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summary

Since the pioneering work of Embrechts and co-authors in 1999, copula models
enjoy steadily increasing popularity in finance. Whereas copulas are well-studied
in the bivariate case, the higher-dimensional case still offers several open issues
and it is by far not clear how to construct copulas which sufficiently capture
the characteristics of financial returns. For this reason, elliptical copulas (i.e.
Gaussian and Student-t copula) still dominate both empirical and practical ap-
plications. On the other hand, several attractive construction schemes appeared
in the recent literature promising flexible but still manageable dependence mod-
els. The aim of this work is to empirically investigate whether these models are
really capable to model differen sorts of exchange-traded energy prices.

Keywords and phrases: KS-copula; Hierarchical Archimedian; Product copulas;
Pair-copula decomposition

1 Introduction

The increasing linkages between countries, markets and companies require an accurate and
realistic modeling of the underlying dependence structure. This applies to financial markets
and, in particular, to the financial assets traded there-on. For a long time both practi-
tioners and theorists rely on the multivariate normal (Gaussian) distribution as statistical
fundament, seemingly ignoring that this model assigns too less probability mass to ex-
tremal events. In order to remove this drawback but still maintain many of the attractive
properties, elliptical distributions (e.g. multivariate Student-t or multivariate generalized
hyperbolic distribution) occasionally found its way into financial literature. Though being
able to model heavy tails, elliptical distributions fail to capture asymmetric dependence
structures. The copula concept, in contrast, which originally dates back to Sklar (1959)
but was made popular to finance through the pioneering work of Embrechts and co-authors
(1999) provides a flexible tool to capture different patterns of dependence. Within this work
we assume that the reader is already familiar with the notion of copulas. Otherwise, we refer



to Nelsen (2006) or Joe (1997). Whereas copulas are well-studied in the bivariate case, con-
struction schemes for higher dimensional copulas are not. Recently, several publications on
high-dimensional copulas appeared (e.g. Morillas, 2005, Palmitesta & Provasi, 2005, Savu
& Trede, 2006, Liebscher, 2006, Aas et al., 2006). Each of them claims to provide a flexible
dependence model, but there is no comprehensive comparison among these approaches, as
far as we know. In particular, no references are found to the Student-t copula (i.e. the
copula associated to the multivariate Student-t distribution) which is sometimes termed
as ”desert island copula” by Paul Embrechts on account of its excellent fit to multivariate
financial return data.
The outline of this work is as follows: Section 2 overviews and connects several recent
construction schemes of multivariate copulas. A short digression on goodness-of-fit measures
can be found in section 3. Section 4 is dedicated to the description of the underling data
sets, whereas the empirical results are summarized and discussed in section 5.

2 Multivariate copula models

2.1 Copulas - A short review

Representing the dependence structure of two or more random variables, the popularity of
copulas is steadily increasing in many statistical disciplines. Let [a, b]d ⊆ Rd. A function
K : [a, b]d → R is said to be d-increasing if its K-volume

VK ≡
2∑

i1=1

. . .

2∑
id=1

(−1)i1+...+idC(u1i1 , . . . , udid
) ≥ 0 (2.1)

for all a ≤ ui1 ≤ ui2 ≤ b and i = 1, . . . , d. If, additionally, [a, b] = [0, 1] and K satisfies the
boundary conditions

K(u1, . . . , uj−1, 0, uj+1, . . . , ud) = 0 and K(1, . . . , 1, u, 1, . . . , 1) = u (2.2)

for arbitrary u ∈ [0, 1], K is termed as copula and we write C, instead. Putting a
different way, let X1, . . . , Xd denote d random variables with joint distribution F (x) =
F (x1, . . . , xd) and continuous marginal distribution functions F1(x), . . . , Fd(x). According
to Sklar’s (1959) fundamental theorem, there exists a unique decomposition

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd))

of the joint distribution into its marginal distribution functions and the so-called copula

C(u1, . . . , ud) = P (U1 ≤ u1, . . . , Ud ≤ ud), Ui ≡ Fi(Xi)

on [0, 1]d which comprises the information about the underlying dependence structure (For
details on copulas we refer to Nelsen, 2006 and Joe, 1999). Finally, if C has dth order
derivatives, the d-increasing condition is equivalent to

∂dC

∂u1 . . . ∂ud
≥ 0. (2.3)

2



2.2 Elliptical copulas

The multivariate Gauss copula and t copula are examples of copulas which can be extracted
from well-known multivariate distributions. Since they are widely used in practice they
serve as benchmark models in this empirical analysis of energy prices. The d-variate Gauss
copula is the copula of X = (X1, . . . , Xd) ∼ Nd(0, R) and defined as follows

CGa(u1 . . . , ud) = ΦR(Φ−1(u1), . . . ,Φ−1(ud)) , (2.4)

where ΦR denotes the d-variate standard normal cdf with correlation matrix R and Φ
denotes the standard univariate normal cdf.
The d-dimensional t copula ist defined by

Ct(u1, . . . , ud) = tν,R(t−1
ν (u1), . . . , t−1

ν (ud)) , (2.5)

where tν is the cdf of a standard univariate t distribution, tν,R is the joint df of the vector
X ∼ td(ν,0, R) and R is a correlation matrix.

2.3 Classical multivariate Archimedean copulas

Given a strict generator ϕ : [0, 1] → [0,∞], bivariate Archimedean copulas can be extended
to the d-dimensional case. For every d ≥ 2 the function C : [0, 1]d → [0, 1] defined as

C(u1, . . . , ud) = C(u) = ϕ−1
(
ϕ(u1) + ϕ(u2) + · · ·+ ϕ(ud)

)
(2.6)

is a d-dimensional Archimedean copula if and only if ϕ−1 is completely monotonic on R+,
i.e. if ϕ−1 ∈ L∞ with

Lm ≡
{
φ : R+ → [0, 1]

∣∣∣φ(0) = 1, φ(∞) = 0, (−1)kφ(k)(t) ≥ 0 , k = 1, . . . ,m,
}
.

The d-variate Clayton copula arises from ϕ(t) = 1
θ (t−θ − 1) and is given by

CCl(u) =
(
u−θ

1 + · · ·+ u−θ
d − d+ 1

)−1/θ

, θ > 0. (2.7)

The d-dimensional Gumbel copula

CGu(u) = exp
{
−
[
(− lnu1)

θ + · · ·+ (− lnud)
θ
]1/θ

}
, θ ≥ 1, (2.8)

derives from the generator ϕ(t) = (− ln t)θ.
For an overview of further Archimedean copulas and the properties of the aforementioned
ones, we refer the reader to the monographs by Nelson (2006) and Joe (1997).
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2.4 Hierarchical Archimedean copulas

The basic idea of this approach (see, e.g. Savu & Trede, 2006) is to build a hierarchy of
Archimedean copulas. Let there be L hierarchy levels indexed by l. At each level l = 1, . . . , L
one has nl distinct objects with index j = 1, . . . , nl. The u1, . . . , ud are located at the
lowest level, l = 0. At level l = 1 the u1, . . . , ud are grouped into n1 ordinary multivariate
Archimedean copulas C1,j , j = 1, . . . , n1, of the form

C1,j(u1,j) = ϕ−1
1,j

(∑
ϕ1,j(u1,j)

)
where ϕ1,j denotes the generator of copula C1,j . Let u1,j denote the set of elements of
u1, . . . , ud belonging to copula C1,j for j = 1, . . . , n1. The copulas C1,1, . . . , C1,n1 might
belong to different Archimedean families. All copulas of level l = 1 are in turn aggregated
into copulas at level l = 2. The n2 copulas C2,j , j = 1, . . . , n2 are generalized Archimedean
copulas, whose dependence structure is only of partial exchangeability. They consist of
copulas from the previous level (as elements) and can be represented as

C2,j(C2,j) = ϕ−1
2,j

∑
C2,j

ϕ2,j(C2,j)

 ,

where ϕ2,j denotes the generator of copula C2,j , and C2,j represents the set of all copulas
from level l = 1 entering copula C2,j for j = 1, . . . , n2. We can proceed in this manner until
attaining level L with the hierarchical Archimedean copula CL,1 as single object.

2.5 Generalized multiplicative Archimedean copulas

In this section we focus on methods recently proposed by Morillas (2005) and Liebscher
(2006). Both approaches are based on a second functional representation of Archimedean
copulas via so called multiplicative generators (see Nelsen, 2006). Setting ϑ(t) ≡ exp(−ϕ(t))
and ϑ[−1](t) ≡ ϕ[−1](− ln t), equation (2.6) can be rewritten as

C(u1, . . . , ud) = ϑ[−1]
(
ϑ(u1) · ϑ(u2) · . . . · ϑ(ud)

)
. (2.9)

The function ϑ is called multiplicative generator of C.Equation (2.9) can also be expressed
using the independence copula C⊥(u) =

∏d
i=1 ui. Morillas (2005) substitutes C⊥ by an

arbitrary d-copula C in order to obtain

Cϑ(u1, . . . , ud) = ϑ[−1]
(
C(ϑ(u1), ϑ(u2), . . . , ϑ(ud))

)
(2.10)

and proves that Cϑ is a d-copula if ϑ[−1] is absolutely monotonic of order d on [0, 1], i.e. if
ϑ[−1](t) satisfies (ϑ[−1])(k)(t) = dkϑ[−1](t)

dtk ≥ 0 for k = 1, 2, . . . , d and t ∈ (0, 1).
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Another way of generalizing Archimedean copulas is the method proposed by Liebscher
(2006) who introduces the following copula representation

C(u1, . . . , ud) = Ψ

 1
m

m∑
j=1

ψj1(u1) · ψj2(u2) · . . . · ψjd(ud)

 , (2.11)

where Ψ and ψjk : [0, 1] → [0, 1] are functions satisfying the following conditions: Firstly,
it is assumed that Ψ(d) exist with Ψ(k)(u) ≥ 0 for k = 1, 2, . . . , d and u ∈ [0, 1], and that
Ψ(0) = 0. Secondly, ψjk is assumed to be differentiable and monotone increasing with
ψjk(0) = 0 and ψjk(1) = 1 for all k, j. Thirdly, Liebscher’s construction requires that

Ψ
(

1
m

∑m
j=1 ψjk(v)

)
= v, for k = 1, 2, . . . , d and v ∈ [0, 1]. The three conditions guarantee

that C defined in (2.11) is actual a copula. Proposals for Ψ and ψ are given in Liebscher
(2006). A generalization which contains both the proposals by Morillas and Liebscher as
special cases can be found in Fischer and Köck (2007).

2.6 Pair-copula decomposition of a copula

Originally, the pair-copula decomposition (PCD) decomposes the common density f of
d random variables (Aas et al. 2006). Of course, one may also apply the pair-copula
decomposition to the underlying copula density c, as we will show in this subsection.
As an immediate consequence of Sklar’s (1959) theorem, c(F (x1), F (x2), F (x3), F (x4)) =

f(x1,x2,x3,x4)
f(x1)·f(x2)·f(x3)·f(x4)

. Substituting the common density by its PCD,

c(F (x1), F (x2), F (x3), F (x4)) = c12(F (x1), F (x2)) · c23(F (x2), F (x3)) · c34(F (x3), F (x4))

· c13|2(F (x1|x2), F (x3|x2)) · c24|3(F (x2|x3), F (x4|x3))

· c14|23(F (x1|x2, x3), F (x4|x2, x3))

with ci|j(·, ·) being a pair-copula density and its indices i, j refer to xi and xj . Defining the
function

h : (x, v, θ ) 7−→
∂ Cx|v(FX(x), FV (v))

∂ FV (v)

with θ being the parameter vector of the copula Cx,v, the copula density decomposi-
tion can be written as follows: It is obvious that F (x1|x2) = h(x1, x2, θ12) with θ12 is
the parameter (vector) of the of copula C12. Analogously, F (x3|x2) = h(x3, x2, θ23),
F (x2|x3) = h(x2, x3, θ23) and F (x4|x3) = h(x4, x3, θ34). F (x1|x2, x3), again, can be itera-
tively simplified. Finally, define ui = F (xi), i = 1, . . . , 4. The formula for the 4-dimensional
PCD copula density now reads as

c(u) = c12(u1, u2) · c23(u2, u3) · c34(u3, u4)

· c13|2(h(u1, u2, θ12), h(u3, u2, θ23)) · c24|3(h(u2, u3, θ23), h(u4, u3, θ34))

· c14|23(h(h(u1, u3, θ13), h(u2, u3, θ23), θ13|2), h(h(u4, u3, θ43), h(u2, u3, θ23), θ24|3)).
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2.7 Koehler-Symanowski (KS) copulas

Koehler & Symanowski (1995) introduce a multivariate distribution. The corresponding
copula is defined as follows: With the index set V = {1, 2, . . . , d}, V being the power set of
V and I ≡ {I ∈ V with |I| ≥ 2} let X denote a d-dimensional random vector with univariate
marginal distributions Fi(xi), i ∈ V . For all subsets I ∈ I let αI ∈ R+

0 and αi ∈ R+
0 for all

i ∈ V such that αi+ = αi +
∑

I∈I αI > 0 for i ∈ I. Setting ui = Fi(xi) for all i ∈ V , the
KS copula is

C(u1, . . . , ud) =
∏

i∈V ui∏
I∈I

[∑
i∈I

∏
j∈I,j 6=i u

αj+
j − (|I| − 1)

∏
i∈I u

αi+
i

]αI
. (2.12)

In contrast to the cumulative distribution function the functional representation of the
density is quite complicated due to complex factors with additive components. Koehler
& Symanowski (1995) gave an explicit formula for the special case of a so called KS(2)-
distribution, where all parameters αI are set equal zero for |I| > 2. The corresponding
copula will be termed as KS(2) copula henceforth. Palmitesta & Provasi (2005) apply this
particular KS copula to weekly log-returns.
We enlarge the approach of Palmitesta & Provasi by setting the association parameter
αI ≥ 0 for |I| = 2 and |I| = 4 in (2.12), while all parameters αI are set equal to zero for
|I| = 3, i.e. we include a global dependence parameter. We refer to this copula as augmented
KS (aKS) copula . Note that the aKS copula contains the Clayton copula as a special case.

2.8 Multiplicative Liebscher copulas

Liebscher (2006) discusses how to combine or connect a given set of k possibly different
d-copulas C1, . . . , Ck to a new d-copula C in order to increase flexibility and/or introduce
asymmetry. His proposal focusses on multiplicative connections of d-copulas of the form

C(u1, . . . , ud) =
k∏

j=1

Cj(gj1(u1), . . . , gjd(ud)) (2.13)

with a set of k · d admissible functions g11, . . . , g1d, . . . , gk1, . . . , gkd, each of which being
bijective, monotonously increasing or identically equal 1 satisfying

∏k
j=1 gji(v) = v, i =

1, . . . , d. Possible choices for g can be found in Liebscher (2006). We use the following two
specifications for g:

gji(v) ≡ vθji with θji > 0 and
k∑

j=1

θji = 1 for i = 1, . . . , d (2.14)

g1i(v) = f(v), g2i(v) ≡ v · 1
f(v)

, f(v) =
(

1− e−θiv

1− e−θi

)α

, θ > 0, α ∈ (0, 1) (2.15)
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Setting k = 2, choosing C1(u) = C(u) and C2(u1, . . . , ud) =
∏d

i=1 ui, and defining g1i(v) ≡
vθi and g2i(v) ≡ v1−θi , the last equation generalizes to the d-copula with d+ 1 dependence
parameters (”Generalized Clayton of Liebscher type I”, briefly L1),

C(u1, . . . , ud) =
d∏

i=1

u1−θi
i

(
1 +

d∑
i=1

(u−γθi

i − 1)

)−1/γ

, γ > 0, θi ∈ (0, 1).

Applying (2.15) rather than (2.14), the Generalized Clayton of Liebscher type II (L2) copula
with d+ 2 dependence parameters

C(u1, . . . , ud) =
d∏

i=1

(
1− e−θiui

1− e−θi

)α
(

1− d+
d∑

i=1

u−γ
i

[
1− e−θiui

1− e−θi

]αγ
)−1/γ

.

Similarly, combining two d-variate Clayton copulas with parameter γ and λ, respectively,
and using g from (2.14) we obtain the d-dimensional copula family with d+ 2 parameters,
termed as the Generalized Clayton of Liebscher type III (L3) in the sequel. Finally, applying
again (2.15) rather than (2.14), results in the Generalized Clayton of Liebscher type IV (L4).

3 Goodness-of-fit measures

We now tackle the problem to compare the goodness-of-fit (GOF) of the different copula
models from section 2, noting that most of them are not nested. As we apply maximum
likelihood (ML) methods to obtain estimators for the unknown parameter vector, the first
choice is the log-likelihood value ` or – in order to take the different numbers of parameters in
account – the information criterion of Akaike AIC = −2`+(2N(K+1))/(N−K−2), where
K and N denote the number of parameters to be fitted and the number of observations,
respectively. However, comparing log-likelihood values for non-nested models may produce
misleading conclusions. Otherwise, one might compare the matrix of non-parametric de-
pendency measures (e.g. Spearman’s ρ, Kendall’s τ or Blomberg’s β) between assets pairs
with the ”theoretical ones” which can be derived from the parametric copula model, though
keeping in mind that only bivariate dependencies are taken into consideration. Finally, cer-
tain GOF tests may come to application. Following Breymann, Dias & Embrechts (2003),
Chen, Fan & Patton (2004) or recently Berg & Bakken (2006), the main idea is to project
the multivariate problem into a set of independent and uniform U(0, 1) variables, given the
multivariate distribution and to calculate the distance (e.g. Anderson-Darling, Kolmogorov-
Smirnov, Cramér-von Mises, Kernel smoothing) between the transformed variables and the
uniform distribution. In contrast to the authors above, we are not primarily interested
whether the data stem from the specified copula model but we use these distances as cite-
rion itself. The proceeding is roughly as follows:

By means of the Rosenblatt (1952) transformation the random vector X = (X1, . . . , Xd)′ is
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mapped onto a random vector Z∗ = (Z∗
1 , . . . , Z

∗
d)′ via

Z∗
1 ≡ F1(X1) and Z∗

i ≡ FXi|X1,...,Xi−1(Xi|X1, . . . , Xi−1), i = 2, . . . , d. (3.1)

It can be shown that Z∗ is uniformly distributed on [0, 1]d with independent components
Z∗

1 , . . . , Z
∗
d . Assume that the cumulative distribution function of X admits the decomposi-

tion
FX(x1, . . . , xd) = C(FX1(x1), . . . , FXd

(xd)),

where C(·) denotes a parametric copula which is the common distribution function of U =
(U1, . . . , Ud)′ with Ui ≡ FXi(Xi). Define C(u1, . . . , uj) ≡ C(u1, . . . , uj , 1, . . . , 1) for j ≤ d.
Furthermore, the conditional distribution of Ui|U1, . . . , Ui−1 is given by

Ci(ui) ≡
∂i−1C(u1, . . . , ui)
∂u1 . . . ∂ui−1

/ ∂i−1C(u1, . . . , ui−1)
∂u1 . . . ∂ui−1

.

According to (3.1), the variables

Z1 ≡ C(U1) = U1 and Zi ≡ Ci(Ui), i = 2, . . . , d (3.2)

are independent and uniform on [0, 1]. Consequently, the sample X1, . . . ,XN from a para-
metric copula and with marginals given by F1, . . . , Fd can be mapped onto an iid sample
Z1, . . . ,ZN from a uniform distribution on [0, 1]d.

Breymann et al. (2003) suggest to transform each random vector Zi = (Zi1, . . . , Zid)′ in a
(univariate) chi-square variable χj with d degrees of freedom through

χj =
d∑

i=1

Φ−1(Zji)2, j = 1, . . . , N, (3.3)

where Φ−1(u) denotes the standard normal quantile function. If the margins are unknown,
they may be replaced by the corresponding empirical counterparts. Breymann et al. (2003)
state that ”we do assume that the χ2-distribution will not be significantly affected by the
use of the empirical distribution functions used to transform the marginal data”.

4 The data set

The data sets we used to compare the different copula models come from energy future
markets. In particular, we selected natural gas (NG) futures, harbor unleaded (HU) gasoline
futures, heating oil (HO) futures and light sweet crude oil (CL) futures. Instead of analyzing
the prices themselves, we calculated and considered (percentual) continuously compounded
returns (”log-returns”)

Rt = 100(logPt − logPt−1), t = 2, . . . , N.
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In order to account for possible time-dependencies (which are common to most financial
return series), we fitted univariate GARCH models of the form

Rt = µ+ γ1Rt−1 + . . .+ γkRt−k + htεt

with variance equations

h2
t = α0 + α1R

2
t−1 + . . .+ α1R

2
t−p + β1h

2
t−1 + . . .+ βqh

2
t−q

to each of the series and considered standardized residuals εt rather the original returns
Rt. Secondly, as we are primarily not interested in parametric models for the marginal
distributions, all observations (i.e. returns or standardized residuals) were transformed into
uniform ones by means of the (empirical) probability integral transform, i.e.

Ut = FN (Rt) with FN (x) =
{#Rt|Rt ≤ x}

#Rt
and U∗

t = FN (εt),

where # denotes the number of observations. Figure 1 contains the series of prices and
returns.

Figure 1: German stock prices and stock returns.

The following table 1 summarizes descriptive and inductive statistics. All series feature a
certain amount of skewness and high kurtosis (measured by the third and fourth standard-
ized moment S and K). Moreover, there is no significant evidence for serial correlation but
for GARCH effects as the Ljung-Box statistic LB and Engle’s Lagrange multiplier statistic
LM indicate.
Above that, the matrix plot in figure 2 illustrates the positive dependence between all series.

5 Empirical results

The 4-copulas under consideration are the following: Firstly, we selected the Clayton copula
(CLA), the Gumbel copula (GUM) and its rotated version (roGUM) from the Archimedean
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Start End N Future µ s2 S K LB LM

02-01-00 27-12-06 1823 Natural Gas −0.043 13.19 0.317 7.94 17.07
(18.307)

80.35
(18.307)

02-01-00 27-12-06 1823 Unleaded Gasoline 0.095 6.38 −0.12 4.25 6.18
(18.307)

32.16
(18.307)

02-01-00 27-12-06 1823 Heating Oil 0.079 5.77 −0.099 4.60 9.51
(18.307)

51.84
(18.307)

02-01-00 27-12-06 1823 Light sweet crude oil 0.075 4.77 −0.437 5.98 10.87
(18.307)

30.41
(18.307)

Table 1: Energy futures.

class. From the generalized Archimedean copula family, two hierarchical copula models (i.e.
HA-CLA and HA-GUM) are included, based on the Clayton and the Gumbel copula, re-
spectively. Moreover, six representatives of Morrillas’ construction scheme (i.e. MO-CLA1,
MO-CLA2, MO-CLA3, MO-GUM1, MO-GUM2, MO-GUM3) involving the Clayton, the
Gumbel and different generator functions (no. 3, 2, 4 in Morillas, 2005) are included as
well. In addition, two version of Liebscher’s proposal (GMLF, GML2) are used. Above
that, representing the ”elliptical copula world”, the Gaussian copula (NORM) and – as
ultimate benchmark – the Student-t (T) copula are also included. From the pair-copula
decomposition we chose five representatives (i.e. PC-NORM, PC-T, PC-CLA, PC-GUM)
each of them derived from one single copula model (i.e. we used no decompositions based
on different copulas). Finally, the KS(2)-copula and its augmented version (which is a gen-
eralized version of Palmitesta & Provasi, 2005 because we included a general dependence
parameter) and four different types of multiplicative Liebscher copulas from example 2.8
(L1, L2, L3, L4) are considered.

The computer code for the ML-estimation was implemented in Matlab 7.1. For maximiza-
tion purposes we used the line-search algorithm of Matlab. The following tables include the
comprehensive results for the parameter estimates as well as the different goodness-of-fit
measures only for GARCH-residuals and all copulas models mentioned above. As stated
above, goodness-of-fit is measured by the log-likelihood value and Akaike’s AIC criterion.
Above that, two distance measures,

KS =
√
N max

j=1,...,N

∣∣Fχ2(d)(χj)− FN,χ(χj)
∣∣ and

AKS =
1√
N

∑
j=1,...,N

∣∣Fχ2(d)(χj)− FN,χ(χj)
∣∣

are calculated to quantify the distance after application of the Rosenblatt transformation
(based on the different parametric copula models). A graphical illustration of this procedure
is given in figure 3, where we contrasted the kernel density estimator (empirical cdf) of the
projected data with the chi-squared density (cumulative distribution) for the Student-t and
the Clayton copula.
The estimation results are are the following. As known from several empirical studies,
the fit of the 4-variate Gaussian distributions may be considerably improved if the 4-variate
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Student-t distribution is considered, instead. However, pair-copula decompositions based on
bivariate Student-t copulas produce a better goodness-of-fit concerning the likelihood criteria
and the minimal distance measure. Similar, PCD-decompositions based on Archimedean
copulas may also be considered as possible alternatives. This also applies to the three
copulas L1, L3 and L4, whereas all copulas based on Morillas’ approach and, of course, the
plain Archimedean copulas feature low goodness-of-fit measures. Considering hierarchical
Archimedean copulas, instead, we found only slight improvement, at least for our data set.
However, we have to confess that one might improve the results with another hierarchy
which might be found on the basis of cluster algorithms.
The KS(2)-copula (recommended by Palmitesta and Provasi, 2005) provides only a poor
fit to the return series. However, introducing an additional dependence parameter – which
quantifies the overall dependence in the data set – clearly improves all goodness-fit measures.
To sum up, the 4-variate Student-t distribution still plays a predominant role. Some of
the recently proposed construction schemes are partially competitive while others are more
likely to be overestimated in the literature.
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Figure 2: Scatter plots of the (transformed) GARCH residuals.
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Figure 3: Goodness-of fit: Graphical representation.
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Copula l AIC KS AKS

CLA 1469.38 -2934.76 4.908 0.7079

GUM 1546.30 -3088.59 4.099 0.7334

roGUM 1560.73 -3117.45 3.928 0.7088

NORM 2752.70 -5491.33 1.923 0.3602

T 2826.90 -5637.71 1.822 0.1236

PC-NORM 2755.79 -5497.52 1.947 0.3632

PC-T 2851.102 -5676.00 1.820 0.1173

PC-CLA 2274.32 -4534.58 4.095 0.6423

PC-GUM 2379.51 -4744.96 4.418 0.6344

GML2 1923.86 -3833.65 3.713 0.5339

GMLF 1923.86 -3835.67 3.713 0.5337

KS 226.67 -431.19 6.036 0.8146

aKS 2362.55 -4700.93 2.628 0.4256

MO-CLA1 1515.08 -3024.14 5.263 0.6564

MO-GUM1 1720.28 -3434.54 3.654 0.5036

MO-CLA2 1469.38 -2932.76 4.908 0.7079

MO-GUM2 1546.30 -3086.58 4.099 0.7334

MO-CLA3 1515.08 -3024.14 5.263 0.6564

MO-GUM3 1720.28 -3434.54 3.654 0.5036

L1 2279.35 -4546.64 3.153 0.3816

L3 2285.14 -4556.22 3.296 0.4124

L2 1777.60 -3541.15 3.737 0.5423

L4 2210.68 -4405.28 4.435 0.6047

HA-CLA 1852.58 -3697.14 4.364 0.6563

HA-GUM 2041.67 -4075.31 2.943 0.5583

Table 2: Goodness-of-fit measures: GARCH residuals
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