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Estimating prices and excess demand and trade costs in 
a spatial price equilibrium model1 

Torbjörn Jansson2 

Abstract 
This article treats the estimation of regional prices, excess demand and 

trade costs, for homogeneous products in a spatial price equilibrium model. 
The estimation is formulated as a bilevel program, with the upper level objec-
tive to minimize the weighted sum of squared deviations of estimated from ob-
served values of prices and excess demand. The estimation is restricted to op-
timal solutions of the transport cost minimization problem, parametrized by a 
trade cost function, the parameters of which are also to be determined. The es-
timation is applied to data for Benin, and the results compared to those of em-
pirical studies. 
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1 Introduction 
Spatial price equilibrium (SPE) models with homogeneous goods have been used 
in agricultural sector analysis at least since the publications of Judge and Wallace 
(1958) and Takayama and Judge (1964). This article is concerned with an SPE 
model for homogeneous primary agricultural products in Benin. The model has 
twelve regions (administrative departments) and seven goods. For each region 
there is data on annual supply, demand and price, and there is also a table of dis-
tances between each pair of regions. To indicate the generality of the employed 
method, the trade cost minimization component of the model for each product k is 
put as a linear program in standard form, 

 min ckxk 

 subject to Axk ≥ qk (1) 

  xk ≥ 0 

where ck is a 1 × n(n-1) vector of trade costs, xk an n(n-1) × 1 vector of trade 
flows, qk is an n × 1 vector of excess demand and A is an n × n(n-1) matrix of “0”, 
“1” and “-1” arranged in such a way that for the ith row, there is a “1” in all col-
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umns corresponding to flows into region i, a “-1” in all columns corresponding to 
flows out of region i and “0” elsewhere. 

If a model is to be used in a positive way, it is desirable that it is capable of re-
producing real world behaviour ex-post, and consequently we would like to inter-
pret real world observations as model solutions. This requires that the ex-post data 
satisfies the Kuhn-Tucker (KT) conditions for an optimal solution to the transpor-
tation problem. For several reasons, the KT conditions are likely to be violated by 
ex-post data: The good may not be quite homogeneous; errors may arise when 
observations are aggregated over time and space, there can be measurement errors 
involved etc. Given such errors, some calibration procedure is required in order to 
fit the model to the ex-post data. 

Traditionally, the calibration of SPE models has been handled by solving the 
transportation model with observed or engineered trade costs, subject to market 
clearing constraints for given regional excess demand quantities, and using the 
Lagrange multiplicators associated with the market clearing constraints to deter-
mine the regional prices (e.g. Judge and Wallace (1958), Litzenberg, McCarl and 
Polito (1982), Peeters (1990), Kawaguchi, Suzuki and Kaiser (1997) and Gua-
jardo and Elizondo (2003)). This implies that any disturbances of observed trade 
costs and excess demand are accepted, and that all corrections needed to satisfy 
the KT conditions are undertaken on the price positions, for which only a single 
observation is used (the numerator price). 

Whereas this certainly may be a plausible way of proceeding in some in-
stances, it is equally easy to imagine situations where there are observations of 
regional prices available and the observations of trade costs and excess demand 
are associated with errors. Then the traditional procedure described above is inef-
ficient, because the price observations are ignored. It is also unable of identifying 
autarky regions; an observed nonzero regional excess demand, however tiny, en-
forces a fixed price difference (equal trade cost) to some other region. 

A general approach to this type of estimation problem is to recognize that 
given a set of trade costs and regional excess demand, trade flows and regional 
price differences result from solving of the transportation model. Thus, the esti-
mation problem at hand is to select the parameters so that they, together with the 
solution variables of the transportation problem, minimize some estimation crite-
rion. Viewed that way, the problem falls within the class of bilevel programs, 
prominently exemplified by the Stackelberg game. In terms of a principal-agent 
problem, the leader is the person conducting the estimation, the leader’s cost 
function is the estimation criterion, his decision variables the parameters of the 
transportation problem. The follower’s problem is the transportation model with 
parameters given by the leader. 

Furthermore, the situation at hand is sometimes (e.g. in Dempe, 1997) de-
scribed as the optimistic or weak approach. In economic terms that would mean 
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that if the follower is indifferent regarding two solutions, he chooses the one pre-
ferred by the leader. In mathematical terms it means that if the solution of the 
inner problem is not a singleton, the leader is allowed to choose that value from 
the set of solutions of the inner problem that minimizes the estimation criterion. 
This property simplifies the solution of the bilevel estimation problem compared 
to the general bilevel program, where the weak approach cannot be assumed a 
priori. In the case at hand, it has special implications for the prices, which are not 
fully identified in a solution to the transportation problem; only price differences 
are. The weak approach justifies that we, among all sets of prices satisfying those 
price differences, choose those that are closest to the observed prices. 

2 A bilevel estimation program 
The mathematical representation of the bilevel programming problem in this ap-
plication departs from a representation of the transportation problem by its first 
order conditions, with a weighted least squares objective function penalizing de-
viations from observations of prices and excess demand. The first order condi-
tions here are cast as a linear complementarity problem (LCP), thus formulating 
the estimation problem explicitly as a mathematical program with equilibrium 
constraints⎯the branch of literature from which the solution method is borrowed. 
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The objective function (2) minimizes the weighted sum of squared deviations 
of estimated prices and excess demand from observations. If observations of trade 
flows and costs were available, those could be similarly included into the objec-
tive. Equations 3-6 form an LCP that is equivalent to the Kuhn-Tucker conditions 
for the LP (1), with pk the dual vector of the constraints in the LP, and uk and vk 
slack vectors. Equation 6 is a function relating the trade cost between any two 
regions to the distance δ between them, parametrized by β1 and β2. 

Trade costs are expressed per weight unit, and in order to economize on de-
grees of freedom, the trade costs per weight unit were assumed to be equal for all 
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products. This would be reasonable if all products were equally perishable and 
with similar prices, which is not perfectly true for the set of products at hand: 
cassava, yams, maize, rice, sorghum, beans and peanuts. On the other hand, IFPRI 
(2004) does not find that traders in Benin discriminate between different agricul-
tural products when setting transportation rates, supporting the use of a single 
trade cost function for all products. 

3 Solution method 
An optimization problem constrained by an LCP falls in the class of mathematical 
programs with equilibrium constraints (MPEC), that started to attract attention in 
the literature in the 1990’s, evidenced by the publication of two books on the sub-
ject (Luo, Pang and Ralph (1996), Outrata, Kocvara and Zowe (1998)). The 
solver NLPEC for GAMS (see NLPEC solver manual) solves MPECs via smooth 
reformulation of the complementarity constraints. The method used in this paper 
is one of the reformulations implemented in NLPEC: 

The complementary slackness constraint (5) is the equation causing trouble 
when attempting to solve the problem (2-6), because it makes the feasible space 
non-convex and has “corner”. The key idea of the smooth reformulations is to 
replace (5) by a sequence of increasingly accurate approximations. Several such 
reformulations are available, and after extensive testing with synthetic data, a 
method where a penalty function minimizes the complementarity gap was chosen. 

Before proceeding, we note that data is unlikely to support solutions with zero 
price for any product. Thus, the slack vectors vk can be fixed to zero, reducing the 
problem somewhat. Then the remaining complementary slackness condition 
uk′xk = 0 is removed, and instead a penalty term µ(uk′xk) is added to the objective 
function with µ a nonnegative real number. The resulting system is solved repeat-
edly, with µ initially set to a small number and then stepwise increased, each time 
using the previous solution as starting point, until the complementarity gap uk′xk is 
zero. The estimation problem then is: 
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with p
kw  and q

kw  weights to be defined below. Note that when µ → ∞, the origi-
nal problem is recovered. Testing with different sequences of µ and different syn-
thetic data constellations revealed that this method is not guaranteed to find the 
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(existing, see e.g. Dempe, 1997) global minimum for the problem size at hand. 
However, of the methods tested it performed on average and in median best, 
measured by the sum of squared deviations obtained, on similarly structured prob-
lems. 

In an attempt to verify that the iterative approximation method finds the 
unique global minimum, or at least a point close to it, for the incumbent data, the 
problem was also reformulated as a mixed integer programming problem, with 
binary variables in a so-called “big M” construct switching the complementary 
slackness conditions. To reduce the size of the problem, only one product (maize) 
was included, and the problem initialised with the solution obtained by the itera-
tive approximation described above. The so obtained problem in 132 binary vari-
ables was solved with a branch-and-bound algorithm (the solver SBB in GAMS 
on the NEOS server). The solver terminated after 38 minutes and 1.6 million it-
erations without any significant improvement of the objective, though still with a 
possible gap (between best found and best possible) of round 10% of the objective 
function value. For the entire problem (around 900 binary variables) the solver 
terminated due to limited system resources (memory). As a comparison, the itera-
tive smooth approximation solution of the entire problem solves in about 20 sec-
onds on a standard workstation. So even if a better solution may exist, it is diffi-
cult to find. 

4 Assigning weights 
The objective function of the problem (2-6) literally compares apples to pears. It 
actually does more than that, because it also weighs an error in the price of one 
commodity to the error in quantity of another. In order to make the estimator 
more efficient, the error terms need to be weighed by the inverse of their vari-
ances, which in this case are unknown. 
In other circumstances, one approach would be to estimate the variances simulta-
neous with the parameters, either using maximum likelihood or by iteratively 
computing the sample variances from the residuals of previous estimation steps. 
To this end, one could assume that prices and quantities of each commodity con-
stitute two homoscedastic groups with variances 2

pσ  and 2
qσ  (or some more 

complex matrix function of those variances). Endogenously determined 2
pσ  and 

2
qσ , would likely result in one group having variance close to zero and the other a 

very high variance. The reason for this is that either observed prices or quantities 
always can be matched perfectly by the estimates in this model. If the ratio of the 
variances 2

pσ / 2
qσ  is shifted towards zero, prices will be matched perfectly and the 

objective value be depending only on the inverse of 2
qσ , and vice versa. 

Thus, some external source or assumption must be used to assign weights. In 
this analysis, we assumed that variances are proportional to the absolute size of 
the variables at hand. More specifically we assumed that the variances of prices 
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are proportional to the observed price and to the inverse market share of the cur-
rent region. The variances of excess demand were assumed to be proportional to 
the sum of regional supply and demand, the sum being motivated by the fact that 
the variance of a difference is the sum of the variances. The weights, shown in 
tables 4 for prices and 5 for excess demand, were computed as 
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5 Data 
The data used in the estimation is the data that is available in the BenImpact 
model data base for 2001. Regional demand stems from the Benin statistic agency 
ONASA (several publications), as do regional prices. Regional supply is based on 
ONASA-data on yields and acreage on the level of the administrative units sub-
prefectures, of which there are 77 in Benin. Both yields and levels, however, fluc-
tuate strongly between adjacent time periods as well as regions, so the data was 
scaled by fitting it to yield and acreage trends estimated for “agri-ecological 
zones” (AEZ) based on survey data from van den Akker. AEZ are eight 
agronomically homogeneous but spatially discontinuous geographical units. Data 
on prices and excess demand is shown in tables 1 and 2. 

The model and the estimations run at the level of departments, which are ad-
ministrative units that are aggregates of sub-prefectures and of which there are 
twelve in the model. Distances between departments have been computed using a 
table of line-of-sight-distances between the principal market places in each de-
partment. In praxis, sometimes different market places are important for different 
products, so that the selection of principal market places had to be a compromise 
if not one unique distance matrix was to be used for each product. The distance 
matrix used is shown in table 3. 

6 Results of other studies 
There are some other sources of trade cost estimates available for Benin. One 
such source is IFPRI 2004, performing a survey of traders in Benin. They find 
that on distances of 160 km, large trucks are used, and that motorized transport on 
average costs 0.28 USD/ton/km. Converted to FCFA using an exchange rate of 
700FCFA/USD this corresponds to 31.36 FCFA per kg for 160 km. It is not clear 
to the author of this article if those rates also contain other mark-ups than trans-
portation costs. 

Van den Akker kindly supplied her survey results to the BenImpact team. She 
comes up with transport cost estimates for maize that, when fitted to the trade cost 
function used in this article, correspond to a distance elasticity of transport costs 
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of 0.37, 0.71 and 0.41 for southern, central and northern Benin respectively (own 
computations). For a typical truck operated distance of 160 km, this amounts to 
transportation costs of 9.60, 17.92 and 10.51 FCFA per kg. These numbers are 
supposed to contain only transportation costs and not other costs connected to 
trade, whence we expect our estimated trade costs to be somewhat higher. For 
maize, van den Akker finds that marketing costs and profit each amount to ap-
proximately as much as the transportation costs. 

Finally, there are estimates of distance elasticities of trade costs from other 
studies, prominently in the gravity literature. Hummels (1999) estimates a trade 
cost function similar to ours but with ad-valorem trade costs and finds a distance 
elasticity of 0.27 (all products), and commodity specific elasticities “tightly clus-
tered in the 0.2 to 0.3 range” (ibid p.11). 

The main reason for expecting a concave trade cost function with a distance 
elasticity of less than unity is that trade takes place with a multitude of means, 
ranging from transportation by foot over bicycles, motorcycles, modified ordinary 
automobiles, small trucks up to large trucks (IFPRI 2004), all with different fix 
charges and costs per km. If always the cheapest available means of transportation 
were used for a given haul, this would result in concave trade costs as illustrated 
in figure 1, where the heavy grey line shows the graph of a trade cost function as 
of equation 6. However, most distances in the model are relatively long and there-
fore could be operated by a more homogeneous class of transportation means, 
allowing the function to be closer to linear. Having all this in mind, we would 
expect our estimated trade cost function to be such that the elasticity is between 
0.2 and 0.9, and the function value for 160 km to be around 30 FCFA per kg. 
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Figure 1: Degression of trade costs resulting from a heterogeneous class of means 
of transportation. 
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7 Results of estimation 
The quality of the estimates were evaluated using the R-squared measure, com-
puted for each product separately according to the formula 

SST
SSRR =2  with ( )∑ −=

r rr ppSST 2ˆ , ( )∑ −=
r rr ppSSE 2ˆ  

and SSR = SST – SSE, and the same for excess demand. A bar denotes the sample 
mean and a hat denotes the estimated value. Tables 6 and 7 show the estimated 
prices and excess demand, table 8 the computed R-squared values. The R-squares 
for the three products cassava, maize and rice the R-squares for prices turn out 
negative, indicating that the data only partially support the assumed model. In-
deed, a look at the data reveals that for those products, excess demand is some-
times positive where the price is low and vice versa (see discussion below). 

The estimated parameters of the trade cost function turn out 
(β1,β2) = (0.147,1.000) corresponding to a trade cost at 160 km of 23.5 FCFA/kg. 
The cost for 160 km is of plausible magnitude, judged by the results of van den 
Akker and IFPRI. However, the distance elasticity β2 of unity, implying a linear 
trade cost function, appears high compared to the considerations expressed in the 
previous section “Results of other studies”. 

In an attempt to obtain better estimates, an additional estimation was per-
formed, using only products for which R-squared was positive, thus not contra-
dicting the assumed model. That meant omitting cassava, maize and rice. That 
results in parameter estimates of (β1,β2) = (1.558,0.643), corresponding to a trade 
cost for 160 km of 40.7 FCFA per kg, the estimated prices and excess demand 
shown in tables 9 and 10, and the measures of determination shown in table 11. 
Those estimates, as far as the trade cost function is concerned, is more in line with 
other results, albeit a result of manual selection of data. –Probably, similar esti-
mates could be produced by randomly generated price and excess demand data if 
the 40% share of observations least supporting the model were discarded. 

8 Discussion 
The estimation results were not stable when the composition of the sample was 
modified, as demonstrated by the rather different results obtained when using a 
subset of the products. This signals that there are problems with the model speci-
fication, with the data or both. The list of potential specification errors is long: 

(i) Lack of temporal disaggregation. In the tropical country of Benin, there are 
two production seasons, with somewhat different time windows in the south and 
in the north. Thus, production, demand and trade takes place within shorter time 
frames and may even reverse within a year. Van den Akker uses four time peri-
ods. This setup was tried but discarded, as it in addition to temporary disaggre-
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gated data requires the estimation of a storage function and urges considerations 
of uncertainty. 

(ii) Products may not be homogeneous. For some products there are local as 
well as commercial varieties, which may sell at different prices.  

(iii) Great circle distances neither reflect the state of maintenance and other 
qualities of the road network nor actual distances of road to travel. 

(iv) Congestion effects are not considered. According to IFPRI, congestion in 
the transportation system sometimes occur during cotton harvest. 

(vi) External trade, occurring via the harbour in Cotonou or across the borders 
to neighbour countries, is not considered due to lack of data on prices and quanti-
ties. The only net trade allowed is by a constant, derived from the sample, and 
attributed entirely to Cotonou. 

The data problems for a country suffering under deficits in all kinds of infra-
structure and low literacy (33.6% according to CIA 2006) are obvious. Official 
statistics frequently appear to be more “guesstimates” than the results of actual 
measurements, and utterly sparse. The data used in the estimations has gone 
through a gap-filling process already before entering the estimation, and is still 
not complete (one price is missing for yams). For some products and regions there 
are obvious problems. As an example, the cassava price in the department Couffo 
is the lowest of all regions even though Couffo has the second to largest excess 
demand, clearly contradicting the assumption of spatial arbitraging. Indeed, the 
coefficient of correlation between prices and excess demand is negative (-0.138) 
for cassava, though positive for all other products. However, trade does occur and 
is not likely to take place at a loss, so this is more likely to be a data than a speci-
fication problem. 

To conclude, the estimation is connected with some severe difficulties. Not 
only is the available data barely supporting the assumed model, but furthermore, 
the bilevel program is difficult to solve due to non-convexities. However, the 
method is workable, delivering reasonable estimates compared to expert knowl-
edge and other trade cost studies. Furthermore, the given model, it is difficult to 
see how the available data could be used more efficiently. The estimation uses all 
available information, and, by the proper use of weights, attaches more confi-
dence to items that for some reason are believed to be more certain (have less 
variance). 

The bilevel programming approach to the estimation of constrained program-
ming models can, as noted above, be extended to include observations also of 
trade flows and trade costs in a similar manner, as well as a time series of obser-
vations. One could also attempt similar (bilevel) techniques to estimate parame-
ters of general LP models, or, with additional second order conditions to NLP 
models, and could thus be of interest to a wider range of modellers as an alterna-
tive to separate estimations or calibration methods. 
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9 Tables 
Abbreviations for regions (Littoral = Cotonou) 
ALI Alibori COL Collines MON Mono 
ATA Atacora COU Couffo OUE Oueme 
ATL Atlantique DON Donga PLA Plateau 
BOR Borgou LIT Littoral ZOU Zou 

Abbreviations for products: 
CASS Cassava PULS Beans RICE Rice 
SORM Sorghum and  MAIZ Maize YAMS Yams 
 millet PEAN Groundnut   

Other abbreviations 
n.a. = not available, P = price, Q = excess demand 

Table 1: Price observations for regions and products 

 CASS SORM PULS MAIZ PEAN RICE YAMS 
ALI 172.42 107.06 219.74 88.52 250.45 266.31 73.93 
ATA 171.70 113.21 182.53 96.45 225.54 266.36 72.83 
ATL 156.99 186.65 269.81 104.10 286.02 277.70 136.28 
BOR 182.98 112.39 231.28 91.68 236.80 291.55 59.56 
COL 153.40 111.35 219.01 86.83 233.85 246.89 79.29 
COU 117.67 163.74 224.43 85.91 197.73 273.59 119.74 
DON 166.81 106.76 201.69 87.70 175.50 235.24 n.a. 
LIT 159.55 205.29 288.96 127.37 364.50 288.62 138.55 
MON 165.71 204.19 253.03 110.65 294.84 264.46 127.13 
OUE 142.66 191.01 285.67 92.06 324.33 248.11 126.91 
PLA 156.02 168.16 292.00 94.35 264.97 248.43 96.18 
ZOU 149.85 132.42 219.66 101.41 220.39 237.59 118.71 
Source: BenImpact database for 2001, based on data from ONASA. 

Table 2: Regional excess demand observations 

 CASS SORM PULS MAIZ PEAN RICE YAMS 
ALI 60.76 -20.45 4.94 -17.54 -12.88 5.18 91.95 
ATA -20.77 -4.45 0.85 -7.10 1.65 5.04 -13.77 
ATL -102.96 0.08 2.10 23.07 1.97 17.04 7.43 
BOR -19.50 11.51 6.68 -45.59 0.13 9.99 -242.02 
COL -134.79 -2.04 -4.84 11.41 -11.84 2.25 -129.94 
COU 82.68 6.86 -3.87 -6.08 -7.95 10.31 108.25 
DON -7.14 3.93 3.10 -1.85 4.95 6.29 57.79 
LIT 103.32 0.06 2.03 29.46 5.22 37.31 6.51 
MON 31.75 7.62 1.58 -12.44 1.68 6.36 68.67 
OUE 42.39 21.64 4.81 48.30 10.63 14.26 4.56 
PLA -229.93 15.21 0.08 -37.34 1.55 7.88 -8.64 
ZOU 14.57 3.20 -0.71 29.08 -14.27 11.27 -21.41 
Source: BenImpact database for 2001, based on data from ONASA and van den Akker. 
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Table 3: Distance matrix 

 ALI ATA ATL BOR COL COU DON LIT MON OUE PLA ZOU 
ALI  300 574 213 425 592 347 628 631 658 570 502 
ATA   485 212 336 503 78 539 542 569 481 413 
ATL    361 149 102 407 54 63 84 140 72 
BOR     212 379 134 415 418 445 357 289 
COL      167 258 203 206 233 145 77 
COU       425 106 39 136 158 90 
DON        461 464 491 403 335 
LIT         67 30 138 126 
MON          97 197 129 
OUE           108 156 
PLA            68 
Source: Own computations using a map of Benin. 

Table 4: Weights for price disturbances 

 CASS SORM PULS MAIZ PEAN RICE YAMS 
ALI 0.446 1.155 0.769 0.554 0.29 0.258 2.834 
ATA 0.136 1.966 0.628 0.171 0.744 0.267 3.634 
ATL 1.293 0.003 0.231 2.244 0.268 0.474 0.079 
BOR 0.373 2.644 1.031 0.522 0.431 0.328 3.832 
COL 0.589 0.215 0.56 1.497 0.383 0.335 0.065 
COU 1.449 0.325 0.211 0.611 0.271 0.299 1.335 
DON 0.059 0.813 0.359 0.118 0.818 0.227 15.644 
LIT 0.924 0.002 0.129 0.683 0.223 0.998 0.067 
MON 0.631 0.284 0.129 0.451 0.116 0.186 0.815 
OUE 0.966 0.986 0.377 2.527 0.588 0.517 0.078 
PLA 0.437 0.681 0.207 1.511 0.344 0.245 0.056 
ZOU 0.666 0.232 0.614 1.463 0.441 0.373 0.048 
Source: Own computations. 

Table 5: Weights for excess demand 

 CASS SORM PULS MAIZ PEAN RICE YAMS 
ALI 1.161 1.877 7.438 1.97 4.476 7.898 0.5 
ATA 1.533 1.574 8.602 5.481 4.959 7.452 0.261 
ATL 0.204 1230.172 21.374 0.74 12.518 5.863 13.186 
BOR 0.668 1.484 5.19 1.282 7.614 6.748 0.179 
COL 0.325 11.913 5.505 1.305 4.259 5.211 0.729 
COU 0.411 13.756 11.086 2.404 6.704 9.198 0.874 
DON 3.837 5.235 20.935 11.328 7.289 13.243 0.491 
LIT 0.56 1399.573 49.265 3.394 18.692 2.68 15.357 
MON 0.595 12.846 50.817 2.164 36.331 15.597 1.32 
OUE 0.452 3.528 14.49 0.916 7.048 5.275 10.906 
PLA 0.278 6.575 15.385 0.747 9.709 12.695 6.174 
ZOU 0.567 20.176 6.503 1.401 3.718 8.555 3.402 
Source: Own computations. 
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Table 6: Price estimates with all products included 

 CASS SORM PULS MAIZ PEAN RICE YAMS 
ALI 189.21 88.06 219.74 87.42 250.45 266.31 87.24 
ATA 145.18 113.21 192.91 87.27 218.92 262.73 72.83 
ATL 148.70 172.30 256.64 109.14 267.20 263.46 108.96 
BOR 157.95 119.32 224.03 56.16 227.14 293.84 55.99 
COL 126.84 150.43 234.77 87.27 245.33 262.73 87.10 
COU 151.34 174.94 241.67 94.17 259.57 271.09 111.61 
DON 138.28 112.57 204.36 75.83 207.47 274.17 75.65 
LIT 156.63 170.83 248.71 109.73 275.13 255.54 116.89 
MON 157.07 180.66 247.39 99.89 265.29 265.37 117.33 
OUE 152.22 175.23 253.12 105.32 279.53 259.94 112.49 
PLA 136.37 171.71 256.05 89.47 266.61 275.79 96.64 
ZOU 138.14 161.73 246.07 98.57 256.63 274.03 98.40 
Source: Own estimation. 

Table 7: Excess demand estimates with all products included (empty = autarky) 

 CASS SORM PULS MAIZ PEAN RICE YAMS 
ALI 60.22 -25.34     89.93 
ATA -21.17  -2.62   -2.21  
ATL -99.99 0.07 4.79 18.69 1.50 21.49 7.35 
BOR -20.42 5.33 0.94 -48.13  4.66 -247.69 
COL -136.70 -2.81 -2.36 8.92 -13.21 -4.66 -131.33 
COU 81.18 6.19 -1.99 -7.43 -8.81 13.15 107.09 
DON -7.30  1.68   2.21 55.73 
LIT 104.40 0.09 3.20 28.51 4.91 47.04 6.45 
MON 30.71 10.59 1.99 -13.94 1.52 8.03 67.90 
OUE 43.73 32.48 8.77 43.38 9.80 19.21 4.46 
PLA -227.74 13.81 0.96 -43.38 0.95 9.93 -8.80 
ZOU 13.48 2.74 1.39 26.76 -15.83 14.32 -21.71 
Source: Own estimation. 

Table 8: Measures of determination with all products included 

  mean sse sst ssr R2 
CASS P 157.98 5031 3113 -1918 -0.62 
CASS Q -14.97 26 104029 104003 1.00 
SORM P 150.18 5163 17822 12658 0.71 
SORM Q 3.60 227 1250 1023 0.82 
PULS P 240.65 5588 14594 9006 0.62 
PULS Q 1.40 111 129 18 0.14 
MAIZ P 97.25 2217 1623 -594 -0.37 
MAIZ Q 1.12 464 8721 8256 0.95 
PEAN P 256.24 17654 31893 14238 0.45 
PEAN Q -1.60 200 719 519 0.72 
RICE P 262.07 5306 3924 -1382 -0.35 
RICE Q 11.10 336 940 605 0.64 
YAMS P 104.46 2249 8280 6030 0.73 
YAMS Q -5.89 234 104109 103875 1.00 
Source: Own computations. 
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Table 9: Price estimates with product subset 
 CASS SORM PULS MAIZ PEAN RICE YAMS
ALI n.a. 90.20 219.74 n.a. 250.45 n.a. 95.93
ATA n.a. 113.21 182.56 n.a. 225.54 n.a. 72.83
ATL n.a. 182.73 265.60 n.a. 270.65 n.a. 112.77
BOR n.a. 114.13 231.34 n.a. 236.80 n.a. 47.01
COL n.a. 144.11 226.72 n.a. 233.77 n.a. 74.69
COU n.a. 184.59 235.12 n.a. 249.96 n.a. 116.53
DON n.a. 108.61 208.21 n.a. 201.90 n.a. 83.32
LIT n.a. 165.28 245.35 n.a. 281.20 n.a. 122.12
MON n.a. 188.54 251.55 n.a. 266.39 n.a. 122.47
OUE n.a. 179.16 259.23 n.a. 285.59 n.a. 116.73
PLA n.a. 182.32 264.92 n.a. 269.77 n.a. 85.11
ZOU n.a. 158.84 241.44 n.a. 246.29 n.a. 88.41
Source: Own estimation. 

Table 10: Excess demand estimates with product subset  (empty = autarky) 
 CASS SORM PULS MAIZ PEAN RICE YAMS
ALI n.a. -20.24 n.a. n.a. 89.93
ATA n.a.  -2.62 n.a. n.a.
ATL n.a. 0.08 4.79 n.a. 1.50 n.a. 7.35
BOR n.a.  0.94 n.a. n.a. -247.69
COL n.a. -2.00 -1.33 n.a. -13.21 n.a. -131.33
COU n.a. 6.89 -1.99 n.a. -8.81 n.a. 107.09
DON n.a.  1.68 n.a. n.a. 55.73
LIT n.a. 0.09 3.20 n.a. 4.91 n.a. 6.45
MON n.a. 10.59 1.99 n.a. 1.52 n.a. 67.90
OUE n.a. 32.48 8.77 n.a. 9.80 n.a. 4.46
PLA n.a. 15.27 1.33 n.a. 0.95 n.a. -8.80
ZOU n.a.  n.a. -15.83 n.a. -21.71
Source: Own estimation. 

Table 11: Measure of determination with product subset 
  mean sse sst ssr R2
SORM P 150.18 4698 17822 13123 0.74
SORM Q 3.60 304 1250 945 0.76
PULS P 240.65 4045 14594 10549 0.72
PULS Q 1.40 114 129 15 0.12
PEAN P 256.24 13605 31893 18288 0.57
PEAN Q -1.60 200 719 519 0.72
YAMS P 104.46 2661 8280 5618 0.68
YAMS Q -5.89 234 104109 103875 1.00
Source: Own computations. 
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