect information and, therefore, the subgame perfect equilibrium

(SPE) concept is appropriate.

The bargaining problem in utility presentation is denoted as (S, d), with S ⊂ IR2 the

nonempty, compact and convex set of feasible utility pairs (u1, u2), the disagreement point

d ∈ S, and the existence of feasible utility pairs u ∈ S such that u > d. In the case of a

disagreement concerning the allocation of permits, only the developed regions in Annex B

engage in emission permit trading using the permit endowments allocated under the Kyoto

Protocol. The disagreement point d consists of the utility levels (ud1, u
d
2) obtained when only

the Annex B regions trade. This represents the original equilibrium to which we refer with the

superindex ’d’. Within the model, ud1 = M1(pdω,1, p
d
E ;E) and ud2 = M2(pdω,2, p

d
E ; 0), refering to

the Kyoto Protocol allocation of permits.

With each allocation ε = (ε1, ε2) of permit endowments over the developed and developing

regions, we can associate an equilibrium (pε∗, yε∗, uε∗) in Definition 1. So, we represent the

alternating offers procedure in terms of utility but as a function of the proposed permit

endowments. This function is given by the computed equilibrium in the GTAP-E model.

Let ε = (ε1, ε2) denote the proposed allocation of permits by the developed regions, and
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let ν = (ν1, ν2) denote the developing region’s proposal of allocating the permits over the

Annex B region and China and India. In any stationary subgame perfect equilibrium, player

1, or the Annex B region, accepts proposal ν if and only if uν1 ≥ (1 − e−r1∆)ud1 + e−r1∆uε1.

The developing region CHIND will accept any proposal ε, if uε2 ≥ (1 − e−r2∆)ud2 + e−r2∆uν2 .

Allocations of permits that will be acceptable to both players under this definition, are called

individually rational.

M̂(r1, r2,∆) provides the subgame perfect proposals for both players with associated

utility levels. It is determined as follows, see also Houba (2005).

M̂(r1, r2,∆) = arg maxu,uε,yε,Dε,uν ,yν ,Dν ,ε,ν u
r2

r1+r2
1 u

r1
r1+r2
2

s.t. uε − (E −Dε
ω)�M(p̄εω, p̄

ε
E ; ε) ≤ 0 ⊥ pεU

(E −Dε
C)� C(p̄ε)uε − (H(p̄ε)− (E −Dε

AG
)�AG(p̄ε))yε ≤ 0 ⊥ pεG

−(E −Dε
ω)� ω + (E −Dε

Aω
)�Aω(p̄ε)yε ≤ 0 ⊥ pεω

− (ε1 + ε2) + e>COF
2 ({1, 2})yε ≤ 0 ⊥ pεE

uν − (E −Dν
ω)�M(p̄νω, p̄

ν
E ; ν) ≤ 0 ⊥ pνU

(E −Dν
C)� C(p̄ν)uν − (H(p̄ν)− (E −Dν

AG
)�AG(p̄ν))yν ≤ 0 ⊥ pνG

−(E −Dν
ω)� ω + (E −Dν

Aω
)�Aω(p̄ν)yν ≤ 0 ⊥ pνω

− (ν1 + ν2) + e>COF
2 ({1, 2})yν ≤ 0 ⊥ pνE

Φω(e>COF
2 ({1, 2, 3})yε)−Dε

ω ≤ 0 ⊥ Γεω
ΦC(e>COF

2 ({1, 2, 3})yε)−Dε
C ≤ 0 ⊥ ΓεC

ΦA(e>COF
2 ({1, 2, 3})yε)−Dε

A ≤ 0 ⊥ ΓεA

Φω(e>COF
2 ({1, 2, 3})yν)−Dν

ω ≤ 0 ⊥ Γνω
ΦC(e>COF

2 ({1, 2, 3})yν)−Dν
C ≤ 0 ⊥ ΓνC

ΦA(e>COF
2 ({1, 2, 3})yν)−Dν

A ≤ 0 ⊥ ΓνA

u1 ≤ uε1 − ud1 ⊥ µ1

u2 ≤ uν2 − ud2 ⊥ µ2

(1− e−r1∆)ud1 + e−r1∆u1 ≤ uν1 − ud1 ⊥ λ1

(1− e−r2∆)ud2 + e−r2∆u2 ≤ uε2 − ud2 ⊥ λ2

u, uε, yε, Dε, uν , yν , Dν , ε, ν ≥ 0
(28)
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where Φω, ΦC , and ΦA are damage functions that relate total global emissions to damages

expressed as a percentage of income, consumption, and input efficiency respectively. Notice

that these functions contain economic variables, output levels, as their arguments. To prevent

problems with possible nonconvexities, we therefore introduce the variables Dω, DC , and DA

for each proposal.

In Table 4, we depicted the first results of a simulation using a value of 0.99 for the probability

e−r∆ = 0.99 with which the next round in the bargaining process takes place. These results

concern the calculated allocation of emission permits over the Annex B and China and India

regions under proposal A by the Annex B regions and proposal B by China and India. Table 5

provides the outcomes of this simulation with respect to the consequences on welfare in these

regions.

e−r∆ = 0.99 Benchmark
emissions

Permit Endowment A
pCO2 = 0.0003

Permit Endowment B
pCO2 = 0.0003

China and India 227004 226794 221313
EU 687296 685499 680845
Rest of Annex1 720412 716824 716824
USA 623286 622516 620066

Table 4: Optimal allocation of emission permits (in GtCO2).

The endowments allocated to the regions under both proposals do not differ that much

from the benchmark emissions, hence creating a low excess demand for emission permits, and

subsequently, the permit price is relatively low. Permit prices are equal under both proposals

confirming the symmetric aspects of the bargaining game. The rather small differences be-

tween benchmark emissions and allocated permitted emissions is due to the choice of damage

functions. Choosing damage functions that have a larger climate impact on the economy

undoubtedly will result in a lower allocation of permits to the regions under both proposals

as more benefit is to be taken out of this.

A well-known result for the subgame perfect equilibrium in the alternating offers model is

that it is advantageous to be the proposing player. This means that each player gets a better

deal according to his own equilibrium proposal compared to what he gets from accepting his

opponent’s equilibrium proposal. In terms of dividing a single dollar, a proposing player gets a

larger share if he proposes compared to what is offered to him, if he is the responding player.

This extends to the current setting. The intuition is that the responding player compares

immediate acceptance with one period of inefficient delay followed by his proposed (efficient)

agreement.
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Table 5 gives an overview of the welfare effects of implementing both proposals. Depicted are

the benchmark levels of indirect utility, the utility of the regions under Proposal A, and the

utilities of the regions under Proposal B. Furthermore, we calculated the minimal increases

in utility u for each region that participates in the bargaining process. As indicated by the

values of the variable u, the bargaining countries all win a welfare gain resulting from the

bargaining process.

e−r∆ = 0.99 ud u uA uB

China and India 1133455 97876 1237213 1242674
EU 7011843 111742 7763476 7725894
Rest of Annex1 5744384 366653 6209859 6695345
USA 7218402 287770 7530327 7604397
Rest of the World 4587013 0 4886771 4748858

Table 5: Indirect utilities.

China and India gain more in welfare under there own proposal than when accepting

player A’s proposal. This is in concordance with the aformentioned result obtained from the

divide one dollar game. As to player A, only the EU would gain, contrary to the other regions.

This might be the consequence of the impact of damage functions on the respective regions.

The rest of the world, or the underdeveloped world is also gaining from the bargaining. This

is due to trade effects, when energy intensive products of the Annex B and China and India

become relatively more expensive causing consumers and producers to take more of these

regions’ alternatives into their product mix.

26



References

Armington, P. (1969). A theory of demand for products distinguished by place of production. IMF
Staff Papers 16, 159–178.

Burniaux, J. and T. Truong (2002, January). GTAP-E: An energy-environmental version of the GTAP
model. GTAP Technical Paper 16, Center for Global Trade Analysis, Purdue University, West
Lafayette, IN. Revised.

Dimaranan, B. and R. McDougall (2002, May). Global Trade, Assistance, and Production: The GTAP
5 Data Base. Center for Global Trade Analysis, Purdue University.

Ginsburgh, V. and M. Keyzer (1997). The Structure of Applied General Equilibrium Models. Cam-
bridge, Massachusetts: MIT Press.

GTAP (2007). Global trade, assistance, and production. http://www.gtap.org. Center for Global
Trade Analysis, Purdue University.

Hertel, T. and M. Tsigas (1997). Structure of GTAP. In T. Hertel (Ed.), Global Trade Analysis:
Modeling and Applications, Chapter 2, pp. 9–71. Cambridge University Press.

Houba, H. (2005). Equilibrium proposals in alternating offers as a single convex program. Mimeo,
Department of Econometrics and Business Administration, Vrije Universiteit, De Boelelaan 1105,
NL-1081 HV Amsterdam, The Netherlands.

Houba, H. (2007). Alternating offers in economic environments. to appear in Economic Letters.

Mariotti, M. (1999). Fair bargains: Distributive justice and nash bargaining theory. Review of
Economic Studies 66 (3), 733–741.

Nash, J. F. (1953). Two-person cooperative games. Econometrica 21, 128–140.

Negishi, T. (1960). Welfare economics and existence of an equilibrium for a competitive economy.
Metroeconomica 12, 92–97.

Roemer, J. (1988). Axiomatic bargaining theory on economic environments. Journal of Economic
Theory 45, 1–31.

Rubinstein, A. (1982). Perfect equilibrium in a bargaining model. Econometrica 50, 97–109.

Selten, R. (1965). Spieltheoretische behandlung eines oligopolmodells mit nachfragetragheit.
Zeitschrift für die gesamte Staatswissenschaft 121, 301 – 24, 667 – 89.

Sen, A. (1970). Collective Choice and Social Welfare. San Francisco: Holden-Day.

Shoven, J. and J. Whalley (1992). Applying General Equilibrium. Cambridge Surveys of Economic
Literature. Cambridge University Press.

Suppes, P. (1966). Some formal models of grading principles. Synthese 6, 284–306.

27


