
  

 

 

Describing the Phelix Forward Electric-Power Market using 

Bayesian Estimators for Stochastic Volatility Models 

 

Abstract 

 

This paper applies the EMM methodology to build a stochastic volatility (SV) model of the 

mean and latent volatility for the Phelix future electric power market. The main objective is to 

find appropriate descriptions emphasising schemes for derivative pricing purposes. A Bayesian 

estimator is used to estimate a general scientific SV model and is computed adapting MCMC 

simulation proposed by Chernozhukov and Hong (2003). The approach helps circumvent the 

computational curse of dimensionality and is substantially superior to conventional derivative 

based hill climbing optimizers. The paper finds that MCMC estimation of stochastic volatility 

models are successful describing the energy market’s two financial contracts. The success 

suggests that the dynamics of the market contains features known to general SV-models; that is - 

a preference for simulation based derivative pricing schemes mainly caused by volatility 

clustering. High market volatility caused by the German market’s rather low transparency and 

credibility, the shut-down options of producers, and coal plant threshold price production 

decisions, induces derivative contracts both important and expensive risk management 

instruments. Higher market transparency and credibility may therefore suggest a potential for 

lower hedging costs and increased market liquidity. 
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1   Introduction and Motivation 

The paper describes the base and peak partially observable one-year future electric-power 

financial contract series for the Phelix financial market. The main objective is to see whether 

versions of a stochastic volatility model (SVs) can appropriately describe the characteristics of 

the relatively young Phelix (German) electric-power market. The paper applies the Efficient 

Method of Moments (EMM) methodology to contribute to a better understanding of the 

commodity market’s general behaviour. Appropriate SV modelling may greatly enhance 

derivative pricing for the energy market.  The Base load contract comprises a constant delivery 

rate on all delivery days from Monday until Sunday and during all 24 delivery hours of any 

delivery day during the delivery period. The Peak load contract comprises a constant delivery 

rate on all delivery days from Monday until Friday and throughout 12 delivery hours from 08:00 

am until 08:00 pm of any delivery day during the delivery period. Successful SV-model 

implementations for the forward market will indicate non-predictive market features and weak-

form market efficiency introducing these commodity markets to conventional funds and 

enhanced risk management activities. The foundation for a non-predictive and an efficient 

electric-power market is also important for political acceptance of market allocations and 

product pricings to both private and industrial end consumers. For the market participants in 

general, a SV-model implementation induces market price weak-form efficiency reflecting that 

all historical information is accounted for, characterizing a non-predictive market. 

 

The computational methods implemented by the EMM (and GSM) methodology, which apply 

discrepancy functions sn(ρ) producing asymptotically normal estimates, use the Cramer-von 

Mises discrepancy between the empirical distribution function of ( )1, −t ty x computed from the 

data and the empirical distribution function of ( )1, −t ty x  computed from a simulation as the 

criterion for judging the adequacy of a fit. Therefore, for EMM implementation of the estimator, 

the procedure requires the computation of the estimator itself, 
arg min

ˆ ( )n nsρ ρ
ρ

= , an estimate 
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of the Hessian 0 0( )s ρ
ρ ρ
∂

ℑ =
′∂ ∂

, where lim ( )n ns ρ→∞=s ρ0( ) , and an estimate of the Fisher’s 

information 0 0 0( ) ( ) ( )n n nVar n s n s n sΙ ρ ε ρ ρ
ρ ρ ρ

′⎡ ⎤ ⎡ ⎤ ⎡ ⎤∂ ∂ ∂
= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ ′ ′∂ ∂ ∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. The variance of 

( )0ˆnn ρ ρ−  is then of the sandwich form ( )0 1 1ˆn nV Var n ρ ρ ℑ Ι ℑ− −⎡ ⎤= − =⎣ ⎦ . Put 

( )( ) e−=l nn s ρρ . Apply MCMC methods with ( )l ρ  as the likelihood. From the resulting MCMC 

chain { } 1=

R
ì i

ρ  put ( )( )1

1 1

1 ˆˆ
R R

n R i i R i R
t t

nand
R R

ρ ρ ρ ρ ρ ρ ρ−

= =

′= = ℑ = − −∑ ∑ . 

 

The starting point is the usual assumption of prices following random-walk type behaviour. 

When linear models are used, asset prices are assumed to conform to a martingale: 

( ) ( )1 |d t dE S t S t t t+ Ω = + ⋅ Δ + ⋅ ⋅ Δ⎡ ⎤⎣ ⎦ μ σ ε  where E[.] denotes the mathematical expectation 

operator, Sd(t) be a price of a commodity/security at the end of day t and for a period of time of 

length T, S increases by an amount Tμ ⋅ . The t⋅ ⋅ Δσ ε  term is noise or variability of the path 

followed by S. The amount of this noise is σ  times a Wiener process (dW= dt⋅ε ).  Define now 

the logarithm of the stock price as ln(Sd(t)) and let yd(t) = ln(Sd(t)). A geometric Brownian-

Motion model for the logarithm of a stock price y using Ito’s lemma, the process becomes 

2

2
dy dt dW

⎛ ⎞
= − + ⋅⎜ ⎟

⎝ ⎠

σμ σ , where dt is an infinite small interval of time and dW is the basic 

Wiener process, and ε is a random drawing from a standardized normal distribution N(0,1). 

Because the parameters μ and σ are constants, y follows a generalized Wiener process, with 

constant drift 
2

2
σμ

⎛ ⎞
−⎜ ⎟

⎝ ⎠
 and constant variance rate 2σ . The change in y between time t and 

some future date T, is, therefore normally distributed with mean
2

2
Tσμ

⎛ ⎞
− ⋅⎜ ⎟

⎝ ⎠
 and variance 

2 Tσ ⋅ . The Black’s forward option pricing formula (1976) will always price such derivative 

correctly. However, high-frequency equity time series have shown erratic-behaviour, large 
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negative price changes occur more often than large positive ones and the large changes tend to 

occur in clusters and periods of high volatility are often preceded by large negative price 

changes. Commodity markets show similar characteristics. The behaviour of the price changes 

does not agree with the frequently assumed normal distributions and the constant mean and 

variance assumption in generalized Brownian motion processes, which by construct reject 

market observed sequences of aberrant observations within which returns and volatility display 

changing dynamic behaviour. Based on these facts and therefore in search for more reliable 

forecasts, nonlinear models are plausible alternatives. A vast number of possible nonlinear time 

series models are available. The most persistent descriptive and forecasting devices are regime-

switching models, artificial neural networks and models for stochastic volatility. This paper 

investigates whether a stochastic volatility specification with serial correlation in both the mean 

and the volatility can contribute to a higher understanding of the logarithmic price change 

process in energy and commodity markets. In contrast to other estimation methods, the EMM 

methodology can confront the empirical plausibility of specifications for stochastic volatility. 

The stochastic volatility model (Shephard, 2004) in the classical form with a correlation between 

return innovations and volatility innovations to produce asymmetric volatility effects, is fitted 

using a Bayesian estimator. By using EMM, systematic behaviour not contained in the stochastic 

model representation, will report misspecifications available from Bayesian model’s moment 

scores. 

 

The results show that the quasi-Bayesian estimator using statistical, non-likelihood base criterion 

functions, provide a useful alternative to the usual extremum estimators. In particular, the two 

energy market series are well represented applying these quasi-Bayesian criterion functions. The 

overall score functions from the MCMC chains are far from rejection of the stochastic volatility 

representation. The optimal scored models report both serial correlation in mean and volatility, 

as well as a small negative asymmetric volatility specification for an optimal score. Importantly, 

error-transformations or long memory et cetera are not necessary for an EMM-based appropriate 
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model fit. The rest of this article is therefore organised as follows. Section 2 studies the auxiliary 

model specification. Section 3 conducts EMM stochastic volatility specifications and evaluates 

validity. Section 4 implements the MCMC estimated SV-model, Section 5 interprets the models 

result and Section 6 contain summarises and conclusions. 

 

2 Quasi-Bayesian estimations 

The class of estimators referred to as quasi-Bayesian estimators (QBEs), which are defined 

similarly to Bayesian estimators but use general statistical functions in place of the parametric 

likelihood function, are statistical motivated. QBEs are typically means or quartiles of a quasi-

posterior distribution, hence can be estimated (computed) at the parametric rate 1/ B , where B 

is the number of draws from the distribution (functional evaluation). Moreover, QBE estimation 

includes point estimates, confidence intervals, prior information, and simple imposition of 

constraints.  

 

Classical average-like criterion functions ( )nL θ  are highly non-convex, almost everywhere flat, 

and have numerous discontinuities and local optima, inducing that the QBE approach will yield 

a computable and theoretically attractive alternative to the extremum-based estimation and 

inference. QBE estimators, generally not a log-likelihood functions, the transformations 

( )

( )

( )( )
( )

Θ

=
∫

n

n

L

n L

ep
e d

θ

θ

π θθ
π θ θ

 are proper distribution densities over the parameters of interest (quasi-

posterior). The mean is defined as 
( )

( )

( )ˆ ( )
( )Θ Θ

Θ

⎛ ⎞
⎜ ⎟= =
⎜ ⎟
⎝ ⎠

∫ ∫ ∫
n

n

L

n L

ep d d
e d

θ

θ

π θθ θ θ θ θ θ
π θ θ

, where Θ  is the 

parameter space. Formally, let ( )np u  be a penalty or loss function associated with making an 

incorrect decision. Three examples of ( )np u  are (1) 2( ) | |=np u nu , the squared loss function, 

(2) 
1

( ) | |
=

= ∑d
n jj

p u n u , the absolute deviation loss function, and (3) 
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1
( ) ( 1( 0))d

n j j jj
p u n u u

=
= − ≤∑ τ , (0,1)jfor ∈τ  for each j, the check loss function of Koenker 

and Bassett (1978). The parameter is assumed to belong to a subset Θ  of the Euclidean space.  

Using the above quasi-posterior 
( )

( )

( )( )
( )

Θ

=
∫

n

n

L

n L

ep
e d

θ

θ

π θθ
π θ θ

 density from above, define the quasi- 

posterior risk function as: 
( )

( )

( )( ) ( ) ( ) ( )
( )Θ Θ

Θ

⎛ ⎞
⎜ ⎟= − = −
⎜ ⎟
⎝ ⎠

∫ ∫ ∫
n

n

L

n n n n L

eQ p p d p d
e d

θ

θ

π θξ θ ξ θ θ θ ξ θ
π θ θ

.  

The class of QBEs that minimizes the functions ( )nQ ξ  for various choices of np  are defined as: 

[ ]arg infˆ ( )=
∈Θ nQθ ξ

ξ
. The estimator can be interpreted as a decision rule for the least unfavourable 

given the statistical information provided by the probability measure np , using the loss function 

nρ . In particular, the loss function nρ  may asymmetrically penalize deviations from the truth, 

and π  may give differential weights to different values of θ . The solution to the above arg inf 

function for loss functions (1)-(3) includes, respectively1 quasi posterior means, medians, and 

marginal jτ th quartiles  

 

3.   Data set and Score Generator 

The EMM methodology is used to estimate stochastic volatility models for two financial series 

from the German energy market (base and peak load contracts). Both models are estimated from 

two daily percentage change data sets consisting of 1156 observations from 2002 to the start of 

2007. The time series consists of all available daily observations from this financial market. 

Characteristics of the two data sets are reported in Table 1. For both commodity market series 

the KPSS statistic cannot reject stationary series. One of the features which stand out most 

                                                            
1 The formulation implies that conditional on data, the decision θ̂  satisfies Savage’s axioms of choice under 
uncertainty with subjective probabilities given by np . 
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Table 1. Characteristics for the raw OBX Index series and the Forward Commodity Market 
Panel A: Base Load One-Year Forward Contract 

Mean / Maximum / Moment Quantile* Quantile* K-S Serial dep.
Median Std.dev. Minimum Kurt/Skew Kurt/Skew Normal Z-test Q(12)

Phelix Base 0.06624 1.00463 9.8555 18.5360 0.3385 15.8646 3.77630 45.8547
0.07065 -7.0490 0.39324 0.0285 {0.0004} {0.0000} {0.0000}

BDS-statistic (ε = 1) KPSS (Stationary) ARCH Serial dep.
m=2 m=3 m=4 Level (12) Trend (12) (12) Q2(12)

Phelix Base 5.5580 6.4706 6.8379 0.12280 0.10910 32.6356 200.13
{0.0000} {0.0000} {0.0000} {0.4854} {0.1305} {0.0000} {0.0000}

 
 
Panel B: Peak Load One-Year Forward Contract  

  

Mean / Maximum / Moment Quantile Quantile K-S Serial dep.
Median Std.dev. Minimum Kurt/Skew Kurt/Skew Normal Z-test Q(12)

Phelix Peak 0.06720 0.95790 9.0275 14.0756 0.2627 10.5622 2.91950 25.4296
0.08083 -6.4281 0.29721 -0.0485 {0.0051} {0.0000} {0.0129}

BDS-statistic (ε=1) KPSS (Stationary) ARCH Serial dep.
m=2 m=3 m=4 Level (12) Trend (12) (12) Q2(12)

Phelix Peak 5.2893 5.7941 5.2632 0.13850 0.14160 38.4785 93.00
{0.0000} {0.0000} {0.0000} {0.4281} {0.0602} {0.0000} {0.0000}

 
 

Figure 1. Frequency distribution for the Base Load (left) and Peak Load (right) Future Commodity contracts
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prominently is the kurtosis of the two series which are larger than normally distributed values. 

The features of the series reflect the fact that the tails of the distribution are thicker than the tails 

of the normal distribution. Differently stated, large observations occur more often than one 

might expect for a normally distributed variable. The first important observation is the two data 

sets distributional similarities. The mean is almost identical with the standard deviation greater 

for the base load contract most likely due to prices during low demand periods (from 8.00 

evening to 08:00 morning). The maximum and minimum will therefore naturally show a higher 

distance for the base contract. The two series skewness measures are positive suggesting some 

form of capacity constraint features in the market (higher volatility from high positive price 

changes). The quartile measure of skewness is generally, relative to the moment measure, 

smaller suggesting influence from outliers in the classical moment measure. The Q, Q2 and 

ARCH statistics (12 lags)2 induce serial correlation in both mean and volatility (clustering) for 

both commodity series. Figure 1 plots the frequency distributions of the two raw data series 

together with a normal distribution and a kernel density. The kernel density estimator, 

1

1ˆ ( ) ( )
n

t

t

y yf y K
nh h−

−
= ∑ , where K(z) is a function that satisfies ( ) 1K z dz =∫  and h is the so-

called bandwidth. K(z) is the Gaussian kernel. By inspection of the plots, one see that the 

distributions are more peaked and have fatter tails than the corresponding normal distribution. 

Hence, both very small and very large observations occur more often compared to a normally 

distributed variable with the same first and second moments. Importantly, these features found in 

the two commodity series suggest nonlinear models, simply because linear models would not be 

able to generate these data.  

 

The first step to implement the EMM estimator is the SNP score generator model (moments). 

The SNP model, described in Gallant and Tauchen (1989), appropriately used provide a  

 

                                                            
2 See McLLeod and Li (1983) for Q and  Q2 and Engle (1982) for the ARCH statistics 
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Table 2. Score generator Model selection values 

Panel A: Base Load One-Year Future Contract 

Case L μ L g L r L p K z I z K x I x p q s n BIC HQ AIC
1 1 0 0 1 0 0 0 0 3 1.4033 1.4094 1.4067 1.4050
2 2 0 0 1 0 0 0 0 4 1.3984 1.4076 1.4035 1.4010
3 3 0 0 1 0 0 0 0 5 1.3958 1.4080 1.4026 1.3993

4 2 0 1 1 0 0 0 0 5 1.2494 1.2616 1.2562 1.2529
5 2 1 1 1 0 0 0 0 8 1.1138 1.1351 1.1256 1.1198

6 2 1 1 1 4 0 0 0 12 1.0588 1.0923 1.0774 1.0683
7 2 1 1 1 6 0 0 0 14 1.0517 1.0914 1.0737 1.0630 **
8 2 1 1 1 8 0 0 0 16 1.0477 1.0934 1.0723 1.0601

9 2 1 1 1 6 0 1 0 19 1.0472 1.1021 1.0776 1.0628
 

Panel B: Peak Load One-Year Future Contract 

Case L μ L g L r L p K z I z K x I x p q s n BIC HQ AIC
1 1 0 0 1 0 0 0 0 3 1.4026 1.4087 1.4060 1.4043
2 2 0 0 1 0 0 0 0 4 1.3987 1.4078 1.4037 1.4012
3 3 0 0 1 0 0 0 0 5 1.3975 1.4097 1.4042 1.4009

4 2 0 1 1 0 0 0 0 5 1.3031 1.3153 1.3098 1.3065
5 2 1 1 1 0 0 0 0 7 1.2216 1.2429 1.2334 1.2276

6 2 1 1 1 4 0 0 0 11 1.1487 1.1823 1.1673 1.1583
7 2 1 1 1 6 0 0 0 13 1.1324 1.1721 1.1544 1.1437
8 2 1 1 1 8 0 0 0 15 1.1252 1.1679 1.1489 1.1373 **
9 2 1 1 1 10 0 0 0 17 1.1252 1.1710 1.1506 1.1382

10 2 1 1 1 8 0 1 0 20 1.1236 1.1846 1.1574 1.1409
 

 
Table 3. Characteristics of Semiparametric Score Residuals 

Panel A: Base Load One-Year Future Contract 

Panel A. Standard Max. Moment Quantile Quantile Serial dependence
Mean deviation Min. Kurt/Skew Kurt/Skew Normal Q(12) Q2(12)

Residual 0.0811234 1.2067539 7.444263 11.306346 0.1510 1.1104 11.312 6.1988
-11.85469 -0.755695 -0.0120 {0.5740} {0.5024} {0.9057}

Panel B. BDS-statistic (ε=1) ARCH K-S RESET Joint
m=2 m=3 m=4 m=5 (12) Z-test (12;6) Bias

Residual 0.57764 1.052113 0.60607 0.34263 0.9525 1.6471754 16.819893 2.545375
{0.3376} {0.2294} {0.3320} {0.3762} {0.3291} {0.0088} {0.1565} {0.4671}

 
Panel B: Peak Load One-Year Future Contract 

Panel A. Standard Max. Moment Quantile Quantile Serial dependence
Mean deviation Min. Kurt/Skew Kurt/Skew Normal Q(12) Q2(12)

Residual 0.0486345 1.1619544 10.885409 14.782357 0.1384 1.2994 14.1147 2.9319
-10.2333 0.3013201 -0.0453 {0.5222} {0.2934} {0.9960}

Panel B. BDS-statistic (ε=1) ARCH K-S RESET Joint
m=2 m=3 m=4 m=5 (12) Z-test (12;6) Bias

Residual 0.505008 -0.104009 -0.380573 -0.048984 1.0436 1.6471754 14.818666 0.45413
{0.3512} {0.3968} {0.3711} {0.3985} {0.3070} {0.0088} {0.2515} {0.9288}
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reasonably good statistical description of the data set. Starting from a VAR model, the SNP 

methodology if necessary, elaborates the description of the data set from VAR, to Normal 

(G)ARCH, to Semiparametric GARCH, and to Nonlinear Nonparametric. Applying the BIC 

(Schwarz, 1978) values for model selection, the preferred model for the Base load data set is: 

Lμ=2, Lg=1, Lr=1, Lp=1, Kz=6, Kx=0. Hence, the model is an AR(2) model for {yt} with a 

GARCH(1,1) conditional scale function and time homogenous nonparametric innovation density 

with thick tails accommodated via Kz=6. The Peak load data set is: Lμ=2, Lg=1, Lr=1, Lp=1, 

Kz=8, Kx=0. Note that the dependence on the past is through the linear location function and 

GARCH scale function. The SNP models define the GSM criterion function. The model 

elaborations are reported in Table 2. The identification process for both series therefore suggests 

a linear mean using ARMA(p,q) modelling and a (G)ARCH(m,n) regime switching specification 

for the latent volatility. Moreover, the SNP methodology describes the GARCH process using a 

BEKK (Engle & Kroner, 1995) formulation, which includes parameters for asymmetry and level 

effects in the conditional volatility. Hence, for the base both asymmetric volatility and level 

effects are present, while the peak load show no level effects but asymmetric volatility is 

significant. The SNP specifications are adjusted for maximum likelihood as well as parameter 

correlations. For a formal evaluation of the final models, the residuals are exposed to enhanced 

specification tests. Specification tests are shown in Table 3 for the two optimal semi-parametric 

GARCH models. The test statistics suggest no data dependence for any test statistics. Hence, 

misspecifications are minimised and both models may be used for descriptive and forecasting 

purposes in the commodity market. 
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4   Characterizing the Phelix forward Electric-Power Market 

4.1  Characteristic details  

Some characteristics of the two time series from the SNP configuration are reported in Figure 2. 

The daily conditional volatility is plotted in panel A. The plot suggest an constantly increasing 

volatility since the start in 2002. The one-step-ahead density f y xK t t(~ | . $),−1 θ conditional on the  
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Figure 2. Characteristics for the Semi-parametric GARCH Score model 

 

values for x y y yt t L t t− − − −= ′ ⋅ ⋅ ⋅ ′ ′ ′1 2 1(~ , , ~ , ~ ) , is plotted in panel B and C, respectively. All lags are set at 

the unconditional mean of the data. These results suggest small non-normal features in the one-

step-ahead density. The conditional variance function is plotted in panel D where we show the 

average over all x y y yt t L t t− − − −= ⋅ ⋅ ⋅1 2 1( , , , )  in the data of the conditional variance 

VAR y y yt t L t( | , , )− −⋅ ⋅ ⋅ +1 δ  plotted against δ, the percentage growth. The plots suggest small 

asymmetric volatility from the shocks (δ). The information in these plots for both the mean and 

the volatility is useful for the implementation of the stochastic volatility model below. 

 



Page: 12 

4.2  EMM and MCMC Estimated Stochastic Volatility models 

Let yt denote the first difference (logarithmic) over a short time interval of the price of a 

financial asset traded on an active speculative market. The stochastic volatility model in the form 

used by 

Gallant, Hsieh, and Tauchen (1997) with a slight modification to produce a leverage effect 

(correlation between return innovations and volatility innovations) is 

( )
( )

( )

0 1 1 0 1

0 1 1 0 2

1 1

2
2 1 2

exp( )

1

t t t t

t t t

t t

t t t

y a a y a u

b b b u
u z

u s r z r z

−

−

= + − + ν ⋅

ν = + ν − +

=

= ⋅ + − ⋅

 

where 1 2;t tz z  are iid Gaussian random variables. The parameter vector is 0 1 0 1( , , , , , )a a b b s r=ρ . 

Early references are Clark (1973) and Tauchen and Pitts (1983). More recent references are 

Gallant and McCulloch (2006), Andersen (1994), and Durham (2003). See Shephard (2004) for 

more background and references.  

 

The score generator’s (SNP) expectation under of the structural model is used as the vector of 

moment conditions. The SNP score is the derivative of the log density with respect to the SNP 

parameters. The SNP parameters are replaced by the quasi-maximum likelihood estimates, 

which are computed by maximizing the SNP pseudo-likelihood. Assuming a data generation 

process and computation of the expectation of a nonlinear function given values of the structural 

parameters, the structural model provides a means to generate simulated realization for given 

values of the structural parameters: { }1 1
ˆ ˆ( ), ( ) Ny xτ τ τ

ρ ρ ρ− =
a , where ρ is the vector structural 

parameters to be estimated, ŷτ  are endogenous variables, and x̂τ  are lagged endogenous 

variables (dependent on ρ). Let { }1 1
, n

t t t
y x − =
% %  denote the observed data set, where 

( )1 1,..., , 1t t t Lx y y L− − −= ≥% % % . The first step is quasi-maximum likelihood estimation of the SNP 
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Table 4. Score diagnostics for rho ρ -parameters 

Panel A: Base Load Future Contract  
 

Score diagnostics:
normalized standard

Index mean score error t-statistic Descriptor
1 -1.71225 1.91954 -0.892010 a0[1]    1
2 1.42405 1.79202 0.794660 a0[2]    2
3 1.83808 1.70793 1.076200 a0[3]    3
4 0.78931 1.62422 0.485960 a0[4]    4
5 -0.2932 1.46695 -0.199870 a0[5]    5
6 0.8736 1.70494 0.512390 a0[6]    6
7 0 0 0.000000 A(1,1)   0 0
8 0.08875 0.93529 0.094890 B(1,1)
9 1.42646 1.02402 1.393010 B(2,1)

10 -0.1652 2.4469 -0.067510 R0[1]
11 -0.18906 1.37795 -0.137200 P(1,1)   s
12 -5.0884 9.30471 -0.546860 Q(1,1)   s
13 -1.02402 1.0263 -0.997780 V(1,1)   s
14 -0.08701 0.29575 -0.294220 W(1,1)  s

 
 

Panel B: Peak Load Future Contract 
Score diagnostics:

normalized standard
Index mean score error t-statistic Descriptor

1 -1.21781 1.86141 -0.654240 a0[1] 1
2 -0.41935 1.67197 -0.250810 a0[2] 2
3 1.61802 1.54826 1.045060 a0[3] 3
4 -0.1638 1.35437 -0.120940 a0[4] 4
5 -0.7301 1.18829 -0.614410 a0[5] 5
6 -1.23612 1.35063 -0.915220 a0[6] 6
7 -0.47136 1.53112 -0.307850 a0[7] 7
8 -1.45956 1.57213 -0.928400 a0[8] 8
9 0 0 0.000000 A(1,1) 0  0

10 0.11652 0.99924 0.116610 B(1,1)
11 1.95082 1.0074 1.936490 B(1,2)
12 -0.80866 1.79847 -0.449640 R0[1]
13 -1.78948 1.32152 -1.354110 P(1,1) s
14 -9.63493 7.92441 -1.215850 Q(1,1) s
15 -1.01182 0.6348 -1.59393 V(1,1) s

 
    
 

 

Table 5. MCMC estimation EMM primary results 

Panel A: Base Load Future Contract 

Standard errors: Hessian
Rho(ρ) Mean Mode Sandwich Hessian Information  t-ratios

a0 0.071699 0.061523 0.002603 0.007371 0.000843 8.346688
a1 0.113480 0.118164 0.004599 0.016402 0.002504 7.204467
b0 -0.669818 -0.663086 0.002946 0.020113 0.005617 -32.968847
b1 0.874645 0.907227 0.002653 0.007969 0.000995 113.844468
σ 0.247081 0.211914 0.001046 0.006344 0.002544 33.403856
ρ -0.053480 -0.051758 0.002021 0.021357 0.002705 -2.423459

The log posterior value at the mode: 8.181400 ltheta (SNP) 12
lrho 6

Degrees of freedom of model 5
χ2 0.146518

           The degrees of freedom for seinfo are: 2377  
 

Panel B: Peak Load Future Contract 

Standard errors: Hessian
Rho(ρ) Mean Mode Sandwich Hessian Information  t-ratios

a0 0.072387 0.067871 0.019510 0.009785 0.026543 6.936026
a1 0.195553 0.181152 0.015927 0.013965 0.025452 12.971883
b0 -0.727810 -0.702637 0.099236 0.027993 0.035249 -25.100444
b1 0.709858 0.832031 0.045146 0.007768 0.002015 107.107341
σ 0.234794 0.238281 0.029900 0.006271 0.002540 38.000359
ρ -0.137902 -0.113281 0.154540 0.024251 0.006826 -4.671199

The log posterior value at the mode: -10.751000 ltheta (SNP) 15
lrho 6

Degrees of freedom of model 8
χ2 0.216211

           The degrees of freedom for seinfo are: 2254
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Figure 3. MCMC Chain from the Optimal Parameter Files. The panels are from top to bottom a0, a1, b0, b1, σ, ρ, and π. Base Load to the left and Peak Load to the right. 
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Figure 4. Kernel Density Estimates of Chain from the Optimal Parameter File (Base and Peak One-Year Forward) 



  

score generator: ( )1
1

arg max 1 ln | ,
n

n t t t
t

f y x
n

θ θ
θ −

=

=
∈Θ ∑% % % . For the second step, the moment criterion is 

1
1

1 ˆ ˆ( , ) ln ( ) | ,
N

n n nm f y x
N τ τ

τ

ρ θ ρ θ
θ −

=

∂ ⎡ ⎤= ⎣ ⎦∂∑% % , and the GMM estimator of the structural parameter 

vector is ( ) 1arg min
ˆ ) ( , ) ( , )n n n n n nm mρ ρ θ Ι ρ θ

ρ
−

′=
∈ℜ

% %% , where ( ) 1

nΙ
−%  is the weighting matrix. If the 

SNP score generator is a good statistical approximation to the data generating process, then the 

estimator is 1 1
1

1 ln ( | , ln ( | ,
n

n t t t n t t t n
t

f y x f y x
n

Ι θ θ
θ θ− −

=

′∂ ∂⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦
∑ % %% % % % % . The standard errors computed 

by adaptation of the Chernozhukov and Hong (op.cit.) are asymptotically correct. However, in 

finite samples certain tuning parameters need to be chosen carefully to get reliable results.  The 

normalized mean SNP score vector under the model, which is 

1
1

1 ˆ ˆ( , ) ln ( ) | ( ),
N

n n n n n nnm n f y x
N τ τ

τ

ρ θ ρ ρ θ
θ −

=

∂ ⎡ ⎤′ = ⎣ ⎦∂∑% %% % % , along with the unadjusted standard errors 

of the normalized scores, and the corresponding quasi-t-statistics, are reported in Table 4. The 

quasi-t-ratios are not actually asymptotically N(0,1) because they take only into account the 

randomness in nθ% , while treating ˆnρ  as if it were a fixed value 0ρ . As shown by Newey (1985) 

and Tauchen (1985), the unadjusted standard errors are biased upwards so the quasi-t-ratios are 

downward biased relative to 2.0. The t-ratios are used to assess model fits along all dimensions. 

Table 4 reports that all the scores have values less than 2, suggesting a well model fits. For 

informative diagnostics Figure 3 plots the MCMC chain for all ρ's and π’s. The chains look like 

they are stable. The rejection rate is about 15-20% inducing an appropriate scaling. Other 

indicators of reliability are also available. Kernel density plots of the marginal of the MCMC 

chain for ρ are shown in Figure 4. The figures show no obvious departure from normality, 

inducing reliability. The kernel plots of stats, which are the statistics σ(ρ) computed from the 

simulations { } ( )1
ˆ ( ) Ny sτ τ

ρ ρ ρ
=

a a   for each ρ in the MCMC chain, are available for the mean 

and the volatility. The density plots show no obvious deviation from normality3.  For both series 
                                                            
3 All tables, plots etc. are available from author upon request. 
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the chain reports low and close to zero serial correlation for all ρs and the scatterplots report 

correlation matrices indicating no linear tightly packed relationship. In summary, the chains look 

well tuned for both series. 

 

5  Empirical Findings 

From the Score generator and the BIC-optimal Semi-Parametric GARCH specification, the 

models show no obvious mean regime shifts. The Scores show serial correlation in mean and 

volatility (clustering), asymmetry and level influence on the volatility. Several lags of hermite 

polynoms suggest deviation from the normal distributional return features. Specially constructed 

conditional volatility plots do not suggest significant asymmetric volatility for neither the base nor 

the peak load series. Due to the BEKK formulation of conditional volatility, volatility persistence 

can be measured using the SNP relationship 22
GARCHARCH ηηϕ += . The base and peak contracts 

report a persistence of 0.975 and 0.893, respectively4. Half the shocks are therefore dissipated 

after approximately 20 and 6 trading days, respectively. The base contract seems to have higher 

volatility persistence than the peak load contract. This difference in volatility features between 

these two contracts may be attributed to the international energy markets physical interconnectors. 

The feature may therefore stem from the fact that the peak load is much more difficult to solve at 

day-time using the import option due to transfer constraints between European energy markets as 

well as supply/demand restrictions at day-time for potential exporters’ in there respective home 

markets. 

 

The reported model residuals in Table 3 report no systematic features. The moment scores should 

therefore be relevant and be well described for the EMM methodology’s SV model building 

process. The primary results from running EMM is the ρ-parameter mode, which is the suggested 

estimate for EMM, the mean, and three sets of standard errors: sandwich 1 1V ℑ Ι ℑ− −= , 

information matrix 1Ι − , and Hessian 1ℑ − . The sandwich estimator involves numerical 
                                                            
4 The SNP-parameters are adjusted by the GSM modelling procedures to resolve SNP parameter correlations. 
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differentiation and several nonlinear optimizations inducing accuracy concerns. When the SNP fit 

is a good approximation to the true data generating process, the standard error from the Hessian is 

preferred for t-ratios. The correct chi-square statistic is the negative of the normalized value of the 

optimized objective function, which is ( ) 1
( , ) ( , )n n n n n n nnm mρ θ Ι ρ θ

−
′ % %%% % , and 

1 1
1

1 ln ( | , ln ( | ,
n

n t t t n t t t n
t

f y x f y x
n

Ι θ θ
θ θ− −

=

′∂ ∂⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦
∑ % %% % % % % . Under correct specification of the structural 

model, the normalized value of the optimized EMM objective function is asymptotically χ2 with 

degrees of freedom equal to the length of θ minus the length of ρ minus one to account for the 

SNP normalization rule (A(1,1)=1). The objective function value for the base and peak load 

contracts are -8,18 and -10.75 respectively, indicating good model fits to actual data series. The 

results are summarized in Table 5 for both contracts.  

 

The model’s parameters for the base and peak load contracts show both positive drift (a0) and 

serial correlation (a1) in the mean. The base contract shows a much higher drift than the peak 

contract; that is the energy prices between 08:00 pm and 08:00 am has increased more than day-

time prices. The peak contract shows the highest daily serial correlation in the mean. The 

conditional volatility parameters report both a negative constant parameter (b0); the peak contract 

is highest in absolute terms. That is, low demand periods (night) induce higher volatility. The 

volatility shows rather low persistence (b1), with values around 0.84 and 0.9 for base and peak 

contracts, respectively. The result suggests that only 6 days are needed for half the shocks to day 

out for the base contract. The volatility parameter (σ) show highest values for the base contract. 

The base and peak load contracts report an instantaneous volatility of 0.233 and 0.212 

respectively. Finally, the two asymmetric volatility factors are negative (ρ), suggesting higher 

volatility from positive shocks than negative. However, both parameters are small and 

insignificant as indicated from plots in Figure 2. The volatility is rather high relative to other 

financial markets. Hence, the higher commodity market volatility relative to equity/currency 
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markets is confirmed. The prices of derivatives (the risk market) will therefore be higher in 

commodity markets, reflecting the positive price-formula volatility effects. For both series, 

derivative formulas should adjust for serial correlation in the mean, volatility clustering and level 

effects.  

 

Monte Carlo Simulations may therefore lead us to a deeper insight of the nature of the price 

processes describable for stochastic volatility models. The results are close to the moment based 

(nonlinear optimizers) techniques adjusting for a more robust model specification. The QBE 

techniques help to keep the model’s parameters in the region where predicted shares are positive. 

Therefore, to evaluate parameter stability, we compute confidence intervals by inverting the 

criterion difference test based on the asymptotic chi-square distribution of the optimized objective 

function. The criterion difference confidence intervals reflect asymmetries in the objective 

function and are to be preferred. They are also safer from a numerical analysis point of view 

because they only require that the mode be accurately determined by the MCMC chain, which 

requires neither careful tuning to try to get I accurately determined nor excessive length to get J 

accurately computed. The easiest way to find the boundary 2
1ˆ( ) ( )i i i iq q αρ ρ χ −− =  is to compute 

( )i iq ρ  for values near where the standard errors for the optimal solution ought to be and 

interpolate. Table 6 reports these results for all six model coefficients (ρs) for both series. For the 

base series, using quadratic interpolation, the criterion difference confidence interval for ρ4 is 

(0.8998, 0.9253) whereas the interval from the standard errors is (0.8913, 0.9232).  
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Table 6. Confidence Intervals for Base and Peak One-Year Forward Energy Contracts 

Using quadratic interpolation between Rho(ρ  ) points, the 
criterion difference confidence interval (95%) is:

Confidence Intervals
Rho(ρ)   Criterion Difference *      Hessian Interval

ρ1 0.05125 0.07526 0.04678 0.07627
ρ2 0.08744 0.13254 0.08536 0.15097
ρ3 -0.72134 -0.61231 -0.70331 -0.62286
ρ4 0.89976 0.92531 0.89129 0.92316
ρ5 0.20012 0.22312 0.19923 0.22460
ρ6 -0.07452 0.00121 -0.09447 -0.00904

* The 95% critical point of a χ2 on 1 degrees freedom is: 3.841

 

Using quadratic interpolation between Rho(ρ  ) points, the 
criterion difference confidence interval (95%) is:

Confidence Intervals
Rho(ρ)   Criterion Difference *     Hessian Interval

ρ1 0.05895 0.83755 0.04830 0.08744
ρ2 0.16329 0.19523 0.15322 0.20908
ρ3 -0.76343 -0.63452 -0.75862 -0.64665
ρ4 0.82219 0.84538 0.81649 0.84757
ρ5 0.22599 0.24790 0.22574 0.25082
ρ6 -0.19353 -0.03459 -0.16178 -0.06478

* The 95% critical point of a χ2 on 1 degrees freedom is: 3.841

 

 

 

6  Summary and Conclusions 

This work has used the QBE estimators (using common statistical, non-likelihood criterion 

functions) for a stochastic volatility representation for the base and peak load one-year forward 

Phelix (German) energy market contracts. The results show that these estimators are useful 

alternatives to the usual extremum estimators.  For both data series, model output as scores and 

kernel plots for parameters and statistics, suggests reliable confidence intervals for all parameters. 

The MCMC approach therefore extends model findings relative to nonlinear optimisers. For both 

marketed series, the MCMC QBE approach suggests reliable goodness of fit measures. Due to 

these stochastic volatility findings, the price of a derivative of a forward/future may not be 

possible to determine using closed form formulas. The reason is that there may not exist a self-

financing strategy involving forwards/futures and risk-less bonds applying a tracking portfolio 

approach perfectly replication the derivatives pay-off (the arbitrage argument). In absence of 

hedging possibilities (perfect tracking) the only available methodology for perfect derivative 

pricing is simulation based methodologies that closely replicate market characteristics and 

dynamic equilibrium models5. Consequently, the stochastic volatility results suggest that as for 

valuation of path dependent options, simulation may be considered as the best numerical method 

                                                            
5 The results of Broadie and Glasserman (1996) give the direct path wise estimates for the hedge parameters within a 
single simulation run (greeks). 
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for derivative valuation6. Hence, any derivative can be priced using the preferred specifications 

and parameters together with simulation techniques in Mathematica® or any other programming 

tools7. 

 

The success of this version of the SV model, suggests positive serial correlation in the mean and 

that volatility tends to cluster. Thus, although price processes are hardly predictable, the variance 

of the forecast error is time dependent and can be estimated by means of observed past variations. 

The observed volatility clustering induce that the unconditional distribution of returns is at odds 

with the hypothesis of normally distributed price changes. The stochastic volatility models are 

therefore an area in empirical financial data modelling that is fruitful as practical descriptive and 

forecasting device together with applications such as Value-at-Risk, option pricing schemes and 

portfolio management. SV models allow us to explain empirically observed departures from 

Black-Scholes-Merton prices for options and understand why we should expect to see occasional 

dramatic moves in financial markets. This paper doesn’t want to claim the practical adequacy of a 

(nonlinear) time series model refutes, for example, the market efficiency hypothesis. However, 

the empirical evidence must be taken seriously. Serial correlation per se cannot reject market 

efficiency. Modern econometrics should bring the application of economics closer to the 

empirical reality of the world, allowing us to make better decisions, inspire new theory and 

improve model building. 

 

                                                            
6 Simulations of varying lengths are available from author upon request. 
7 The t-ratios, serial correlation plots and the Mathematica® implementation for derivative pricing are all available 
from author upon request. 
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