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Abstract
We incorporate imperfectly insured unemployment in the finance

constrained economy proposed by Woodford (1986), by introducing
unions and unemployment benefits financed by labor taxation. We
show that this simple extension of the Woodford model changes dras-
tically its stability conditions and local dynamics around the steady
state. In fact, in contrast to related models in the literature, we find
that under constant returns to scale in production: (i) indeterminacy
always prevails in the case of a unitary elasticity of substitution be-
tween capital and labor; (ii) flip and Hopf bifurcations occur for em-
pirically credible elasticities of substitution between capital and labor,
so that a rich set of dynamics may emerge at "realistic" parameters’
values.
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1 Introduction
In this paper, we study the consequences of labor market frictions and im-
perfect unemployment insurance in an economy where workers are financially
constrained. We investigate whether these features affect the emergence of
endogenous (sunspot-driven) fluctuations, by analyzing the occurrence of lo-
cal indeterminacy and local bifurcations.
To do so, we introduce unemployment benefits and unions in the finance

constrained economy proposed by Woodford (1986), and extended by Grand-
mont et al. (1998) to a general production function with constant returns to
scale. The crucial assumption of the Woodford model is that "capitalists"
discount the future less than "workers", and thus end up owning the whole
capital stock. Capitalists then simply live of capital rents, accumulating cap-
ital through a traditional, unconstrained, consumption-saving choice, while
workers, being submitted to a liquidity constraint, can only consume out
of wage earnings. While the Woodford framework is a particularly relevant
starting point (since workers do not possess capital, they cannot use it as a
collateral and thus face difficulties in financing credit activities), the assump-
tion of financially constrained workers is probably most salient if workers are
assumed to face real income uncertainty, due notably to the risk of being
unemployed.
We consider therefore a setup in which, as in Lloyd-Braga and Modesto

(2004), wages and employment are bargained between unions and firms, and
where unemployment emerges as an equilibrium result. However, in contrast
to that paper and to many models in the Real Business Cycle literature,
we do not assume that there exists a perfect insurance/redistributive mecha-
nism that allows workers to completely insure themselves against the revenue
losses they would incur if unemployed.1 We consider instead an imperfect un-
employment insurance scheme in which the government guarantees a fixed
minimum real income to those unemployed, financed by taxing employed
workers. Since unions are able to set real wages (net of taxes) above the real
income received when unemployed, unemployment is welfare costly from a
worker point of view.
We find that this simple extension of the Woodford model changes drasti-

cally its local dynamics around the steady state. By contrast to most related

1Obviously, in the presence of such a perfect insurance scheme, unemployment would
not be a major problem since optimal diversification of risk would prevent a sharp fall in
earnings under these circumstances (Hansen (1985), Rogerson, (1988)).
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models in the literature, we find that deterministic and stochastic endoge-
nous fluctuations, driven by self-fulfilling volatile expectations, can emerge
in this economy under fairly plausible values for the elasticity of input sub-
stitution, without requiring either increasing returns to scale in production
or a sufficiently high share of government expenditures. In particular, in the
case of a unitary elasticity of substitution between capital and labor, we find
that indeterminacy always prevails. Furthermore, provided union power is
sufficiently strong, flip and Hopf bifurcations are shown to occur for values
of the elasticity of input substitution that are relatively close to one and,
therefore, in accordance with the empirical literature.
The rest of the paper is organized as follows. In the next section we

describe the model and obtain the (deterministic perfect foresight) dynamic
equilibrium equations. Section 3 analyzes and discusses the local dynamic
properties of the model and the occurrence of local bifurcations. In section
4, we provide an economic interpretation of the indeterminacy mechanism
and compare our results with the related literature. Finally, in section 5, we
present some concluding remarks.

2 The Model
The economy we consider is composed of 5 types of agents: workers, cap-
italists, firms, unions and the government. All markets are assumed to be
perfectly competitive, with the exception of the labour market where union
power will prevent the wage from falling to its walrasian level.

2.1 The agents

Workers There is a continuum of identical infinitely lived workers, each
worker supplying inelastically one unit of labor. Preferences of workers are
described by the following utility function: E

P∞
t=0 γ

tu(cwt ), where 0 < γ < 1
is the constant discount factor and cwt is consumption in period t.2 Workers
face, as in Woodford (1986), a consumption-saving choice in the presence
of liquidity constraints and, in our case, also under income uncertainty.3

2We assume that u satisfies the usual properties, namely: u(ct) is a continuous real
valued function in ct ≥ 0, with u0(c) > 0 and u00(c) ≤ 0 for ct > 0.

3Formally, our description of the consumption behavior of workers can be seen as a
direct application of the general framework studied in Deaton (1991).
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Indeed, in each period t, a worker may be either employed (state e) - re-
ceiving in cash, at the beginning of next period, a nominal wage wt - or
unemployed (state u). We assume that the government provides a minimum
guaranteed income program, ensuring to all period t unemployed workers
a constant real income b > 0.4 As in the case of employed workers, these
resources only become available for consumption at the beginning of next
period. These transfers are financed by taxing period t employed workers at
the beginning of next period (i.e., when their labour income becomes avail-
able). Since the government balances its budget, the real lump-sum tax τ t,
paid by each worker employed in period t, will be determined endogenously
by the balanced-budget condition. Hence, in period t, a worker will receive
a state-dependant revenue yit ∈ {wt−1 − ptτ t−1, ptb} , conditioned on being in
state i ∈ {e, u} in period t − 1, where pt is the price of output in period t.
We also assume that, when deciding how much to consume in t, the worker
does not know yet whether he will be employed or unemployed during that
period. However, he can put a probability distribution over the two states,
which consists in period t employment (lt) and unemployment rates (1− lt),
respectively.
In Appendix A.1 we solve the workers problem and give the conditions un-

der which both employed and unemployed workers always (rationally) choose
not to hold capital or money and to spend all their available income on cur-
rent consumption,5 so that we have:

cwt =
yit
pt

i ∈ {e, u} (1)

Unions In each period, identical unions bargain with identical firms over
wages and employment. We assume that all workers are unionized and that
there is one union per firm. Workers are matched exogenously and uniformly
with unions and cannot move between firms or unions, so that each union
represents the same mass of workers, which we normalize to 1. Assuming that
each union wishes to maximize the expected discounted sum of its members’
total future consumption, we obtain (see (1)) the following objective function

4Note that in most European countries, where such minimum guaranteed income pro-
grammes exist, they are indeed indexed to inflation, in order to ensure real purchasing
power of the poor.

5This means that we focus on equilibria that are sufficiently close to the steady state
equilibrium in which γ is sufficiently low compared to the capitalists discount rate β (see
Appendix A.1).
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for the representative union:

Ωt = Et

½·µ
wt

pt+1
− τ t

¶
lt + b(1− lt)

¸
+ γΩt+1

¾
(2)

where l denotes employment at the respective firm.6

Government The government guarantees a constant minimal amount
of real income to each unemployed worker, b, collecting from each employed
individual a given amount τ that balances the budget. Hence we have that:

τ t = b(1− lt)/lt. (3)

The reason for assuming a tax per (employed) worker, instead of con-
sidering, as usually done in the literature, a labour income tax, is that the
former type of taxation can also be interpreted as an insurance mechanism
(imperfect, due to the existence of unions, as we shall see) provided by the
government. To participate in this programme, each worker pays a real pre-
mium τ , receiving in the event of unemployment a real amount b (net of the
premium). As usual, the premium must cover the expected value of pay-
ments, i.e., τ = (b+ τ) (1 − l), that we can rewrite as b(1 − l) = τ l. Note
also that, since each employed worker supplies one unit of labour, τ is also a
tax per unit of labour.

Capitalists As in Woodford (1986), capitalists are identical and maxi-
mizeE

P∞
t=0 β

tLogcct , 0 < β < 1, subject to ptcct+ptk
c
t+1+m

c
t+1 = ptRtk

c
t+m

c
t ,

where cct is consumption in period t, kct and mc
t are respectively the capital

stock and money holdings at the outset of period t, Rt+1 = (ρt + 1 − δ)
is the real gross rate of return on capital, ρt is the real rental rate of cap-
ital and 0 ≤ δ ≤ 1 is the capital depreciation rate. Under the condition
Rt+1 > Et {pt/pt+1} , the solution to this problem may be written as (see
Woodford, 1986):

cct = (1− β)Rtk
c
t (4)

kct+1 = βRtk
c
t (5)

mc
t+1 = 0 (6)

6As we have normalize the mass of workers per firm to 1, l represents both the em-
ployment level and the employment rate in each firm. At a symmetric equilibrium, and
as workers are treated anonymously, it also represents the probability of being employed.
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Firms Firms are identical and each firm operates under a constant re-
turns to scale (CRS) technology, Altf(xt), where x ≡ k/l is the capital labor
ratio and A > 0 is a scaling factor.7 The representative firm wishes to maxi-
mize the present value of expected discounted profits, Πt, but must negotiate
wages and employment with the respective union. Also, since period t wages
are paid in cash at the beginning of next period, the firm will have to hold,
at the end of period t, mf

t+1 ≥ wtlt. At each period t, the sequence of de-
cisions is the following. First, the firm pays last period wages out of their
money holdings and rents capital, kt, on the economy-wide capital market,
at a given nominal rental rate ptρt. Next, wages, wt, and employment, lt,
are determined through the bargaining process. Finally, the firm decides the
level of money holdings and production takes place.8 In order to ensure time
consistency of the equilibrium, the problem of the firm must be solved back-
wards, starting with the decision on money holdings. In Appendix A.2 we
show that the cash constraint is always binding, i.e. mf

t+1 = wtlt. We proceed
now with the wage-employment bargain and then with capital decisions.

2.2 Wage, employment and capital decisions

Wages and employment are determined through an efficient bargaining proce-
dure. This implies that lt and wt must solve the generalized Nash bargaining
problem:

Max
(wt,lt)∈<2++

¡
Πt − Πt

¢α ¡
Ωt − Ωt

¢(1−α)
s.t. lt ≤ 1 (7)

where 0 < α ≤ 1 represents the firm’s power in the bargain, and (Πt, Ωt)
are the fallback payoffs of each party if no agreement in period t is reached.9

Using (2), the fallback payoff of a union is given by Ωt = b+ γΩt+1, so that

Ωt − Ωt = lt

³
wt
pt+1
− b− τ t

´
. Given the sequence of decisions of firms, it can

be shown that Πt −Πt = ptAltf(xt)− wtlt (see Appendix A.2).

7We also make the following standard assumptions on technology: f(x) is a real, con-
tinuous function for x ≥ 0, positively valued and differentiable as many times as needed
for x > 0, with f

0
(x) > 0, f 00(x) < 0 , so that f(x)− f

0
(x)x > 0.

8As usually done in the literature, we are assuming that workers cannot sign binding
wage contracts, so that the wage and employment are determined after the capital stock
decision has been made.

9If negotiations fail, production does not take place and all workers are unemployed.
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We assume that all agents in the economy are "small", in the sense that
they take τ t as given. We also assume that the solution lt of problem (7)
always satisfies lt < 1, so that there is unemployment. Hence, the first order
conditions are:

(b+ τ t)Et
pt+1
pt

= A
h
f(xt)− f

0
(xt)xt

i
(8)

wt

pt
= A

h
f(xt)− αf

0
(xt)xt

i
≡ µ(xt)A

h
f(xt)− f

0
(xt)xt

i
,(9)

where µ(xt) ≡
£
f(xt)− αf

0
(xt)xt

¤
/
£
f(xt)− f

0
(xt)xt

¤
is the markup factor.

From (8) we can see that, whatever the union’s bargaining power, em-
ployment is determined by the intersection of the marginal productivity of
labour (MPL) curve, A

£
f(xt)− f

0
(xt)xt

¤
, with the real reservation wage

schedule, (b + τ t)Etpt+1/pt, see Figure 1. Using also (9), we see that when
unions have no power in the bargain, α = 1, we recover the perfectly com-
petitive labor market case, where real wages are identical to the marginal
productivity of labour and, thereby, to the real reservation wage. By con-
trast, when α < 1, the real wage is set above the MPL (and so above the
reservation wage), with a markup µ(x) which, for a given x, is increasing in
the bargaining power of unions (1− α). Given the absence of perfect redis-
tributive schemes, unemployed individuals are thus clearly worse off. Finally,
note also that employment is influenced by expectations of future inflation
(shifting the reservation wage locus), which constitutes a potential channel
for the emergence of expectations driven fluctuations.
The firm, anticipating the result of the bargaining process, chooses con-

sequently kt > 0 to maximize the expected discounted flows of future profits,
Πt, or, equivalently, current profits, (ptAltf(xt)− ptρtkt − wtlt), see Appen-
dix A.2. Using (9), current profits can be rewritten as ptαAf

0
(xt)kt− ptρtkt,

where lt satisfies (8), and we obtain the following first order condition:10

αAf
0
(xt) = ρt. (10)

2.3 Equilibrium

We now obtain the dynamic equilibrium equations of our model under perfect
foresight. Assuming an identical number of capitalists and firms, equilibrium
10Note that, because firms operate under constant returns to scale, profits are zero at

equilibrium.
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in the capital services market requires that kt+1 = kct+1. Using the definition
of R and equations (5) and (10), we obtain equation (11) below. Considering,
as in Woodford (1986), a constant (per firm) amount of outside money in
the economy, m, money market clearing in every period requires that m =
mf

t+1 = wtlt = mf
t+2 = wt+1lt+1, so that realized inflation is given by pt+1/pt =

(wtlt/pt) / (wt+1lt+1/pt+1). Using this last relation, equations (3), (8) and (9),
and noticing that under perfect foresight pt+1/pt = Et {pt+1/pt} , we obtain
equation (12) below. Accordingly we have:

Definition 1 An intertemporal equilibrium with perfect foresight is a se-
quence (kt, lt) ∈ <2++, t = 0, 1, ....∞ that solves the two-dimensional dynamic
system, with xt ≡ kt/lt

kt+1 = β
h
αAf

0
(xt) + (1− δ)

i
kt (11)

lt+1A
h
f(xt+1)− αf

0
(xt+1)xt+1

i
= b

£
f(xt)− αf

0
(xt)xt

¤
[f(xt)− f 0(xt)xt]

. (12)

Equations (11) and (12) define implicitly a two dimensional dynamic sys-
tem11 that describes the deterministic equilibrium trajectories of employ-
ment, a non predetermined variable whose value in period t is influenced by
expectations of future inflation (see section 2.2), and capital, a predetermined
variable whose value in period t is fixed by past savings of capitalists (see
(5)).

3 Local dynamics and bifurcation analysis
To study the local stability properties of our two dimensional dynamic system
(11) and (12), around its interior steady state solution (k∗, l∗),12 we use the

11Note that (11) and (12) define locally a two dimensional dynamic system of the form

(kt+1, lt+1) = G(kt, lt), provided the elasticity of lt+1A
h
f(xt+1)− αf

0
(xt+1)xt+1

i
with

respect to lt+1 does not vanish at the steady state under analysis.
12Given (11) and (12), a steady state equilibrium (k∗, l∗) ≡ (x∗l∗, l∗) is a solution

of the following two equations: f
0
(x)βα/θ = 1/A, where θ ≡ 1 − β (1− δ) , and b =

lA [f(x)− f 0(x)x]. Under the assumptions made on technology (see footnote 7), f
0
(x) is

a continuous decreasing function, so that there exists at most one solution x∗ > 0 to the
first equation. Given x∗, the second equation also has a unique solution l∗ > 0. In order
to ensure the existence of the unique interior steady state (k∗, l∗), with l∗ < 1 (so that, at
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geometrical method proposed by Grandmont et al. (1998). This method
amounts to study how the trace, T , and the determinant, D, of the Jacobian
matrix of system (11)-(12), evaluated at the steady steady state, evolve in
the space (T,D) when some relevant parameters of the model are made to
vary continuously in their admissible range. In Appendix A.3 we show that
D and T can be written in terms of σ > 0, the steady state elasticity of
substitution between capital and labor, of sL ∈ (0, 1), the steady state labor
share of output, of the bargaining power of firms, α, and of the parameter
θ ∈ (0, 1], θ ≡ 1 − β (1− δ). Since empirical values for σ and α are either
not precisely estimated or may differ substantially across countries, we shall
organize our discussion in terms of these two parameters, considering that θ
and sL take some fixed value in their admissible range.13 Moreover, to ease
the exposition, we assume that σ > 1− sL, which covers all the empirically
interesting cases. The main results of this analysis are given in Proposition
1 below (see Appendix A.3 for details).

Proposition 1 For σ > 1− sL and defining α1 =
2(1−sL)
2−sL , α2 =

(2+θ)(1−sL)
(2+θ−2sL) ,

α3 =
4(1−sL)
4(1−sL)+θ , σF =

2[(α−1+sL)−(1−sL)(1−α)]−(α−1+sL)sL(2−θ)
2[(α−1+sL)−(1−sL)(1−α)] and σH =

(1−sL)
α
,

the following generically holds:

(i) if 1− sL < α < α1, the steady state is a source for σ < σH, undergoes
a Hopf bifurcation for σ = σH < 1, becomes a sink for σH < σ < σF ,
undergoes a flip bifurcation for σ = σF > 1, and becomes a saddle for
σ > σF .

(ii) if α1 < α < α2, the steady state is a source for σ < σH, undergoes a
Hopf bifurcation for σ = σH < 1, and becomes a sink for σ > σH .

the steady state and in its neighborhood, (8) and (9) are indeed the equilibrium conditions
on the labor market) we assume that: (βα/θ) limx→0 f 0(x) > 1/A > (βα/θ) limx→∞ f 0(x),
so that the function F (x) ≡ f

0
(x)βα/θ will cross 1/A exactly once at a value x∗ > 0, and

0 < b < A
h
f(x)− f

0
(x)x

i
, so that, given x∗, l∗ is necessarily lower than 1.

13We think that it is more interesting to study the dynamics in terms of the labour share
of output sL =

h
f(x)− αf

0
(x)x

i
/f(x), which is an economic meaningful ’parameter’ for

which there are empirical estimations, than in terms of the technological ’parameter’,
f 0 (x)x/f (x). Of course, doing so implies that when we consider different configurations
for α, while keeping fixed the value of sL, we implicitly assume that the elasticity of f(x)
adjusts, so that sL can indeed remain constant. Moreover, since we keep 0 < sL < 1 fixed,
the assumptions made on technology (see footnote 7) imply that α > 1− sL.
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(iii) if α2 < α < α3, the steady state is a saddle if σ < σF , undergoes a
flip bifurcation for σ = σF < 1, becomes a source for σF < σ < σH,
undergoes a Hopf bifurcation for σ = σH < 1, and becomes a sink for
σ > σH .

(iv) if α3 < α ≤ 1, the steady state is a saddle if σ < σF , undergoes a flip
bifurcation for σ = σF < 1, and becomes a sink for σ > σF .

Proof. See Appendix A.3.

From direct inspection of Proposition 1, it is easy to see that when σ = 1
the steady state is always sink. Since a Cobb-Douglas technology is often
taken as a benchmark case in the literature, we highlight this result in the
following corollary:

Corollary 1 The Cobb-Douglas case
For σ = 1 the steady state is a sink.

The above findings on local dynamics and bifurcations are depicted in
Figure 2, where we have plotted in the (α, σ) plane the bifurcation values
(σH and σF ) that divide the plane into different regions in which the steady
state is either a sink, a source or a saddle.

Indeterminacy A well known feature of dynamic models is that, when
the steady state is locally indeterminate, there exist infinitely many nonde-
generate stochastic equilibria driven by self fulfilling expectations (sunspots
equilibria) that stay arbitrarily close to the steady state, as shown for in-
stance in Grandmont et al. (1998). In the context of our model, where only
capital is a predetermined variable, the steady state is locally indeterminate
when it is a sink.
In that respect, one main striking feature highlighted by Figure 2 is that,

in this economy with constant returns to scale in production, indeterminacy
occurs for a wide range of values for the elasticity of substitution σ, including
the Cobb-Douglas case. Moreover, in the latter case of σ = 1, as emphasized
in Corollary 1, the steady state is always indeterminate, independently of the
values of the other parameters. These two results are important since empir-
ical studies point to values of σ that may differ among countries, but are not
very far from one (Hamermesh (1993), Duffy and Papageorgiou, 2000). As
these empirical values typically belong to the range of values for which the
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steady state is a sink, indeterminacy truly appears as a pervasive phenom-
enon in our economy.
In this dimension, our results differ substantially from related models

in the literature that have also addressed the indeterminacy issue within
the Woodford (1986) framework. For example, it is well-known that when
the standard Woodford model is extended to a general production function
(Grandmont et al., 1998), indeterminacy can only occur with constant re-
turns to scale in production if capital and labor are highly complementary,
implying a value for σ that is not supported by the available empirical ev-
idence. As shown in Cazzavillan et al. (1998), indeterminacy is compatible
with larger values for σ if increasing returns to scale are assumed. But, with
a unitary elasticity of substitution, the required degree of increasing returns
(around 30% for a quarterly calibration, see Barinci and Chéron, 2001) is
also at odds with the recent empirical estimates provided by Burnside et al.
(1995) and Basu and Fernald (1997). Moreover, in Lloyd-Braga and Modesto
(2004), where the Cazzavillan et al. (1998) framework is extended to account
for wage and employment bargaining between unions and firms, but within
a framework with no taxes or unemployment benefits, indeterminacy still
requires the same amount of increasing returns, when a unitary elasticity of
substitution (and the same quarterly calibration) is considered.

Bifurcations Another well known feature of dynamic models is that
both deterministic and stochastic endogenous fluctuations may also emerge
through the occurrence of bifurcations. When a Hopf bifurcation occurs, de-
terministic cycles — periodic or quasi periodic orbits — surrounding the steady
state in the state space emerge, and when a flip bifurcation occurs, determin-
istic cycles of period two appear. Moreover, theses cycles even appear when
the steady state is locally determinate, provided Hopf (flip) bifurcations are
supercritical. In this case, as shown in Grandmont et al. (1998), there are
also infinitely many bounded stochastic equilibria driven by extrinsic uncer-
tainty, remaining in a compact set that contains in its interior the stable
cycle.
However, for such situations to be considered seriously as a possible ex-

planation of actual business cycles, the relevant issue is not only whether
bifurcations are possible, but mostly if they occur for empirically plausible
values of the parameters. For example, in Grandmont et al. (1998) and in
many related papers, bifurcations - although possible - are in a certain way a
mere theoretical phenomenon, since they only emerge for very low elasticities
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of substitution between factors or strong increasing returns.
By contrast, our model suggests that such situations may easily occur

when unions are sufficiently strong. In fact, it is easy to see from Proposition
1 that when α = 1 (the competitive labour market case), there is no Hopf
bifurcation and, using the Cooley and Prescott (1995) calibration, the flip
bifurcation occurs at σF = 0.407, a value of the capital-labor elasticity of
substitution which is too low to be empirically credible. On the other hand,
when union power is high (low α), flip and Hopf bifurcations appear for values
of σ that are not very far from one, and that become arbitrarily close to one
as α tends to 1 − sL (see figure 2). For example, when α = 0.5 (the value
which is usually considered in the labor economics literature), flip and Hopf
bifurcations occur for elasticities of substitution between capital and labor
given by σF = 1.59 and σH = 0.8, respectively. Interestingly, both values fall
within the range of estimated values in the empirical literature (Duffy and
Papageorgiou, 2000).

4 The indeterminacy mechanism
In this section, we first provide an economic interpretation explaining why
indeterminacy easily occurs in this economy, and then compare our indeter-
minacy mechanism with related ones in the literature.

Economic intuition Comparing our framework to that of Grandmont et
al. (1998), two new ingredients are considered: (i) the presence of unions and
wage/employment bargaining, and (ii) unemployment insurance financed by
taxation. From the discussion in section 3, one might infer that it is not
union power, but the insurance scheme provided by the government, that
constitutes the main channel through which indeterminacy occurs. We now
explain why this is indeed the case.
As it is frequent in this type of literature (e.g. Benhabib and Farmer,1994),

most things can be understood by referring to the equilibrium conditions on
the labour market, comparing in particular the slopes of the relevant "labor
supply" and "labor demand" curves. In that respect taxation is important
because it renders the reservation wage schedule — which was horizontal at
the partial equilibrium, see Figure 1 — negatively sloped at equilibrium, with
a constant elasticity of -1.14 A necessary condition for indeterminacy is that

14Indeed, using the equilibrium condition (3), the reservation wage expression, given in
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this equilibrium reservation wage schedule (ERW ) be steeper than the MPL
curve, which is also negatively sloped. This requirement is satisfied if the
elasticity of the MPL curve, −(1 − sL)/ασ, is higher than -1, i.e. when
σ > σH ≡ (1− sL)/α ∈ (1− sL, 1), see Figure 2.
An intuitive economic explanation of why this condition on the slopes is

required for local indeterminacy can be given as follows. When this condition
is satisfied, if, departing from the steady state, there is an increase in expected
inflation, the upward shift in the ERW curve will imply an increase in current
employment. Under our assumption σ > 1− sL, this increase in employment
increases the current real wage bill. It also increases the rental cost of capital
(through the decrease in the capital-labor ratio), so that the future capital
stock will also be higher than its steady state level. This increase in future
capital will in turn shift the future MPL curve upwards, which, provided that
the future ERW schedule does not shift too much due to further changes in
expected inflation, will decrease future employment. If the steady state is
locally indeterminate, two things should be observed: (i) a reversal in the
increase in capital stock, and (ii) a realized value of inflation that fulfills the
original increase in expectations. The first condition is easily satisfied as
the future increase in capital and the future decrease in employment both
tend to decrease the future rental rate of capital. Note that this reversal
in the future rental rate of capital would not appear if the slopes condition
was not met, since in this case both current and future employment would
go in the same direction in response to a change in expected inflation. In
what concerns the second condition, observe that realized inflation can be
written as the ratio of the current and future wage bills, i.e. p̂t+1 ≡ pt+1/pt =
(wtlt/pt) / (wt+1lt+1/pt+1) (see section 2.3). We have already seen that the
current wage bill increases. Furthermore, the decrease in future employment
will tend to moderate the future wage bill, making therefore possible an
increase in realized inflation consistent with initial expectations.
Of course, as we have mentioned, for this reasoning to be correct, the

ERW curve should not shift too much in the future due to further increases
in expected inflation. In the Cobb-Douglas case, which satisfies the slopes
condition (σ = 1 > σH), we can prove that this is indeed the case. This
is because, in this case, the markup factor of wages over the reservation
wage, µ (x), becomes constant. Therefore, the value of realized inflation,

section 2.2, (b+ τ)Et(pt+1/pt) can be written as (b/l)Et(pt+1/pt), so that its elasticity at
the steady state (where Et(pt+1/pt) = pt+1/pt = 1) is -1.
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p̂t+1 = (wtlt/pt) / (wt+1lt+1/pt+1) = µ(xt)Et(p̂t+1)/µ(xt+1)Et+1(p̂t+2) (see sec-
tion 2.2), simplifies to p̂t+1 = Et(p̂t+1)/Et+1(p̂t+2). Perfect foresight then re-
quires p̂t+1 = Et(p̂t+1) and, therefore, Et+1(p̂t+2) = 1. Thus, in the particular
case of a Cobb-Douglas technology, the future ERW schedule does not shift
at all. This is the reason why indeterminacy occurs in this configuration for
any value of the other parameters. On the contrary, when σ is different from
1, markup variability implies a change in the ratio µ(xt)/µ(xt+1), so that
consistency between expected and realized inflation requires further changes
in future expected inflation (leading to a shift in the future ERW curve). As
the elasticity of the markup µ(xt) depends on union power, further conditions
on α are then needed for indeterminacy (see Figure 2).

Related literature Since government policy is the main mechanism re-
sponsible for indeterminacy, our model fits in the line of research that explores
the role of different balanced-budget policy rules on the stability properties of
the equilibrium, as for instance Schmitt-Grohé and Uribe (1997) and Pintus
(2004), where full employment economies with CRS technologies are consid-
ered. Indeed, both in our framework and in these papers, the indeterminacy
mechanism operates through the impact of government policy on the labour
market equilibrium. There remains, however, a major difference between our
indeterminacy mechanism/results and those obtained in these former papers.
Both Pintus (2004), considering a Woodford model, and Schmitt-Grohé and
Uribe (1997), considering a Ramsey model with a Cobb-Douglas technology,
find that, with fixed public spending, indeterminacy requires a lower bound
on public spending as a share of GDP. With the standard quarterly calibra-
tion of Cooley and Prescott (1985), and assuming σ = 1, this lower bound
is around 23%. But Pintus (2004) also shows that a model with fixed public
spending is in fact isomorphic to a model with increasing returns to scale and
without government. Under this interpretation, indeterminacy therefore only
prevails if the "fixed cost" imposed to the economy by the constant level of
public spending is sufficiently high, a mechanism which, he concludes, is sim-
ilar to imposing external increasing returns to scale in the first place.15 In our
framework, on the contrary, the emergence of indeterminacy is independent
of the values assumed for the policy variables.
What explains the difference? In all models, the (steady state) labour

15This formal equivalence between fixed public spending and increasing returns is also
made in a recent contribution by Seegmuller (2004), where it is shown that models with
markup variability or taste for variety can also be analyzed in a similar manner.
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market equilibrium condition may be expressed in terms of the intersection
between the marginal productivity of labour (MPL) curve and the equilib-
rium reservation wage (ERW) schedule. However, the elasticity of the ERW
curve strongly depends on the way government spending is financed. In
Schmitt-Grohé and Uribe (1997) and Pintus (2004), government spending
(G) is financed trough proportional (ad valorem) taxes on labour income.
After some manipulation, their labour market equilibrium condition may be
written as MPL = a/(1− pG/wl),16 where a denotes the constant desutility
of labor. In our model, government spending is instead financed through a
tax per unit of labour, implying the following equilibrium condition on the
labour market: MPL = b/l. Therefore, the elasticity of the ERW curve is a
fixed constant (-1) in our economy, while it clearly depends on policy para-
meters in the framework considered by Schmitt-Grohé and Uribe (1997) and
Pintus (2004). Hence, it is clear that the difference in the taxation scheme,
which leads to different implications for the elasticities of the supply side
of the labour market, is the main explanation for why indeterminacy may
occur in our economy without further conditions on the size of government
spending as a share of GDP.17

5 Concluding Remarks
We considered an economy with constant returns to scale in production,
where finance constrained unionized workers face income uncertainty due to
the risk of imperfectly insured unemployment. We have shown that indeter-
minacy is a very pervasive feature in this economy, occurring in particular for
any parameters’ values when the technology is Cobb-Douglas. In addition,

16Indeed, when the labor supply is infinitely elastic (as in Schmitt-Grohé and Uribe,
1997), the ERW curve is given by a + τ , where τ denotes the amount of taxes per labor
unit. In their case, with ad valorem taxes, τ = tww/p, where tw is the tax rate. Hence,
noting that, under perfect competition in the labour market, w/p = MPL, and taking
into account the budget equilibrium condition, the labour market equilibrium condition
MPL = a+ τ becomes MPL = a/(1− pG/wl).
17Note that the assumption that government spending consists of transfers to the un-

employed, b(1 − l), is not important for our indeterminacy results. Indeed, if instead
government spending was a constant flow of purchases of goods, G, financed by a tax per
unit of labour, the ERW would still exhibit an elasticity of -1. In this case, the steady
state reservation wage would be given by τ (since b = 0), so that, taking the budget
constraint G = τ l into account, the ERW schedule would become G/l.
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flip and Hopf bifurcations also emerge for plausible elasticities of substitu-
tion between capital and labour when unions bargaining power is sufficiently
strong. The mechanism driving these results is the economic policy of the
government and the way taxes are raised to finance unemployment benefits.
What is suggested by this analysis? First, a rich set of dynamics, includ-

ing periodic and irregular, deterministic and stochastic cycles, may easily
emerge in this economy. Second, countries with different elasticities of sub-
stitution or union bargaining power may have considerably different stability
properties of the equilibrium. Our model may therefore explain why Euro-
pean countries, which are very similar in many dimensions but may slightly
differ in terms of union power or input substitution, may experience dras-
tically different patterns of unemployment fluctuations. An exploration of
these implications in a simulated version of the model would be a natural
extension of the present paper.

A Appendix

A.1 Binding liquidity constraints with income uncer-
tainty

Workers receive at the beginning of each period t a state-contigent revenue
yit ∈ {wt−1 − ptτ t−1, ptb} for i ∈ {e, u} , and wish to maximize their expected
lifetime utility E

P∞
t=0 γ

tu (ct) with respect to {ct,mt+1,kt+1}∞t=0, under the
budget constraint mt+1 + ptkt+1 = mt + yit + ptRtkt − ptct, the borrowing
constraint mt+1 ≥ 0, and kt+1 ≥ 0 for all t. Denoting by λit, υ

i
t and ηit the

Lagrange multipliers associated respectively with these three constraints, the
first order conditions for this problem are given by:

u0
¡
cit
¢
= ptλ

i
t (13)

λit − υit = γEt

©
ltλ

e
t+1 + (1− lt)λ

u
t+1

ª
(14)

ptλ
i
t − ηit = γEt

©
pt+1Rt+1

£
ltλ

e
t+1 + (1− lt)λ

u
t+1

¤ª
(15)

We are looking for the conditions under which a consumer will choose not to
hold capital or money under all possible states (employed or unemployed).
This means that we are looking for the sequences of revenues and probability
distributions over employment and unemployment that are consistent with
υit > 0, so that mt+1 = 0, and ηit > 0, so that kt+1 = 0, for all t = 0, ...,∞
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and all i ∈ {e, u} . This implies that the following inequalities

u0
¡
cit
¢

> γEt

½
pt
pt+1

£
ltu

0 ¡cet+1¢+ (1− lt)u
0 ¡cut+1¢¤¾ (16)

u0
¡
cit
¢

> γEt

©
Rt+1

£
ltu

0 ¡cet+1¢+ (1− lt)u
0 ¡cut+1¢¤ª (17)

must hold for all i ∈ {e, u} , and where, for t = 0, ...,∞, we have cet =
(wt−1 − ptτ t−1) /pt and cut = b.18 Since, as in Woodford (1986), we assume
that Rt+1 > Et {pt/pt+1} (so that capitalists do not hold money) condition
(17) is more restrictive than (16). Condition (17) is in particular verified
at the steady state, where (see (5)) R = 1/β > 1, β being the discount
factor of capitalists, if u0 (w/p− τ) > (γ/β) [lu0 (w/p− τ) + (1− l)u0 (b)] and
u0 (b) > (γ/β) [lu0 (w/p− τ) + (1− l)u0 (b)]. Due to concavity of u, only the
first of these two condition is actually required, as long as w/p − τ ≥ b (a
condition that is implied by the wage bargaining process). In summary, at
the steady state and in its neighborhood, capitalists do not hold money and
workers do not hold money or capital (their consumption being identical, in
every period t, to yit) iff γ < β {u0 (w/p− τ) / [lu0 (w/p− τ) + (1− l)u0 (b)]}.
Of course, since the expression between curled brackets is lower than 1, this
last condition can only be verified if γ < β.

A.2 The firms problem

A firm wishes to maximize the present value of expected profits, given by

Πt = mf
t + ptAltf(xt)− ptρtkt − wt−1lt−1 −mf

t+1 + ϕEtΠt+1 (18)

where 0 < ϕ < 1 is the constant discount factor and mf
t is money held by

firms at the beginning of period t. Since wages must be paid in cash, we have
that mf

t+1 ≥ wtlt. Given the sequence of events, we have to solve the firm
problem backwards, starting with the money holdings decision. This means
that, at this stage, firms choose the level of money holdings that maximize
(18) subject to mf

t+1 ≥ wtlt, with mf
t given and for given values of kt, wt

and lt. Denoting by λt the lagrange multiplier associated with the constraint,

18For the proof to be correct, further conditions on the initial amounts of capital and
cash in hands of the worker at period 0, (k0,m0+y0), have to be introduced to ensure that
constraints (16) and (17) are satisfied in the first period. For simplicity and consistency
of notation, we simply assume that k0 = 0, m0 = 0, and that y0 takes either the steady
state values w − pτ or pb with probability l and (1− l) respectively.
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the first order condition for this problem is λt = 1 − ϕ. We therefore see
straightforwardly that, for any ϕ 6= 1, the cash in advance constraint will be
binding: mf

t+1 = wtlt. Therefore, at the second and first stages, the firms’
objective becomes Πt = (ptAltf(xt) − ptρtkt − wtlt) + ϕEtΠt+1. It is then
easy to see that the fallback payoff of firms is Πt = −ptρtkt + ϕEtΠt+1, so
that Πt − Πt = ptAltf(xt)− wtlt.

A.3 Proof of Proposition 1

Proof. Note first that the trace, T , and the determinant, D, of J , the
Jacobian matrix of the system (11)-(12) evaluated at the steady state, which
correspond respectively to the product and sum of the two roots (eigenvalues)
of the associated characteristic polynomial Q(λ) ≡ λ2 − λT + D, can be
written as:

D = − (1− sL)(1− α)(σ − 1)
(α− 1 + sL)(σ − 1 + sL)

(19)

T = 1 +D − θsL
(σ − 1 + sL)

(20)

where θ ≡ 1 − β (1− δ) ∈ (0, 1) , sL = [f(x) − αf
0
(x)x]/f(x) ∈ (0, 1) , and

σ = −f 0(x) £f(x)− f
0
(x)x

¤
/f(x)f 00(x)x > 0. We proceed now by applying

the geometrical method proposed by Grandmont et al. (1998). In Figure
3, we have represented three lines relevant for this purpose: the line AC,
D = T − 1, where a local eigenvalue is equal to 1; the line AB, D = −T − 1,
where one eigenvalue is equal to -1; and the segment BC, defined by D = 1
and |T | < 2, where two eigenvalues are complex conjugates of modulus 1.
When T and D fall in in the interior of triangle ABC, both eigenvalues
have modulus lower than one, and the steady state is a sink, i.e., is locally
stable. In all other cases, the steady state is locally unstable. It is a saddle
when |T | > |D + 1| (one eigenvalue with modulus higher than one and one
eigenvalue with modulus lower than one), and a source in the remaining
regions (both eigenvalues with modulus higher than one). Consider that θ
and sL take some fixed value in their admissible range. We first fix α ∈
(1− sL, 1) and analyze how T and D evolve as σ, the bifurcation parameter,
is made to vary continuously within its domain. From (19) and (20), it is
easy to show that this locus of points (Tσ, Dσ) is defined by the following
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linear expression, the ∆ line:

D = ∆ (T ) ≡ − (1− sL)(1− α)θ

[(α− 1 + sL)θ − (1− sL)(1− α)]
+∆0(T − 1)

where

∆0 = − (1− sL)(1− α)

[(α− 1 + sL)θ − (1− sL)(1− α)]

Since we assume that σ > 1−sL only the part of the ∆ line corresponding to
these values of σ is relevant. Using (19), we see that as σ increases from 1−sL
to +∞, D decreases from D1−sL = +∞ to D∞ =

(1−α)(1−sL)
(α−1+sL) . Using (20), we

can also note thatD∞ = T∞−1. Hence, the relevant part of the ∆ line is just
a half-line ∆ whose origin (T∞, D∞), for σ = +∞, lies on the line AC, and as
σ decreases to 1−sL, points upwards to the right or to the left, depending on
whether its slope is positive or negative (see Figure 3). We shall now study
how this half line ∆ shifts in the space (T,D) with α. As α changes from
1 to 1 − sL, the origin of the half line ∆ moves downwards along line AC,
taking the values (T∞, D∞) = (1, 0) for α = 1 and (T∞, D∞) = (−∞,−∞)
when α tends to 1 − sL. Also, the slope of the half line ∆ decreases from
zero to -∞ as α decreases from 1 to some critical value, and then decreases
gradually from +∞ tending to 1 as α increases further towards 1− sL. Note
finally that the half line ∆ crosses point P = (1 − θ, 0), for any value of α,
when σ = 1. All this implies that the half line ∆, lying on the left of line
AC, rotates in the clockwise direction around point P as α decreases from 1
to 1− sL, being horizontal for α = 1, becoming vertical for some α included
between 1−sL and 1, its slope tending to 1 as α tends to 1−sL. Using figure
3, it is then straightforward to see that several critical values for α have to
be considered: α3, the value of α such that the half line ∆α3 crosses point
B, α2 the value of α for which the slope of the half line ∆α2 becomes -1, and
α1 the value of α such that the half line ∆α1 crosses point A. Indeed, using
Figure 3, one can then easily check that for α3 < α < 1, as σ continuously
increases from (1− sL) to +∞, the steady-state is first a saddle and changes
to a sink trough a flip bifurcation at σ = σF < 1 (σF being the value of σ
at which the half line ∆ crosses line AB). When α2 < α < α3, the steady
state is first a saddle, undergoes a flip bifurcation for σ = σF , becomes a
source for σF < σ < σH , undergoes a Hopf bifurcation at σ = σH < 1
(σH being the value of σ at which the half line ∆ crosses segment BC) and
then turns to a sink. For α1 < α < α2, the steady state is first a source,
undergoes a Hopf bifurcation when σ = σH < 1, and then becomes a sink.
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Finally, for 1 − sL < α < α1, the steady state is first a source, undergoes a
Hopf bifurcation for σ = σH < 1, becomes a sink for σH < σ < σF , a flip
bifurcation occurs for σ = σF > 1, and then turns into a saddle. Combining
all these results Proposition 1 follows.
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    Figure 1: Labor market at temporary partial equilibrium 
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Figure 2: The local dynamics regimes in the ( ),α σ  plane 
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