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SM². A different approach to the definition of potential output. 

A. Dramais(*) 

A. Methodology 

1. The problem. 

According to the macroeconomic database AMECO of DG ECFIN the sectoral breakdown of 
GDP in 2003 (last year available) for the EUR25 aggregate was (in bio €): 

Total value-added:     8999  100.0 % 

Agriculture, fisheries & forestry:    187     2.1 % 

Industry, excluding construction  1913    21.2 % 

Construction       511      5.7 % 

Services      6388    71.0 % 

As shown by graph 1, this results from a long-term increasing trend. 

In other words a large majority of GDP is located in a field where measurement issues are 
considerable and the notion of “potential” output a lot more vague than in the other three 
broad sectors.(see e.g. Zvi Griliches (1992 and 1994)) 

Graph 1, Share of services in total value-added in EUR10(*)
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As a consequence, potential output as measured with the usual Cobb-Douglas  

GDP* = A. K*α  . L*(1-α) . eγt    (1) 

With  K* = potential capital stock 

 L* = potential employment 

 γ = independent technical progress term 

is becoming more and more uncertain, irrespective of the difficulties in defining exactly what 
should be potential capital, potential employment and independent technical progress! 

One way to deal with these uncertainties was to use another starting point and use Bayesian 
techniques as done by Planas, Rossi and Fiorentini (2005) 

Another approach could be to fuzzycise the production function (1). Since the latter is linear 
in logs, a fuzzy estimation can be envisaged along the lines presented by Buckley, Eslami and 
Feuring (2002) and by Xu and Li (2001). 

A third (which is retained here) is to build a Small Macro Sectoral Module hereafter called 
SM² which explicitly link potential output to its sectoral component which may or may not be 
fuzzy sets themselves. 

2. The sectoral relations. 

2.1. Main assumptions. 

The main hypothesis underlying the structure of SM² is the existence of a potential production 
frontier linking total output (not value-added) to factors of production labour (L) and capital 
K), energy inputs (E), material inputs (M) and services (S), For sector s thus we have 

Xs = F(L*s, K*s, Es*1,…n, Ms*1,…m, Ss*1…p)   (2) 

Such a general production frontier would however be impossible to estimate given the very 
large number of explanatory variables against a rather small dataset. 

It is thus necessary to make use of the weak separability assumption between inputs (see, e.g., 
Berndt and Christensen (1973)) so that (2) could be rewritten as a set of four relations 
(dropping the index s for clarity) 

X* = F1(L*, K*, E*, M*, S*)     (3a) 

E* = F2( E*1,…,E*n)      (3b) 

M* = F3(M*1,…,M*m)     (3c) 

S* = F4(S*1,…,S*p)      (3d) 

The basic implication is that the choice between labour, capital, energy, material and services 
aggregated inputs is influenced by all variables pertaining to those categories whereas inside 
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an aggregate group, the choice between the individual inputs is only influenced by variables 
pertaining to that group. 

2.2 Derivations of parameters. 

The derivation of parameters for functions (2) or (3a to 3d) may be approached from two 
directions: 

i. Postulate an analytical form for F(.) and use Lagrangian techniques in order to obtain 
the derived optimal demand relations under the usual cost minimisation assumption. 
This works well with a Cobb-Douglas formulation but become quickly awkward when 
one use a more general functional form able to provide a second order approximation 
to any arbitrary production frontier with no particular restriction on the elasticity of 
substitution between inputs. 

ii. Make use of the Shephard-Samuelson duality theorem stating that given some 
regularity conditions a technology may be equivalently represented either by a 
production frontier F(.) or its dual cost frontier 

C = c(X, p  1,…j,… nt)    (4) 

  With  C the total cost of output for sector s 

  pj = unit cost of input j for sector s 

If the duality theorem holds then input demand relations are obtained for input j by simple 
partial derivatives of relation (4) with respect to the prices, i.e.  

Demand for input j = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
pj
C
δ
δ  

Since partial derivatives are as a rule easier to compute than Lagrangian, the duality approach 
will be retained here. 

2.3. The duality approach. 

Duality theory is not new since mathematically it rests on a theorem by Minkowski (1911): 
every closed convex set in RN can be characterised as the intersection of its supporting half 
spaces. 

Assume that we are given a M factor production frontier F with X = F(q1, q2, …, qM) the 
maximal amount of output X that can be produced with the inputs qi during a given time 
period. From now on the vector of output quantities will be represented by q so 

X = F (q)      (5) 

If F satisfies some regularity conditions (defined below) then the total cost for the producer 
may be computed as 

C(X : p) = min{p’q : F(q) ≥X}   (6) 
                    q 
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where p is the vector of unit costs (p1, p2,…,pM) associated with the M inputs qi 

Shephard (1953, 1967) and, before him, Samuelson (1947) demonstrated that the reverse is 
also true: if the cost frontier satisfies the same regularity conditions than F, the cost frontier 
(6) determines uniquely the production frontier (5). Starting from the cost frontier, the 
production frontier is the solution of 

F(q) = max{X : C(X : p) ≤ p’q for every p ≥ 0}  (7) 
             X 

The regularity conditions on F(.) are 

i. F(q) > 0 for all q > 0 (F is positive) 

ii. F(λq) = λF(q) for every λ>0, q>0 (F is homogenous of degree one in q) 

iii. F(λq’ + (1-λ)q’’) ≥   λF(q’) + (1-λ)F(q’’) for q’, q’’ > 0 and 0 ≤λ ≤1 (F is concave) 

Since F is concave over {q: q>0} F is a continuous function over the positive orthant. 
Furthermore F can be extended from the positive orthant { q : q>0} to the non-negative 
orthant {q : q≥0}. 

Finally, if F satisfies (i), (ii) and (iii) for X>0 and p>0 the cost function C(X; p) factors into 

C(X; p) = c(p).X      (8) 

where c(p) also satisfies the regularity conditions. 

2.4. Choice of a functional form for the cost frontier. 

Several functional forms may be chosen for C, with the condition that they should be capable 
of providing a second-order numerical approximation to an arbitrary function (Lawrence Lau, 
1974) 

The most commodious one is the Generalised Leontief cost function proposed by Diewert 
(1971, 1974)  

C(p) = ∑∑
i j

bi,j pi
1/2pj

1/2      (9) 

Applying Shephard’s lemma the cost-minimising inputs are given by 

qi*  = X*.∑
j

bi,j.(pj*/pi*)1/2  or 

qi*/X* = ∑
j

bi,j.(pj*/pi*)1/2     (10) 

Thus the optimal technical coefficients are linear function of optimal relative unit costs. This 
is clearly preferable to the more popular Translog production and cost frontier proposed 
notably by Jorgenson (1973) and still used in productivity studies. With the Translog frontier 
one has that the value shares are linear functions of the logarithm of the price levels 
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Since trends in price levels are more evident than in relative magnitudes, the estimation of 
(11) is more likely to be plagued by co linearity problems than (10) 

The Diewert functions satisfies the Shephard-Samuelson conditions provided that all bi,j ≥0 
and at least one bi,j > 0. 
  
It may also be noted that if all bi,j = 0 for i ≠ j the function collapse to the usual Leontief fixed 
coefficient function qi/X*=bii 1 
 
Finally, the partial elasticity of substitution between any pair of inputs is given from Uzawa 
(1962) as 

[ ]jijiij
k

kkji qqXppbqp **/(*.**.**
2/12/1

2/1
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=

−−

∑σ  (12) 

for i ≠ j  

If we define P*.X* = ∑
k

kk qp **   and Z*i = (p*i.q*i)/( P*X*) (13) may be written 
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The cross-price elasticities are given by 

( )
.
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and the own-price elasticity by 

( ) 2/12/1
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If all bij are > 0 the σij are all positive and all inputs are substitutable. In the same way all 
own-price elasticities are negative and all cross-price elasticities positive. 

Finally independent technical progress terms may be introduced by allowing the diagonal 
element of the technical coefficient matrix to contain a time trend e.g..bii = δii + ci.t   

 

                                                 
1 In fact the major inconvenience of the Diewert approach is that as in all linear functions the parameter are 
sensitive to the unit used and are less easy to interpret than elasicities. 
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2.5. Constraints. 

Relation (11) may be written in terms of value shares as 

2/12/1
.

**
*.*

ji
j

ij

k
kk

ii ppb
qp

qp ∑∑
=  for I = 1,…n   (16) 

Since value share must sum identically to one the n relations (11) are not independent and that 
must be taken into account in the estimation (see e.g. Barten (1969)) 

Second, since relations (10) or (16) are derived from an optimisation process the Slutzky 

conditions should be respected. Hence bij = bji for all pair i j which introduces 
2
n  (n-1) linear 

restrictions on the parameters. 

3. Empirical application 

3.1 The data. 

The raw materials have basically to come from Input/Output (I/O) tables and sectoral data 
from Eurostat both in current and constant prices. The problem is that the work on I/O tables 
was interrupted during many years and has only recently been revised under the new ESA95 
standard but the situation is far from clear-cut. 

For the Eurozone countries all Members, [except Ireland (who got derogation and produced a 
table for 1998) and Luxemburg (who does not produce any table…)] have tables for 1995, 
1997 and 1999. They cover thus about 99% of the EU12 aggregate which is good enough. 

For 1996 are missing Belgium, Germany, France and Austria (+ Ireland and Luxemburg). 
That year is thus unusable as such unless we interpolate the missing countries for which we 
have 1995 and 1997 plus the marginal totals for 1996. 

For 1998, we miss Belgium, France and Austria (+Luxemburg) so hardly better than 1996, 
France being too large for being ignored unless one interpolate. 

For 2000, we miss Greece and Portugal (+Ireland and Luxemburg). The only solution would 
be to extrapolate the 1999 matrices of Greece and Portugal on the basis of the marginal totals 
which are available in sectoral statistics.  

For 2001, Denmark, Spain and Finland are added to those missing in 2000. 

Finally for 2002 only Finland sent a table (according to the regulations countries have 36 
months after the end of a year to send the table related to that year!).  

As far as the new Member countries are concerned, six out of ten have produced some tables: 
Estonia has a I/O table for the year 1997, Hungary has three continuous years 1998 to 2000, 
Malta has 2000 and 2001, Poland has a continuous series of yearly tables from 1995 to 1999, 
the Slovak Republic goes one better with 1995 to 2000 and finally Slovenia has tables 
for1996, 2000 and 2001. Thus only Poland and the Slovak Republic would be usable from 
1995 to 2000 with an extrapolation for Poland. However their structure is still so different 
from the one of the 15 former Member states that they are likely to be “disturbing”. 



 7

So with some creativity and the use of RAS techniques (Friedlander (1961) Bacharach 
(1965,1970), Snower (1990) and Toh (1998), it would be possible to have a EU10 aggregate 
for six consecutive years i.e. 60 individual observations for each cell of the I/O table. If one 
wants to remain statistically “pure”, then the number of observations is reduced by one-half to 
30. 

The number of sectors is 59 which excludes out of hand equation (2). 

 Hence we would have to use the weak separability assumption with, say, 5 sectors in the 
energy subgroup, 29 (which could be redefined into about 10 groups to reduce the number of 
coefficient to be estimated) in the material input part and 25 (which can also be reduced to 10 
broader sectors) in the service part. 

 

3.2. Uncertainty. 

The uncertainty can be introduced in SM² basically in two ways: 

• Estimate everything by Bayesian analysis but there might be a problem of size with 
the joint probability distribution) 

• Fuzzycise part of the analysis mostly the one dealing with services. Since the input 
demand function in the Diewert approach are linear function of relative unit costs, 
standard fuzzy methods could probably be used.  

After discussion with experts of both approaches , it does not seem that the fuzzy approach 
could be appropriate and after a first approximation with standard methods, a Bayesian angle 
can be added to the analysis if it seems worth it. 

. 
B. Practical approach 

1. The available data 

A problem with the approach described at the end of section A.3.1 above is the need for a 
large number of sectoral deflators in agreement with the input/output classification in order to 
express all magnitudes in constant prices. Now, although Eurostat claims to have current and 
constant prices I/O matrices, the constant price country coverage is presently limited to four 
countries, Germany, Greece Sweden and Hungary, which of course made it useless for the 
proposed analysis. Furthermore, there seems to be no easy way to find this price information 
in the industrial statistics contained in New Chronos, since the delivery of such indices is not 
compulsory. Thus, the time and sectoral coverage vary from country to country, most 
particularly in the Service part.. 

In order to have at least a first shot, I have aggregated the 59x59 Input/Output matrix into a 
2x2 framework: sector m being all material I/O [sectors 1 (agriculture) to 34 (construction)] 
and sector s all services [from sector 35 (automobile trade and repair) to 59 (domestic services 
to households)]. In this highly aggregated case, deflators can be found or constructed without 
too many problems.. 
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As an example, I have given on the following page the resulting table for the Euro10 group 
(Euro zone minus Ireland and Luxemburg) in 2000. 

Some remarks on that table: 

1. In an ideal I/O table, sectors would be so specialised that none would consume its own 
product. Hence the diagonal elements would be zero and can be used to store sectoral 
imports. Here of course the degree of aggregation makes that impossible. 

2. Although total inputs are not too far away between the two sectors it is fairly evident 
that they mostly consume their own intermediate products. The “material” sectors 
consume only ± 20 % of services in their intermediate inputs whereas the service 
sectors consume about 30 % of material inputs. 

3. The following columns give final demand elements from which one can compute GDP 
(after subtracting imports). We can see that private consumption is well distributed 
(about 40% for services and 60 % for the rest). On the other hand, public consumption 
is of course mostly services (public administration, education and health) while 
conversely, gross investment, changes in inventories and exports are massively 
composed of material products. 

4. Below the I/O table strictly speaking (the 2x2 left-hand corner) are given the elements 
of value-added, the sum of which is net national income. We see that the contribution 
of the service sector is far larger than that of the material sector confirming its labour-
intensive nature. Conversely, the external supply (imports) is mostly going into the 
material sector. As a result, sectoral total output at basic prices are quite similar 

5. Finally, after some valuation adjustments to go from basic prices to purchasers’ prices, 
total supply is indeed equal to total demand, as it should be. It is also clear that total 
output or demand in the Euro zone is more than twice larger than GDP. For a small 
open economy like Belgium it is even three times as large. 

 

 
 



 9

 

I/O compressed table for 
Euro10 (Eurozone w/o 
IRL and LUX) - 2000   

  Material Service Intermediate
  demand demand demand 

Material outputs 2738 807 3545
Service outputs 690 1826 2516
Total 3428 2633 6061
Wage bill 1033 2183  
Net taxes on production 21 81  
Depreciation 180 393  
Net Surplus 575 1295  
Value added 1809 3952  
Imports 1881 373  
Total supply, basic 
prices 7117 6958  
Trade and transport 
margins 1002 -1002  
Indirect taxes minus 
subsidies 500 187  
Total supply, purchasers' 
prices 8619 6143 14762

 
Private Public Gross fixed Changes in Exports Final Total  

Consumption Consumption Capital Formation Inventories   Demand Demand
1912 64 1203 26 1869 5073 8619
1795 1223 181 -1 429 3627 6143
3707 1288 1384 25 2298 8701 14762
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2. Typical equations related to the Diewert production function and dual cost function. 

 

In the two by two framework, we have eight sectoral relations, four for each aggregated 
sector: labour, capital, material inputs and service inputs. All are linear functions of the square 
root of relative prices. 

The material sector will be represented by M, the service sector by S 

Let XTi be the output of sector i, i = M, S 

Xi,j is the input of product i by sector j, i,j = M, S. 

Li is employment in sector i 

Ki is the capital stock of sector i 

Wi  is the average wage cost in sector i 

Ucki the unit cost of capital goods in sector i 

PM the aggregate deflator of material goods2 

PS the aggregate deflator of services2 

We have thus for sector M 

2/12/1
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and for sector S 
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2 It was also necessary to assume that the Law of One Price applies and that the price of material goods and of 
services is the same in both sectors. 
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The 2x2 matrix of technical coefficients TC obtains directly from relations (19), (20), (23) 
and (24). Once the vector 2x1 of final demand FD is given, total outputs could be computed 
from the basic I/O accounting identity 

XT = (I – TC)-1 . FD        (25) 

In a full macro-sectoral model, sectoral final demand categories should be estimated by the 
use of the same methodology as the technical coefficients, maximising in this case a utility 
function of a generalised Leontief or Translog form. Here, once a forecast is gotten for the 
macroeconomic components they can be sectorialised by the use of ratios summing over unity 
taken from the last available observations3 

DFM = RM . Dftot        (26) 

DFS = RS . Dftot        (27) 

With RM + RS = 1 

As far as prices and unit costs are concerned, at such level of aggregations they are available 
without much problems. Sectoral wage bill divided by sectoral employment give the average 
wage cost and the unit cost of capital is computed via the Jorgenson approach, i.e. Ucki = 
PV.(rl + δi) with PV the price of capital goods, rl  the long-run interest rate and δi the 
depreciation rates. All input prices are then recomputed as index 1995=1.0. 

As stated above, for the estimation of an Euro10 model a cross section of countries have to be 
used with a full true sample only for 1995, 1997 and 1999 thus 30 observations. With the 
RAS techniques, it can be extended to 1996, 1998 and 2000 i.e. 60 observations. Given the 
constraints on the parameters, the number of degrees of freedom should be enough.. 

                                                 
3 Given the high degree of aggregation such ratios are very stable from one year to the other. 
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C. Estimation results. 
 
1. Introduction 
 
The equations described in the former section were estimated first without constraints, using 
the procedures described in Balestra-Nerlove (1966) for a sample composed of a 
chronological series (1995-2000) of cross-section (10 I/O tables from €-area countries). 
 
A problem when using panel data regression techniques is to detect and introduce specific 
country and/or time effects Given the rather short chronological time period covered, only 
country effects were analysed. 
 
There are two ways of dealing with the issue when one believes that there are strong country 
effects : the simplest is to suppress the constant term and add 10 country binaries, the 
estimation being done by OLS. The other is to work at the residual level and distinguish a 
country effect in the definition of the residual variance-covariance matrix. In this case, a two 
step approach has to be followed. 
 
2. The equations. 
 
2.1. Country effects through dummies 
 
Y = Xβ + BINγ + ε      (28) 
  
Where Y is a 60x1 vector of ratios of a given input (labour, capital, material inputs, service 
inputs) to total output of an aggregated sector (material or services outputs) 
 
X is a 60x3 matrix of the square roots of the relative prices of inputs 
 
BIN is a 60x10 matrix of dummies : one column per country with ones at the level of that 
country in the Y vector (position 1 to 6 for Belgium, 7 to 12 for Germany until 55 to 60 for 
Finland) and zeros elsewhere. 
 
ε is a vector 60x1 of random residuals N(0, σ) 
 
The estimation was done with the panel regression instruction of WinRats 6.0 and are 
presented in table one . 
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Table 1. Regression with fixed country effects represented by dummies. 
(the coefficient of the dummies are not presented in this table) 

(standard errors of coefficients are in brackets below the estimated values) 
(coefficient not statistically different from zero are in red) 

Dependant  X1 X2 X3 Adjusted R2 
Lm/XTm 0. 154 2.315 -1.571 0.9975 
 (0.033) (0.273) (0.533)  
Km/XTm -0.835 1.729 -0.932 0.9811 
 (0.475) (0.360) ‘(0.568)  
Xmm/XTm 0.202 0.0133 -0.383 0.9801 
 (0.062) (0.0065) (0.095)  
Xsm/XTm 0.040 0.0036 0.046 0.9923 
 (0.022) (0.0027) (0.033)  
Ls/XTs 0.412 1.856 -1.717 0.9981 
 (0.103) (0.589) 0.513)  
Ks/XTs -0.373 1.833 -1.549 0.9975 
 (0.525) (0.666) (0.561)  
Xms/XTs 0.031 0.045 0.448 0.9828 
 (0.065) (0.012) (0.063)  
Xss/XTs -0.083 -0.001 -0.198 0.9924 
 (0.069) (0.013) (0.077)  
 
Results are somewhat mixed: in both sector the labour demand function is the best one, with 
all coefficients significant but with the relative price of services having the “wrong” sign. 
This is the case in practically all equations, which seems to indicate that, on the whole, 
services are complements (rather than substitutes) for all other inputs. The relative price of 
labour is also badly signed in 3 out of the 6 equations where it appears but is never 
significantly different from zero when it is negatively signed. 
 
2.2. Country effects within the residuals. 
 
The model becomes 
 
Y = Xβ + ε        (29) 
 
Where X is now 60x4 via the addition of a column of 1 for the constant term 
. 
We also assume that the residual term can be partitioned in two effects 
 
εi,t = µi + νi,t with µi representing the country effects and νi,t the random residual.(I = 1,…,N,    
t =1,…,T) 
 
The two residual items are assumed to be independent so that the variance covariance of the 
residuals εi,t is block-diagonal of the form 
 
                          { A 0 …0} 
   { 0 A …0} 
Eu.u’ = Ω = σ²  {..   ..  … }      (30) 
    {0 0 … A} 
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with A a TxT matrix of the form 
 
1 ρ ρ … ρ 
ρ 1 ρ … ρ 
. . .. …. .. 
ρ ρ ρ … 1 
 
with ρ the ratio of the variance of µi  (σ²µ )  to σ² 
 
With such a structure of residuals an OLS estimation of model (2) would give unbiased and 
efficient coefficients β̂  but they would not be minimum variance nor, in general 
asymptotically efficient.  
 
A two-stage approach has thus to be adopted as proposed initially by Zellner (1962) and 
Telser(1964). 
 
Model (2) can be rewritten as 
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If enough observations are available OLS estimates of parameters β may be obtained country 
by country and are designed by k
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22 ˆ/ˆˆ σσρ µ=        (38) 

 
With these estimates one can compute the variance covariance matrices and the minimum-
variance, linear, unbiased estimators of β are then given by (in matrix notation) 

 
      (39) 
 

with a variance-covariance matrix V( β̂ ) that can be estimated by 
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with 2
*

σ̂
Ω

=Ω  and β̂ˆ Xyu −=  

 
Provided that the û are distributed according to a multivariate normal distribution with zero 
means and variance-covariance σ²Ω*, β̂  given by (4.8) is the maximum likelihood estimate 
of β. 
 
Estimation results are given in table 2 
 
Table 2. Input demand functions estimated by GLS 
(standard errors are within brackets and non significant coefficients are in red) 
 
Dependant 
variable 

Constant X1 X2 X3 Corrected 
R² 

Lm/XTm -0.2390 0.1638 2.2886 -1.4357 0.9956 
 (0.373) (0.036) (0.299) (0.517)  
Km/XTm 0.8422 -0.6216 1.7685 -0.9859 0.9665 
 (0.085) (0.400) (0.395) (0.625)  
Xmm/XTm 0.4780 0.1819 0.0141 -0.3542 0.9655 
 (0.062) (0.069) (0.007) (0.106)  
Xsm/XTm -0.058 0.054 0.005 0.063 0.9874 
 (0.061) (0.025) (0.003) (0.026)  
Ls/XTs 1.4485 0.4171 1.8762 -1.6894 0.9967 
 (0.627) (0.113) (0.645) (0.562)  
Ks/XTs 2.6592 -0.5718 1.9097 -1.4417 0.9955 
 (0.300) (0.579) (0.733) (0.621)  
Xms/XTs -0.373 0.042 0.043 0.446 0.9694 
 (0.079) (0.071) (0.014) (0.069)  
Xss/XTs 0.5393 -0.063 -0.0016 -0.2011 0.9866 
 (0.070) (0.075) (0.015) (0.084)  
 
The results are not much different than those of table 1. Constant shift variables are thus a 
good approximation of the final results with a more sophisticated econometric approach. The 
major advantage of the latter is of course that it reduces seriously the number of coefficient to 
be estimated per equation from 13 with binaries to 4 with GLS, The number of “wrong signs” 
is also lower except for the relative prices of services which is practically always negative and 
significant. It is also clear that the symmetry constraints are not coming in free estimation. 
 
As a final trial before going into system estimations, the labour and capital demand were 
estimated jointly with SURE ‘Seemingly Unrelated Regressions”, introducing the constraint 
that the coefficient of X1 (cost of capital over wage in Lm and wage over cost of capital in 
Km) should be equal. The estimation was made with dummies, as in table one. 
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Table 3. SURE estimation of labour and capital demand equations. Material and services 
sectors. 

 
Dependant 

variable 
X1 X2 X3 Corrected R² 

Free estimation, 
material sector 

    

Lm/XTm 0.1545 2.3164 -1.5472 0.9966 
 (0.033) (0.273) (0.471)  

Km/XTm -0.7491 1.7934 -1.0697 0.9743 
 (0.366) (0.361) (0.573)  

Constrained est.     
Lm/XTm 0.1350 2.4157 -1.8539 0.9965 

 (0.032) (0.271) (0.453)  
Km/XTm 0.1350 2.1422 -2.2315 0.9716 

 (0.032) (0.347) (0.329)  
Free estimation, 
services sector 

    

Ls/XTs 0.413 1.868 -1.699 0.9974 
 (0.103) (0.589) (0.513)  

Ks/XTs -0.563 1.888 -1.427 0.9965 
 (0.529) (0.670) (0.564)  

Constrained est.     
Ls/XTs 0.360 1.824 -1.890 0.9974 

 (0.099) (0.590) (0.502)  
Ks/XTs 0.360 1.402 -1.763 0.9963 

 (0.099) (0.626) (0.544)  
 
The experiment is highly satisfactory since the sum of squared residuals hardly changes as 
shown by the corrected R² and the coefficients in the constrained equations are all significant.. 
The SURE part in WinRats 6.0 however does not allow for symmetry constraints which 
should be done in the non-linear system estimation part. But there, the introduction of dummy 
variables lead to too large a sample and the estimation breaks down.  
 
A simple test could however be done in a recursive way : given the high quality of these 
equations, use their coefficients in the remaining two equations and estimate only the 
remaining parameters, under constraint. In that way a symmetric βij can easily be produced. 
 
Table 4. Material and service inputs equations, under constraint of labour and capital demand 

coefficients 
Dependant 

variable 
X1 X2 X3 Corrected R² 

Xmm/XTm 2.4157 2.143 3.341 0.589 
   (2.284)  

Xsm/XTm -1.8539 -2.2315 3.431 0.570 
   (2.284)  

Xsm/XTs 1.824 1.402 4.745 0.755 
   (0.878)  

Xss/XTs -1.890 -1.763 4.745 0.742 
   (0.878)  
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The matrix of coefficients would thus be 
 
 

Table 5 Matrix of coefficient βij, material sector, recursive estimation 
 
Relative prices Labour  Capital Material inputs Service inputs 
Labour demand 1 0.135 2.416 -1.854 
Capital demand 0.135 1 2.143 -2.231 
Material demand 2.416 2.143 1 3.341 
Service demand -1.854 -2.231 3.341 1 
 

Table 6 Matrix of coefficient βij, service sector, recursive estimation. 
 

Relative prices Labour  Capital Material inputs Service inputs 
Labour demand 1 0.360 1.824 -1.890 
Capital demand 0.360 1 1.402 -1.763 
Material demand 1.824 1.402 1 4.745 
Service demand -1.890 -1.763 4.745 1 

 
In these matrices the 1 on the diagonal represent the constant term as given by the 10 dummy 
variables. 
 
Although the symmetry constraint is respected, the sign constraint is not: for the dual 
approach to be valid, the βij coefficients should all be ≥0 with at least one of them > 0 It is 
also clear that negative coefficients are concentrated in the last line and column i.e. the one 
dealing with services. However, if some βij are negative, the dual cost function can still 
provide a valid representation of technology for a range of input prices. Diewert has indeed 
shown that if the parameters βij are such that 0*)( ≥∇ pc  for some p*≥ 0 and that *)(2 pc∇  is 
a negative semi-definite matrix of rank N-1, there is a neighbourhood of prices around p* 
where c(p) satisfies the conditions of a valid dual cost function. 
 
A full simultaneous FIML approach with symmetry constraints etc. has also be used with a 
generalised Balestra Nerlove formulation: the size of the problem being four times the former 
example. 
 
Y pools all four explained variables together and become 240x1. The explanatory variables 
matrix become 240 x 16 in four diagonal boxes 60x4 with zeros elsewhere, the coefficients 
form a 16x1 vector. The procedure is then be the same as before with one more dimension r 
representing the equations and the Ω matrix is 240x240 with 40 diagonal blocks 6x6. 
Formally 
 Yl  Xl  0   0   0   βl 
 Yk  0   Xk 0   0   βk 
Y = Ym     =  0    0  Xm 0   βm  + µ + ε    (41) 
 Ys   0    0   0  Xs   βs 

 

The computation would be the same as before with 40 OLS estimates to start with and four 
different µi (one series per equation) and hence four different ρ from which the Ω* and Ω 
matrices could be computed.. 
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Finally a matrix of symmetry constraints is added to the problem, but looking at the results in 
table 7 and 8, these massive computation do not solve the problem of negativity in the service 
line and row and given confidence intervals, are usually not statistically different from those 
obtained in table 5 and 6. 

Table 7. Matrix of coefficient βij, material sector, joint estimation. 

  Relative prices Labour  Capital Material inputs Service inputs 
Labour demand 0.723 0. 204 2.400 -1.422 
Capital demand 0.204 0.935 1.987 -2.333 
Material demand 2.400 1.987 0.575 0.503 
Service demand -1.422 -2.333 0.503 0.611 
  

Table 8. Matrix of coefficient βij, service sector, joint estimation. 

Relative prices Labour  Capital Material inputs Service inputs 
Labour demand 1.299 0.388 1.638 -1.723 
Capital demand 0.388 0.935 1.203 -1.888 
Material demand 1.638 1.203 0.385 2.910 
Service demand -1.723 -1.888 2.910 0.569 

 
 

As a result, substitution elasticities and cross-prices elasticities for service demand with 
respect to all other inputs are nearly always negative and own-price elasticities nearly always 
positive. Services are thus different from the other inputs in some quality at least, a point that 
should more thoroughly investigated. 

D. Some facts about the service sector in the Euro area. 

If one looks at the composition of XTS (total output of services), one observes that about 62 % 
of it has clearly a complementary nature with respect to the production of material goods: 
once a sellable product has been produced, it must be transported to the distribution point, it 
must be insured, it must be financed (e.g. in order to cover the time delay between production 
and storage  on the one hand and final consumption on the other hand.) Finally in order to 
produce enterprises need informatics support, some R&D and other services.4  

In the I/O tables all that covers a substantial part of trade, transport, post and communication, 
financial intermediation, insurance, informatics, R&D, other services to enterprises i.e. more 
than 60% of the total, the rest being public goods or semi public goods activities, like public 
administration, health, education, sewage collection and handling, plus all activities peculiar 
to households which inherently come from increases in the standard of living like hotels and 
restaurants, associative, cultural, sport and recreational activities and finally personal and 
domestic services. 

                                                 
4 This of course, does not preclude substitution between providers of these services within the broad I/O 
categories. 
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So, even when taking into account that part of transport, insurance, etc. is not directly linked 
to material production, the complementary nature of all these inputs is undisputable. Beside, 
the remaining part is growing basically with increases in the standard of living whatever its 
source but since material production also involves payment of wage and non-wage income, 
growth should also be closely linked at least in long run trends.  

Furthermore, about 90% of the part of services going directly into final demand goes to total 
consumption and very little in capital formation or exports. 

It is also clear that the high labour demand characteristic of 1995 to 2000 years (1.4% growth 
of total employment per year) is totally coming from the service sector: employment in that 
sector grew by 2.2% per year, whereas the employment in the material sector decreased by 
0.3% per year during the same period. 

Graph 2. Total, services & material employment yearly rates of 
growth.
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Graph 2 also shows that between 1981 and 2002 the growth of employment in services has 
always been positive whereas the growth of employment in the material sector has been 
negative in most years with small positive excursions only in 1990 and in 1998-2001. On the 
other hand, cyclical fluctuations in both series are quite similar which is also in favour of the 
complementary assumption. 

The same was true for growth:: total value-added (i.e. GDP) grew in real terms by 2.4% p.y. 
distributed into a growth of 1.1% p.y. for the material value-added against 3.0% p.y. for the 
value-added of services. The apparent productivity of labour was thus growing at 1.4 % for 
the aggregate of agriculture, construction and manufacturing industries and at 0.8% for the 
service sector! 
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E. Final equations for total input demands of services and supply of material products. 

This being so, I have tested econometrically a demand equation for the total input of services 
in real terms (XTS) with the real total output of material products (XTM) as a proxy for 
complementarity effects, real net disposable income of households (YD) as a proxy for 
purchasing-power-connected effects and the relative price of services with respect to the GDP 
deflator (Pr).as a cost element. 

Using once again the panel regression of rats 6.0, the best results were obtained in a log-linear 
model with generalised LS 

Ln XTS = 1.292 + 0.716 ln XTM + 0.324 ln YD -0.480 ln PR               R² = 0.9995 
    (0.523) (0.082)    (0.103)           (0.126) 

Thus the sum of the quantitative elasticities is slightly above 1 but not statistically different 
from one and the relative price elasticity has in this case the right sign.. 

In order to have total output we need an estimation for XTM. I used for that one a directly 
estimated Diewert production function5 with Km and Lm as argument,. i.e. 

XTM = α1 √Lm + α2 √Km +½ [√Lm  √Km] 
2221

1211

bb
bb

  
Km
Lm   + dummies 

under the usual symmetry constraint b12=b21. 

The estimation proved successful with parameters given in the following table 

Table7. Parameters of a Diewert production function applied to material output. 

.Parameters Estimation Standard error 

α1 42.335 20.065 

α2 37.938 15.663 

b11 1.049 0.455 

b22 11.592 2.512 

b21=b12 3.725 0.805 

R² 0.9968  

 

Of course total output XT = XTS + XTM 

                                                 
5 This function has a variable elasticity of substitution and is a second order numerical approximation to any 
arbitrary production function. 
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This close the SM² exercise for the present since a finer decomposition of services would 
require inexistent deflators and the I/O avenue is therefore unusable until more years and 
more deflators are available for more countries.. 
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