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Empirical examination of the gravity model in two 

different contexts: estimation and explanation. 

 

1. Introduction 

 

Gravity model belongs to the family of spatial interaction models, which form a 

substantial part of regional science and geography research. The goal of these models is 

to explain and/or estimate spatial interaction flows, broadly defined as the movement or 

communication between different spaces. This interaction implies a decision which is 

taken after a cost-benefit analysis, in which the individual evaluates the trade-off between 

the benefit from the movement (related to the motivation that causes it) and the cost of 

that same movement (which corresponds to the traveling across the spatial separation 

between his / her origin and the several destinations) (Fotherigham and O’Kelly, 1989).  

Spatial interaction models deal with a diverse collection of flows, such as: international 

and interregional trade, migration, information flows, traffic flows and commuting 

movements, among others. In presence of such a variety of applications, there is no 

specific type of model which is superior to all the remaining, whatever the topic that it is 

applied to. Being so, in each particular circumstance, the researcher must decide which is 

the most adequate, among all the proposed models (Isard, 1998).  

 

Yet, due to its simplicity and capacity to produce reasonable results, the gravity model 

continues to be the most attractive among spatial interaction models, especially in trade 

empirical applications. By analogy to Newton’s gravity law, the application of gravity 

model to trade flows states that trade increases with the dimension and proximity 

between trade partners.  

 

The consolidation and enlargement of economic integration blocs in the end of 20th 

century led to a renovated interest in trade flow gravity model applications, to study 
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specific issues, such as: searching for non-institutional regional trading blocs, computing 

of trade creation and trade diversion effects and estimation of trade potential between 

former and new EU members (Porojan, 2001).  

 

Gravity models, as well as other spatial interaction models, can be used, in two different 

information contexts:   

(a) Spatial interaction flows are known a priori; in this case, the model is used to explain 

trade flows’ behaviour, through econometric modelling; 

(b) Spatial interaction flows are unknown a priori; here, the model is applied in order to 

assess the unknown flows. 

 

Very little attention has been paid to the second context of application. In fact, most of 

the literature on gravity models is dedicated to its theoretical underpinnings and to 

empirical applications with explanatory purposes (information context (a)). Being so, the 

main objective of the present work is to discuss and test the practical applicability of 

gravity model in studying trade flows, in both above referred information contexts. 

Additionally, this work also intends to fill another gap in trade flow gravity model uses: 

the fact that the majority of studies consider trade in an aggregate manner. Realizing the 

specificity of each product, this study is applied separately to different trading products. 

 

This paper is organized as follows: section 2 reviews the gravity model basic 

specification and its extensions in recent trade flows applications. Section 3 describes the 

empirical use of gravity model in this work, in the two distinct information contexts. 

Alternative methodologies are presented and results are discussed. Section 4 summarizes 

the main conclusions. 

 



 4 

2. The gravity model. 

 

1.1. Basic equation. 
 

Analytically, the basic equation that is used to express the gravity hypothesis on trade 

flows between origin i and destination j is: 
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in which: ijX  represents exports from origin i to destination j, G  is a constant of 

proportionality, iP  and jP  express the sizes of origin i and destination j, with weights 1α  

and 2α , respectively, ijd  represents spatial separation between each origin i and each 

destination j and 3α  is the so-called distance decay parameter, measuring the flow 

sensibility to spatial separation.  

 

This equation comprises some quite vague concepts, such as size and spatial separation 

(Sen and Smith, 1995). These concepts allow for different interpretations. Spatial 

separation, for instance, can be expressed by physical distance or other concepts of 

separation, like political or cultural distance. Also, the whole of specific formulations that 

are consistent with the gravity hypothesis is very vast, being equation ( 1) a particular 

case1. The debate over the different variables to express each of the above referred 

concepts and the different formulations to gravity model is beyond the scope of the 

                                                 
1 For example, some researchers consider the exponential functional form to represent spatial separation, 

instead of the power functional form. If that was the case, equation ( 1) would be: 
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present paper, being minutely discussed in Isard (1998).  For this work purposes, 

equation ( 1) is taken as the basic gravity equation and the correspondent basic variables 

are: GDP, for masses and physical distance, for spatial separation. 

 

In practical applications, equation ( 1) is usually taken in logarithmic form, as: 

 

ijjiij dPPGX lnlnlnlnln 321 ααα −++=  

( 2) 

 

From equation ( 2) it is clear that each parameter α  can be seen as elasticity of exports 

with respect to: the exporting country’s GDP, the importing country’s GDP and the 

distance between i and j. 

 

In type a) information contexts, equation ( 2) can be the starting point to a regression 

equation like: 

 

ijijjiij dPPX εαααα ++++= lnlnlnln 3210  

( 3) 

 

in which ijXln  is the endogenous variable, 0α , 1α , 2α , and 3α  are the coefficients to be 

estimated2, iP , jP  and ijd  are the explanatory variables and ijε  is the error term. 

 

                                                 
2 In this equation, the expected 3α  sign is negative. 
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1.2. Gravity model extensions to trade applications. 
 

1.2.1. Augmenting the gravity equation with additional explanatory 

variables. 

 

Numerous studies have used an augmented version of gravity model basic equation, in 

order to address some specific issues. One of the most important motivations to gravity 

model extensions is the study of preferential trade agreements effects. Some examples of 

this kind of exercises can be found in Martinez-Zarzoso (2003), Soloaga and Winters 

(1999) and Piani and Kume, (2000). The common feature of these three works is the 

addition of specific bloc-related dummy variables to equation ( 3), in order to capture the 

effects of preferential trade agreements, especially those concerning trade creation and 

trade diversion. Further dummy variables are also included to isolate the effects of other 

determinants of trade, such as: sharing the same language or sharing a common border.  

The work of Blavy (2001) is another example of extending the gravity model to answer 

some specific trade issues. In this case, the author starts by applying the basic gravity 

model to trade patterns in specific region composed by six Middle East countries, 

reaching to the conclusion that it overestimates intranational and international trade in 

that region. To overcome such problem, the model is extended with specific explanatory 

variables, to assess the effects of: over-appreciation of exchange rates, trade barriers and 

political uncertainty. It is shown that the augmented model has a better performance in 

estimating trade flows. 

 

1.2.2. Formal specification of spatial dependence. 

 

One of the frequent criticisms pointed out to gravity model is the fact that it generally 

assumes that observations collected at different points of space are completely 

independent, which is not true. There are well known diffusion processes among different 

locations that must be taken into account, through a specific modeling of space.  
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One possible way to acknowledge spatial structure effects is through the inclusion in the 

gravity model of additional variables that, in some way, illustrate the map pattern of the 

observations under study. For example, Hu and Pooler (2002) use an augmented gravity 

model (applied to explain international trade flows between i and j), in which spatial 

structure effect is captured through the inclusion of an additional variable designed to 

measure accessibility of destination j (given by the weighed sum of the distances between 

all the origins and j, in which each origin’s mass is the relevant ponderer). They compare 

the performance of this model with the traditional gravity model, showing that the 

addition of the accessibility variable contributes to a better predictive capacity of the 

model. Some previously referred exercises also attempt to include in their gravity models 

a variable that expresses the relative locations of the different observations. That is the 

case, for example, in Piani and Kume, (2000) and in Soloaga and Winters (1999), which 

consider a relative distance (or remoteness) indicator, to control for the stronger trade 

intensity that usually exists between remote pairs of countries, when compared with trade 

between neighbors that have many other close trading partners3. A simpler and more 

common way used to illustrate map pattern of the observations is the inclusion of a 

dummy variable that indicates the presence (or not) of a common border between the 

trading partners. 

 

However, spatial effects are often more comprehensive, making unavoidable the use of 

more sophisticated modeling techniques, that fall in the spatial econometrics field. If this 

is the case, it is very important, not only to find the proper way to formally express the 

spatial effects, but also to use the adequate techniques to estimate the model. Standard 

regression methods (as Ordinary Least Squares) are no longer acceptable when spatial 

effects are definitely present4 (Anselin and Griffith (1988)). The paper of Anselin and 

Griffith (1988) is crucial to systematize the nature of spatial effects. These are associated 

                                                 
3 Soloaga and Winters (1999) illustrate this with the examples of Australia and New Zealand that tend to 
trade more with each other than Portugal and Spain. 
4 Yet, most of the practical applications completely ignore the possibility of spatial effects, using OLS as 
the single estimating method.  
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to spatial dependence, on the one hand, and to spatial heterogeneity, on the other hand. 

Spatial dependence may exist due to spillover effects across space and occurs whenever 

the dependent variable is “affected by the values of the dependent variable in nearby 

units, with nearby suitable defined” (Beck, Gleditsch and Beardsley 2005, p.9). It can be 

discovered by the presence of autocorrelated error terms (originating the spatial error 

models) and/or autocorrelation in the dependent variable (resulting in the spatial lag 

model). Spatial heterogeneity may be due to structural instability, meaning that functional 

forms and/or parameters differ from one observation to another5, or to model 

misspecification that leads to non-constant error term variances (heteroskedasticity).  

 

Spatial heterogeneity can be undertaken by means of the typical solutions in traditional 

econometrics. To formally account for spatial dependence, however, it is necessary to 

introduce the concept of spatial lag. Let W be the spatial lag operator, also called 

connectivity matrix (Beck, Gleditsch and Beardsley 2005). This matrix represents spatial 

morphology and is composed by non-stochastic ijw  elements, based on the geographic 

arrangement of observations. One of the most popular criteria to express geographic 

arrangement is contiguity; following this criterion, ijw  assumes the value 1 if i and j are 

contiguous locations and the value 0, otherwise6. In short, the spatial lag operator can be 

seen as a “weighted average (with the ijw  being the weights) of the neighbors, or as a 

spatial smoother” (Anselin, 1999, p.6).  

 

Analytically, a spatial error model is expressed by an equation like: 

 

ελ
β

+=
+=

Wuu

uXY
 

                                                 
5 Formally, this would mean that, for each observation i, there would be a function iiiii xfy εβ += ),( , in 

which ix  is a 1*m row of m explanatory variables and iβ  stands for the correspondent coefficients. 
6 The matrix W is row-standardized, as usual in this type of models; each row sums 1, so that there is no 
need to worry about the units used to measure connectivity. 
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( 4) 

 

in which Y represents the vector of dependent variables, X is the matrix of explanatory 

variables, W is the lag operator, β  is the vector of parameters that reflect the influence of 

explanatory variables on Y and λ  expresses the degree of spatial correlation among the 

model disturbances. In this model it is assumed that the only source of interdependence 

among observations is in the error formation process, more precisely, the fact that some 

omitted variables are spatially correlated (Beck, Gleditsch and Beardsley 2005). 

 

The spatial lag model can be formally expressed by: 

 

εβρ ++= XWYY  

( 5) 

 

in which ρ  illustrates the degree of the dependent variable spatial autocorrelation and the 

remaining variables have the above referred meaning. This model implies the assumption 

of feedback effects among observations / locations: variations in the explanatory 

variables of location i affect the dependent variable of that location and of neighboring 

locations (because of the lag operator). Consequently, location i will be affected for a 

second time (again, because of the spatial link with its neighbors) and this process will be 

successively repeated as in a multiplier effect. 

 

The emergence of new software tools and theoretical contributions to deal with spatial 

dependence has facilitated the empirical application of these models. Some examples can 

be found in Beck, Gleditsch and Beardsley (2005) and Porojan (2001). Beck, Gleditsch 

and Beardsley (2005) propose an alternative connectivity measure to include in the 

spatial lag model. Their objective is to explain democracy level. They argue that instead 

of geographical notion of proximity other measures can be used. So, they propose a W 

matrix with elements given by the “volume of the dyadic trade flow between i and j as a 
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proportion of country i’s total trade” (p.13); the empirical exercise proves that the spatial 

autocorrelation coefficient associated to this connectivity matrix is statistically 

significant, suggesting that “countries that trade more with democracies are more likely 

to be democratic (…)” (p. 17). The empirical application carried out in Porojan (2001) 

aims to find the most proper version of gravity model to explain international trade. 

Several alternative equations are tested, including the gravity traditional specification, 

leading the author to the conclusion that the most adequate equation is the one which 

explicitly considers the existence of two spatial effects: spatial heterogeneity (adapting 

the model to account for heteroskedastic error) and spatial autocorrelation of the 

dependent variable.  

 

3. Empirical application. 

1.3.  Type (a) information context. 
 

When the researcher has previous access to a known trade matrix, the objective is to 

calibrate the model, i.e., to estimate the model parameters. An immediate question 

emerges: “if we already have the interaction matrix, why do we need to calibrate an 

interaction model?” (Fotheringham and O'Kelly (1988), p.43). In fact, the calibration 

process in useful to forecasting purposes (admitting that the parameters remain the same 

in different points of time and/or space) and to draw conclusions on the behavior patterns 

of the subject in study (for example, to assess the degree of elasticity of exports with 

respect to the distance between the trading partners and to evaluate how this varies from 

one product to another). 

 

In this section, attention will be given to the econometric application of gravity model to 

explain bilateral trade flows among the 15 EU countries7 (before enlargement). This 

                                                 
7 In fact, the number of origins (equal to the number of destinations) is only 14, since Belgium and 
Luxembourg are considered jointly, as one country.  
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application was carried out in a stepwise fashion, testing several alternative equations and 

analyzing the results of each one.  

 

All the equations were calibrated using LeSage’s Econometrics MATLAB toolbox, of 

which functions are available at http://www.spatial-econometrics.com/. 

 

1.3.1. The data. 

 

The set of data used in this work is composed by: 

 

- Export data from each of the 14 countries to each of the others, for year 2001, in USD 

and current prices; source: OECD Bilateral Trade Database 2002; 

- Population, year 2001, in thousands; source: OECD member countries' population 

1981-2004 (thousands and indices: 2000=100). Labour Force Statistics, 2005 Edition; 

- Gross Domestic Product, year 2001, in USD and current prices; source: OECD Annual 

National Accounts database. 

- Great circle distances between capital cities; source: 

http://www.macalester.edu/research/economics/PAGE/HAVEMAN/Trade.Resources/Dat

a/Gravity/dist.txt. 

 

Origin-destination flow data have specific characteristics, which must be emphasized 

before explaining the practical application that was carried out. First, the number of 

observations, N, is equal to 196 (14 origins multiplied by 14 destinations), in spite of 

being only 14 countries in study8. Second, the vectors of explanatory variables have a 

particular feature: in the origin related variables (as, for example, GDP of origin i), the 

same value is repeated n times: once to each destination country; in the destination 

                                                 
8 Let n be the number of origins, which in this case is equal to the number of destinations. 
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related variables (for example, GDP of destination j) the same sequence of values is 

repeated n times: once to each origin country. Finally, distance and contiguity matrices 

are symmetric (ex.: if Germany is contiguous to France, the opposite is also true; the 

same reasoning applies to the distance between these two countries). The particular 

features of origin-destination flow data, and its implications, are the main subject of 

LeSage and Pace (2005). 

 

As previously referred, all the alternative equations were estimated ten times: once to 

each of the ten next manufactured products (followed by the correspondent abbreviate 

designation): 

 

1 FOOD PRODUCTS, BEVERAGES AND TOBACCO FBT 
2 TEXTILES, TEXTILE PRODUCTS, LEATHER AND FOOTWEAR TEX 
3 WOOD AND PRODUCTS OF WOOD AND CORK WOO 

4 
PULP, PAPER, PAPER PRODUCTS, PRINTING AND 
PUBLISHING PPP 

5 CHEMICAL, RUBBER, PLASTICS AND FUEL PRODUCTS CHE 
6 OTHER NON-METALLIC MINERAL PRODUCTS OTH 
7 BASIC METALS AND FABRICATED METAL PRODUCTS MET 
8 MACHINERY AND EQUIPMENT MAQ 
9 TRANSPORT EQUIPMENT EQT 

10 MANUFACTURING NEC; RECYCLING NEC 
 

The use of gravity model with individual products is less common than aggregate trade 

applications. However, some exceptions exist. For example, Feenstra, Markusen and 

Rose (1998) distinguish two groups of products: differentiated and homogeneous, 

expecting to find a higher value of domestic income exports elasticity in manufactured / 

differentiated products, when compared to the correspondent value in primary, 

homogeneous, resource based goods. Their results confirm the initial expectative. In the 

present work, the objective is also to ascertain the variability of the several estimated 

coefficients in different products, devoting special attention to the distance parameter. 

However, it should be noted that there is an a priori limitation that must be taken into 

account when inferring the results: the level of aggregation involved in the above list of 

ten products is still very high. 
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1.3.2. Model calibration through alternative gravity equations. 

 

Model calibration was done in a stepwise fashion, testing succeeding formulations for 

gravity model. The first regression, named Model 1, was based on the traditional 

specification of gravity model, expressed before in equation ( 3). Yet, the estimated 

equation was a bit different from that equation, since GDP was decomposed in two 

separate factors, in order to capture two distinct effects on trade: population, as a size 

explanatory variable, and per capita income, as an indicator of development. Being so, 

Model 1 is expressed by: 

 

ijijjjiiij dPOPNPOPNX εββββββ ++++++= lnlnlnlnlnln 543210  

( 6) 

 

in which N  stands for per capita GDP and POP is population. The remaining variables 

and parameters have the meaning referred before. It is expected that the coefficients 

associated to N and POP, have positive signs, because these are the traditional propulsion 

(for origins) and attraction (for destinations) variables in the gravity model. On the 

contrary, it is expected that the distance parameter, 5β , has a negative sign.  

 

Equation ( 6) was applied recursively to the ten manufactured products. The dependent 

variable vector was different to each product, but the explanatory variables remained the 

same, since these variables are not related to any particular product. Ordinary Least 

Squares was the methodology used to calibrate Model 1. After running the first regression 

to this model, the White test was applied, in order to investigate the possibility of 

heteroskedasticity. The results of this test proved that heteroskedastic errors existed in 

Model 1, when applied to four of the ten products: FBT, WOO, PPP and EQT. 

Regression results were then adjusted through the White procedure (using the 
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correspondent function in Econometrics MATLAB toolbox). The results remained the 

same, except for one parameter ( 3β  in PPP) that became insignificant in consequence of 

this correction. 

 

The display and analysis of the results will be targeted to some specific issues, since the 

complete list of results for the ten products would be too extensive9. The following Table 

1 sums up the more relevant results of Model 1: 

 

Table 1 – Model 1 principal results. 

 R-bar squared Statistically 
insignificant 
coefficients 

(5%) 

Coeff. signs 
equal to 

expected? 

5β  
(distance 

coeff.) 

FBT 69% 0β  and 3β  yes -1,1 

TEX 58% 0β  and 3β  
no: negative 

1β  -1,21 

WOO 42% 3β  yes -1,17 

PPP 64% 3β  yes -0,83 

CHE 82% 3β  yes -1,22 

OTH 77% 0β  and 1β  
no: negative 

1β  -1,26 

MET 79% none yes -1,13 

MAQ 84% none yes -0,75 

EQT 69% 0β  and 3β  yes -1,09 

NEC 76% 3β  yes -1,2 

                                                 
9 If the reader is interested in getting some specific result that is not published in this paper, please contact 
the author. 
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The first column of Table 1 expresses the explicative power of the model, by means of its 

R-bar Squared. In spite of being extremely variable between the different products, it 

should be emphasized that this indicator assumes relatively low values for some of them, 

like WOO and TEX.  The second column refers to the statistical relevance of the 

variables included in this model, through the t-statistic value (at 5% significance level). 

The most evident observation is that the estimated parameter associated to per capita 

GDP of the importing country is not significant in six of the ten cases. This may be a sign 

that size matters more than development level as an attraction measure to international 

trade (since the origin’s population parameter is always statistically significant). Column 

3 indicates the coincidence (or not) between the estimated parameters’ signs and the 

expected ones. That coincidence is not verified in the cases of TEX and OTH, in what 

respects to 1β . In fact, the traditional interpretation of gravity model in international trade 

applications is that trade tends to be greater between larger countries. However, since 

GDP effect was decomposed in two indicators (size and development), it could be argued 

that the sign of per capita GDP is more an empirical issue, i.e., it may be positive or 

negative, according to the specific case. One plausible explanation to the negative sign 

found in those two products is that they belong to a class of low-technology industries, in 

which less developed countries are more specialized10. Being so, countries with a smaller 

per capita GDP would be expected to export more of these products and vice-versa. 

Finally, the last column presents the distance parameter estimated value, to each of the 

products. It is clear that, as expected, distance produces a negative effect on international 

trade flows. However, the estimated elasticity is extremely variable among the different 

products. Even though the level of product aggregation avoids more accurate conjectures, 

it seems that there is a direct relationship between the export’s elasticity with respect to 

distance and the typical product weights for monetary unit. For example, WOO, which is 

typically a heavy and low value product, reveals more resistance to distance than the 

average.  

Figure 1 illustrates distance parameter variability: 

 
                                                 
10 See, for example, the case of textiles and related products, in which Portugal, with a per capita GDP 
below the average, shows a great specialization. 
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Figure 1 – Estimated distance parameter in Model 1, for the ten products. 
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The awareness of potential spatial dependence effects motivated a spatial autoregressive 

model application, named Model 2, which may be generally expressed by: 

 

ijijjjiiijij dPOPNPOPNXWX εββββββρ +++++++= lnlnlnlnlnlnln 543210  

( 7) 

 

According to the previous classification of spatial dependence models, this is a spatial lag 

model. The statistical significance and value of ρ  will allow inferring about the presence 

and degree of spatial dependence in the dependent variable.  

 

As referred before, origin-destination data have particular features. This has implications 

on how to construct an adequate weight matrix W. It should be noted that, when dealing 

with spatially collected data, usually each observation corresponds to one region. This is 

nor the present case: in origin-destination data, the observations vector is composed by 
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the flows generated by every possible combination of origin and destination, in both 

directions (LeSage, 2005). In this particular case, we have 196 rows in the observations 

vector. In this context, the W operator must have a compatible dimension. As it will be 

referred, matrix W can be constructed in three different ways, resulting of distinct types 

of spatial dependence under consideration. One possible way of assembling matrix W is 

by repeating the typical contiguity matrix n times (14 times, in this case) in the diagonal 

of an N*N block matrix, with blocks of zeros in all the off-diagonal matrices (LeSage, 

2005). In the present work, the most common concept of contiguity was used: sharing of 

a common border. Thus, an initial 14*14 w matrix was produced, with elements ijw  that 

were given the value 1 if i and j shared a common border and the value 0, otherwise. 

Matrix w was then row-standardized, becoming matrix C. Finally, W was formed 

spreading out the 14*14 matrix C on a 196*196 matrix W. The following diagram 

illustrates the process of matrix W construction: 

 

Figure 2 – Construction of matrix W 
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The spatial lag ijXW ln  included in equation ( 7) captures a “destination-based” spatial 

dependence (LeSage, 2005). Let us consider a specific element ijX  in the observations 

vector. The inclusion of the spatial lag in the regression equations means that flows from 

i to j are influenced, among other factors, by the average of flows from i to all the 

neighbors of j. Using a concrete example, this is to say that the France to Germany value 

of exports is influenced by the average of exports coming from France to all the 

neighbors of Germany. Hence, matrix W will be named dW , in order to specify a 

destination-based dependence.  Note that the matrix dW  can also be obtained by simply 

applying the Kronecker product between a n*n identity matrix and matrix C 

( )14 CIWd ⊗= 11. In this case, the general SAR model expressed in equation ( 7) can be 

written as a destination-based spatial autoregressive (DSAR) model: 

 

ijijjjiiijddij dPOPNPOPNXWX εββββββρ +++++++= lnlnlnlnlnlnln 543210  

( 8) 

 

It is expected that, if significant, the autoregressive coefficient dρ  as a positive sign. As 

to the remaining variables, the expected signs are the same as previously mentioned. 

 

After creating the adequate dW  matrix, the calibration of DSAR was done using the SAR 

(Spatial Autoregressive) function in Econometrics MATLAB toolbox (LeSage, 1998), 

which comprises maximum likelihood estimation method. Table 2 presents the principal 

results of this application. 

 

                                                 
11 It should be noted that the way of constructing the W matrix depends on the way in which the Origin-
destination (O-D) flow matrix is organized. In LeSage (2005), for example, this matrix is organized putting 
origins as columns and destinations as rows. In the present work’s case, the O-D matrix is assembled in a 
reversed way (origins in rows and destinations in columns). That is the reason why matrix dW  is 
constructed in a different way here.  
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Table 2 – DSAR Model principal results. 

 R-bar squared Statistically 
insignificant 
coefficients 

(5%) 

Coeff. signs 
equal to 

expected? 

5β  
(distance 

coeff.) 

FBT 80% 0β , 3β  and dρ  yes -0,13 

TEX 85% 0β , 1β  and dρ  
no: negative 

1β  and dρ  -0,13 

WOO 61% 3β  yes -0,11 

PPP 79% dρ  
no: negative 

dρ  -0,11 

CHE 92% dρ  
no: negative 

dρ  -0,14 

OTH 86% 0β  and dρ  
no: negative 

dρ  -0,13 

MET 89% dρ  
no: negative 

dρ  -0,14 

MAQ 94% dρ  
no: negative 

dρ  -0,11 

EQT 80% 0β , 3β  and dρ  yes -0,13 

NEC 86% dρ  
no: negative 

dρ  -0,11 

 

There are three main observations to make on these results. Firstly, it seems that spatial 

dependence is negligible, since autoregressive coefficient dρ  is statistically insignificant 

in all but one product12. Secondly, further than being insignificant, dρ  also presents a 

negative sign in seven of ten cases, which is contrary to what would be expected. Finally, 

the distance resistance coefficients have now much smaller values than in Model 1, being 

far from the commonly obtained values in similar gravity trade studies13. The presence of 

a new explanatory variable (the spatial lag) capturing some spatial effects previously 

                                                 
12 Yet, it assumes a low value. In WOO case, dρ =0,13. 
13 Usually the distance coefficient is around unity. 
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captured by 5β  is not an acceptable reason to explain this difference, because this variable 

does not appear to be statistically significant. 

 

One possible reason for the non-significance of the auto-regressive coefficient may rely 

on the type of dependence considered in the W matrix. Thus, another hypothesis was 

taken into account: the possibility of “Origin-based” spatial dependence between the 

observations. In fact, “it seems plausible that forces leading to flows from any origin to a 

particular destination may create similar flows from neighbors to this origin to the same 

destination.” (LeSage, 2005, p. 7). In order to capture this potential effect, an origin-

based weight matrix can be computed by: 14ICWo ⊗= . The resulting origin-based 

spatial autoregressive (OSAR) model is: 

 

ijijjjiiijooij dPOPNPOPNXWX εββββββρ +++++++= lnlnlnlnlnlnln 543210  

( 9) 

 

The results of this model’s calibration are summarized in the following Table 3. Two 

main features distinguish this table from Table 2. First, the origin-based auto-regressive 

coefficient is now statistically significant in half of the cases under consideration; this 

implies that the origin spatial dependence hypothesis is more robust than the destination 

dependence one. Yet, even in those cases, the oρ  assumes very low, negligible values, 

except for the WOO case, illustrating a rather weak spatial dependence. Second, there is 

now better agreement between the excepted signs to the parameters and the obtained 

ones. In short, these two features support the choice of this OSAR Model, in detriment of 

the DSAR Model. 
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Table 3 - OSAR Model principal results 

 R-bar squared Statistically 
insignificant 
coefficients 

(5%) 

Value of oρ , 
if significant 

Coeff. signs 
equal to 

expected? 

5β  
(distance 

coeff.) 

FBT 82% 0β  0,09 yes -0,13 

TEX 84% 0β  and 1β  0,05 
no: negative 

1β   -0,13 

WOO 66% 3β  0,22 
no: negative 

3β  -0,11 

PPP 80% none 0,08 yes -0,12 

CHE 92% oρ  --- 
no: negative 

oρ  -0,13 

OTH 90% oρ , 0β  and 1β  --- yes -0,11 

MET 94% oρ  --- yes -0,13 

MAQ 85% oρ  --- yes -0,14 

EQT 82% 0β  0,09 yes -0,13 

NEC 86% oρ  --- yes -0,12 

 

 

To complete this SAR analysis, a third type of W matrix was considered: dood WWW ⋅= . 

This matrix aims to capture an “origin-destination” mixed effect of spatial dependence. 

The inclusion of spatial lag ijod XW ln  in the regression equations means that: flows from 

i to j are influenced, among other factors, by the average of flows from all the neighbors 

of i to all the neighbors of j. This weight matrix can be computed as the Kronecker 

product: CCWod ⊗=  (LeSage, 2005). The regression equation, corresponding to 

ODSAR Model, becomes: 
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ijijjjiiijododij dPOPNPOPNXWX εββββββρ +++++++= lnlnlnlnlnlnln 543210  

( 10) 

 
 
The principal results of this model are exhibited in Table 4. 

 

Table 4 - ODSAR Model principal results 

 R-bar squared Statistically 
insignificant 
coefficients 

(5%) 

Value of odρ , 
if significant 

Coeff. signs 
equal to 

expected? 

5β  
(distance 

coeff.) 

FBT 83% 0β  and 3β  0,13 yes -0,12 

TEX 85% 
0β , 1β  and 

odρ  
--- 

no: negative 

1β   -0,13 

WOO 70% none 0,30 
no: negative 

3β  -0,08 

PPP 82% 3β  0,15 yes -0,10 

CHE 92% odρ  --- yes -0,13 

OTH 86% 0β  and 1β  0,08 yes -0,10 

MET 87% 0β  0,04 yes -0,12 

MAQ 95% 3β  0,08 yes -0,13 

EQT 83% 0β  and 1β  0,13 yes -0,11 

NEC 87% 0β  0,09 yes -0,11 

 
 

The comparison between these results and the previous SAR results allow us to conclude 

that, when a mixed effect is considered, the spatial dependence hypothesis obtains a 

superior support, since the autoregressive coefficient is now statistically significant in 
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eight of ten cases. However, once again, its absolute value is very low in all but one 

product (the same as before: WOO)14.  

  

Given that the spatial autoregressive model didn’t seem a suitable model to explain 

international trade flows in all the products being considered, a third model was tested. 

Model 3 uses the same explanatory variables as in Model 1, added with two new ones.  

 

The first added variable is product specific and reflects the effect of each country’s 

specialization on the volume of exports. Note that in Model 1, the vector of explanatory 

variables was the same, independently of the specific product in study. However, in some 

cases, de degree of specialization of some country in exporting a specific product k has an 

influence that may even prevail over the distance effect. At the limit, if one country had 

the monopoly in the international market supply of some specific product k, distance 

would not matter at all; all the product k demand would be satisfied by exports from that 

country. Consider, for example, the product “WOOD AND PRODUCTS OF WOOD 

AND CORK”. The weight of this product exports on total exports of Finland is pretty 

above the average. More precisely, is almost 7 times the correspondent weight in the 

whole of countries being considered. Formally, this can be expressed by a Degree of 

Specialization (DS) indicator, given by: 
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( 11) 

 
                                                 
14 Besides, the asymptotic t-statistic is relatively low in all cases, being close to the limit of statistical 
significance. 
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The numerator of this index represents the weight of product k on origin i’s total 

exports15; the denominator indicates the weight of product k on all origins’ exports. 

Values above (below) 1 indicate a higher (lower) than average specialization of country i 

in exporting product k. Table 5 shows the maximum values of this index obtained for 

each product and the correspondent highly specialized country. 

 

The second added variable seeks to reflect the map pattern of the observations in a 

simpler way than that used in Model 2: through the inclusion of a dummy variable that 

indicates the presence (or not) of a common border between the trading partners (DBor). 

Model 3 may, thus, be expressed by: 

 

ijiijjjiiij DBorDSdPOPNPOPNX εββββββββ ++++++++= 76543210 lnlnlnlnlnlnln
 

( 12) 

 

Table 5 – Maximum value of DS , for each product, and correspondent specialized 
country. 

 

 Max SD Country 
FBT 1,746 Spain 
TEX 4,741 Portugal 

WOO 6,757 Finland 
PPP 6,599 Finland 
CHE 1,489 Ireland 
OTH 2,078 Portugal 
MET 1,772 Greece 
MAQ 1,730 Ireland 
EQT 1,746 Spain 
NEC 2,233 Italy 

 

                                                 
15 �=

j
iji XX  
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From the previous explanation, it is clear that the expected signs for the new variables 

estimated coefficients are both positive.  

 

Table 6 - Model 3 principal results. 

 
 R-bar 

squared 
Statistically 
insignificant 
coefficients 

(5%) 

Coeff. 
signs 

equal to 
expected? 

5β  
(distance 

coeff.) 

6β  
(DS coeff.) 

7β  
(dummy 
coeff.) 

FBT 90% 7β  yes -0,89 1,43 0,31 

TEX 67% none yes -0,83 0,92 0,60 

WOO 86% 3β  yes -1,24 1,32 0,57 

PPP 89% none yes -0,97 1,32 0,40 

CHE 87% none yes -0,92 1,29 0,41 

OTH 81% none yes -0,97 0,97 0,75 

MET 86% none yes -0,86 0,85 0,75 

MAQ 89% none yes -0,67 1,34 0,43 

EQT 90% 7β  yes -0,89 1,42 0,32 

NEC 85% none yes -0,95 1,00 0,59 

 

The main estimation results, obtained by means of OLS, are shown in Table 616. This 

model exhibits a better performance than Model 1 (to which it can be compared). Several 

reasons support this statement: 

                                                 
16 The White test application to Model 3 results shows that, for all products, the error terms are 
homoskedastic. 
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- Predictive capacity indicated by R-bar squared is rather superior in Model 3 than in 

Model 1; the improvement is remarkable, for example, in WOO, in which this indicator 

increased from 42% to 86%. 

- Statistically insignificant coefficients are rare, unlike in Model 1. Yet, it should be noted 

that, in two cases (FBT and EQT) the dummy variable coefficient is not significant, 

indicating that map pattern is not a determinant factor to export flows of these products. 

- All the estimated coefficient signs correspond to what was expected a priori. 

 

Additional comments on these results are pertinent. First, in most of the cases, the 

distance resistance coefficient assumes smaller values than in Model 1. This may be due 

to the fact that, in Model 3, there are additional variables that control for factors 

previously embodied in the distance coefficient. Once again, this coefficient exhibits 

great variability, assuming superior values in products that typically have a high weight 

for monetary unit. This is clearly the case in Wood products, as can be seen in Figure 3: 

 

Figure 3 - Estimated distance parameter in Model 3, for the ten products. 
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Second, estimated DS coefficients show a high sensibility of exports with respect to 

origin’s specialization on the specific product under study. All coefficients are close to or 

greater than unity. Finally, except for the cases in which 7β  is statistically insignificant, 

the presence of a common border between trading partners has a considerable effect on 

the correspondent level of exports. Since the dependent variable is in logarithmic form 

(as well as the remaining explanatory variables), a coefficient 7β  represents a common 

border additional impact of [ ]1)exp( 7 −β 17. This means that in OTH, for example, the 

presence of a common border increases the level of exports in 112%.  

 

1.4. Type (b) information context. 
 

It is very common to find situations in which the required data are not directly available 

and the survey collection of them is beyond the researcher’s means (in terms of money, 

time, human resources, etc).  In this context, non-survey methods are used to estimate the 

missing data. The objective of this section is to test a gravity trade model application 

when the purpose is to generate nondisclosed data18. The concern in the context of 

missing trade data is especially pertinent when the researcher is dealing with regions, 

instead of countries. In fact, one of the main barriers to regional economic analysis is the 

                                                 
17 This can be easily demonstrated, as follows.  

( )760760
ˆlnˆˆexpˆˆlnˆˆˆln1 ββββββ +++=⇔+++=�= iijiij DSXDBorDSXDBor ��

;  ( )iijiij DSXDSXDBor lnˆˆexpˆlnˆˆˆln0 6060 ββββ ++=⇔++=�= �� Being so, 

( ) ( )
( ) ( )
( ) [ ]1)ˆexp(lnˆˆexp

lnˆˆexp)ˆexp(lnˆˆexp

lnˆˆexpˆlnˆˆexpˆ

760

60760

60760

−⋅++
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18 In this paper, attention was exclusively given to the gravity model. However, it must be noted that there 
are alternatives that should be accounted for in further studies. Yet, even without dedicating special 
attention to these models, it may be argued that there are serious problems when it comes to empirical 
applications. The empirical use of the entropy maximizing model, for instance, requires the introduction of 
a cost constraint, for which data are seldom available. Another optimizing type spatial interaction model is 
the Minimum Discrimination of Information approach (minutely presented in Snickars and Weibull, 1977). 
But this model requires the access to previous information on the spatial interaction flows which is not the 
case considered in type (b) information context. Further details on these alternative spatial interaction 
models can be found, for example, in Roy and Thill (2004), Fotheringham and O'Kelly (1989) and Batten 
and Boyce (1986). 
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Destination 

Origin 

fact that, in most countries, there is no survey gathering of interregional trade flows data 

(Canning and Wang, 2003). The knowledge of this data is of fundamental importance, for 

example, in regional input-output models that include more than one region, since each 

region’s demand is, in part, supplied from other national regions and each region’s supply 

is, in part, directed to supply other national regions’ demand. Being so, when an 

exogenous change occurs in one region’s final demand, there are interregional feedback 

effects that can only be accounted for when interregional trade flows are known.  

 

Regional input-output models are the main theme of investigation of this paper’s author. 

This motivates a special concern in type (b) information contexts. Nevertheless, the 

following empirical application uses the same international trade data that was used in the 

previous section (also in a product disaggregated manner). This is because it would not 

be possible to evaluate gravity model performance in estimating interregional trade data, 

without having the real value of trade flows, to serve as benchmark. Being so, the 

European set of open economies is used as if it was a large country with several regions. 

Additionally, it will be assumed that, for every product, the only known information is 

the sum of all inflows into each region and of all outflows from each region.  

 

Figure 4 – International trade matrix with known margins. 

 
Country 1 Country 2 … Country 14 Sum 

Country 1 0 12X  … 114X  1X  

Country 2 21X  0 … 214X  2X  

… … … 0 …  

Country 14 141X  142X  … 0 14X  

Sum 1M  2M  … 14M  MX =  
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Considering an n*n (14*14, in this case) trade matrix, as the one in Figure 4, this can be 

formally expressed by: j
i

ij MX =�
=

14

1

 and i
j

ij XX =�
=

14

1

 are previously known values. The 

total volume of flows is indicated below by ��
= =

==
14

1

14

1i j
ijXMX . 

 

Let ijX
~

 be the international trade flow from origin i to destination j, obtained by the 

gravity model application. Recalling the gravity equation ( 1), trade flow estimative could 

be obtained by: 

 

3

21~
α

αα

ij

ji
ij d

PP
GX =  

( 13) 

 

However, the problem here is that parameters ,G  1α , 2α  and 3α  are unknown, which 

makes it impossible to directly apply the previous formula. On the other hand, in the 

information context described before, the model is doubly-constrained (Isard, 1998). That 

means that, independently of the particular version of the model that is used, the 

estimated values must verify the following additivity constraints: 
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( 14) 

 
 

Whenever this occurs, it is appropriate to use a gravity based model to generate a first 

proxy to international trade matrix and make use of biproportional techniques, like the 
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popular RAS scaling algorithm19, for example, to make that initial matrix as close as 

possible to the real matrix (this is done, for example, in Isard, 1998). One major question 

arise: how close are the obtained ijX
~

 flows from the real ones? The following experience 

aims to give an answer to this issue.  

 

Let 0~
ijX  designate the elements of the initial matrix. In this experience, 0~

ijX  is obtained 

applying a particular version of equation ( 13), in which almost all the unknown 

parameters are arbitrarily set equal to one. Thus, we have: 
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 ( 15) 

 

In this experience, only the basic gravity variables were used to determine the initial 

values of trade flows. The constant of proportionality iG  is a scalar that guarantees the 

exact observance of the ith row summing up constraint: i
j

ij XX =� 0~ 20; it is introduced in 

order to make the initial matrix comparable to the real one (if no scalar was introduced, 

the values of both matrices would have considerably different values). 1α , 2α and 3α  are 

assumed to be unitary (similarly to Model 1, in information context (a)). The initial 

matrix was iteratively adjusted, making use of the known margins. The algorithm 

converged after six iterations.  

 

                                                 
19 The application of RAS, as well as alternative biproportional techniques, is well described in Lahr and de 
Mesnard (2004), to which the interested reader is referred.  
20 The introduction of this scalar is equivalent to a first iteration of the RAS procedure, in which the row 
sums are the first to be adjusted.  
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To evaluate the performance of this model in assessing the real international trade values, 

the following measure of distance between matrices was used: 

 

��

�� −
⋅=

i j
ij

i j
ijij

X

XX
MAPE

~

100  

( 16) 

 
 

in which MAPE stands for: Mean Absolute Percentage Error.  

 

This measure was computed in two different stages of the process: before applying RAS 

(indicating the distance between the initial matrix and the real one) and after applying 

RAS (indicating the distance between the estimated final matrix and the real one). Table 

7 presents the obtained results for all the ten products. These results show that the initial 

matrix is quite distant from the real one (with a mean error around or above 50%). The 

iterative adjustment allows for some improvements in the matrix, making it closer to the 

real one. In some products, like CHE, for example, the resulting error is rather low. 

However, generally speaking, the final matrix is still very distant from the real one21. The 

most obvious sources of error rely on the following assumptions of the model: 

- all the unknown parameters are unitary; 

- only the basic gravitational variables are included in the model. 

 

                                                 
21 In previous works, namely in Ramos and Sargento (2003) and in Sargento and Ramos (2003), a different 
version of the gravity model was used to generate the initial matrix. In that case, the distance parameter was 
determined by way of minimizing a certain indicator of error of the initial matrix. Yet, the performance of 
this model remained unknown, because it was applied to interregional trade flows, to which there was no 
benchmark. This model was not sufficiently tested in the present international trade flow application.  
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Table 7 – Results from Type (b) Gravity Experience. 

Product MAPE (before RAS) MAPE (after RAS) 

FBT 42% 30% 

TEX 88% 48% 

WOO 62% 56% 

PPP 41% 39% 

CHE 47% 23% 

OTH 47% 37% 

MET 47% 32% 

MAQ 46% 29% 

EQT 42% 30% 

NEC 48% 42% 

 

As to the first source of error, the alternative would be to consider the values estimated in 

the first part of this paper. Although, one must not forget that in the information context 

under consideration, no a priori data exists to calibrate the model. It could be argued that 

parameters estimated making use of international trade data could be used in interregional 

trade estimation. However, since regions and countries are quite different geographical 

units, this assumption needs to be empirically tested, before being adopted. One useful 

experience, to develop in further studies, would be to calibrate an interregional gravity 

trade model in a country with available interregional trade data (United States or Canada, 

for instance) and then, evaluate the proximity between its parameters and the ones 

obtained in this paper’s model. The second source of error can be eliminated by 

considering additional variables in the model (similarly to Model 3). Nevertheless, in this 

case, the problem of the unknown parameters becomes more serious, since it would be 

necessary to assume more parameters as being unitary. Further experiences have to be 
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done to test the improvement that may be generated by the inclusion of additional 

variables. 

 

4. Conclusions. 

 

In the present paper, gravity model performance was empirically tested, assuming two 

different contexts of information availability (previously referred as contexts a) and b)). 

The several experiences undertaken in this work confirm that gravity model generates 

quite good results when trade flows are known a priori, i.e., when the model is used with 

an explanatory purpose.  

 

Contrarily to what has been done in most of the gravity trade model econometric 

applications, a spatial autoregressive model was tested, considering three different types 

of spatial dependence. The obtained results show that spatial dependence is statistically 

relevant in the majority of the products when a mixed origin-destination spatial effect is 

accounted for; but, even in this case, the autoregressive coefficient assumes very low 

values, indicating a very weak degree of spatial dependence. This led the author to search 

for a non-spatial model that performs better in this particular trade flow application. 

 

The results obtained from two alternative non-spatial econometric equations allow for the 

conclusion that the augmented version of the gravity model is the best suited to explain 

trade flow behavior. This version comprises, besides the traditional variables of mass and 

spatial separation, two additional variables: one dummy to capture spatial contiguity 

effect and a product specific variable that represents the origin’s relative specialization on 

the exportation of product k.  

 

The fact that these econometric exercises were separately applied to distinct products also 

made clear that each different traded product has its own specificity, originating quite 
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variable estimated coefficients. Special attention was given to the distance coefficient, 

showing that, as expected, this tends to be higher in products with high weight for 

monetary unit. Furthermore, the product disaggregated application is very important 

because, in most of the times, the gravity model is used in the construction of larger 

models, like input-output models, which require product specific estimated values.  

 

As to the second information context, the results are not so satisfactory. In spite of being 

an incipient experience, which may be subject to some previously referred improvements, 

this empirical test suggests that the gravity model is not the most adequate to generate 

undisclosed trade data. 
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