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Abstract

We consider economies of pure interchange in which the spaces of consumption of the
agents, are Banach spaces. The utility functions are not necessarily separable, but, strictly
quasi-concave, and Fréchet differentiable. We characterize the set of walrasian equilibria, by
the social weight that support each walrasian equilibria and, using techniques of the smooth
functional analysis, we show that a suitable large subset of the walrasian equilibrium set,
conforms a Banach manifold. In the next sections we focuses on the complement of this set,
the set of singular economies, and we analyze the main characteristics of this set.

1 Introduction

We consider an economy where each agent’s consumption set is a subset of a Banach lattice.

Agents will be indexed by i ∈ I = {1, 2, ...n} ; and X+ will denote the positive cone of the Banach

space X. We do not assume separability in the utility functions ui : X+ → R. Utility functions

are in the C2(X,R) space, i.e. the set of the functions with continuous second Fréchet-derivatives

(F-derivatives), and we suppose that they are increasing functions it is to say that, each agent

prefer more than less, formally, each first order F-derivative is positive. Where F-derivative define

f ′(x) in the usual way of the linearize f(x + h) = f(x) + f ′(x)h + o(‖h‖). In order to assure

the uniqueness of equilibrium allocation we will assume strictly quasi-concave utility functions.

In addition, we suppose that for all x ∈ X the inverse operator (u
′′
i )−1 of u′′i at x, exists. Here

u
′′
i (x) is identified with the quadratic form (h, k) → u

′′
(x)hk. In this work Ck(X, Y ) denote the

space of k− times continuously F-differentiable operators from X into Y, and L(X,Y ) denote the

space of linear and continuous operators from X into Y. So, u′ : X+ → L(X, R);u′(x) ∈ L(X,R),

and u′′ : X+ → L(X,L(X, R)), then, u′′(x) ∈ L(X, L(X, R)). By C∞(X,Y ) we denote the set of

functions belonging to Ck(X,Y ) for all integer k.
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The consumption space of each agent is the same one, and it will be symbolized by X+. The

cartesian product of these n consumption sets is represented by Ω. So, a bundle set for the i-agent

will be symbolized by xi ∈ X+ and an allocation will be denoted by x = (x1, x2, ..., xn) ∈ Ω+.

The i-agent endowments will be symbolized by wi, and w = (w1, w2, ...wn), symbolize the initial

allocation. We assume that w ∈ Ω+ where Ω+ is the positive cone of Ω. The total amounts of

available goods will be denoted by W =
∑n

i=1 wi. We assume that W ∈ Ω++.

With the purpose to obtain strictly positive equilibria, we will assume that utilities sat-

isfy at least one of the following two, widely used assumptions in economics, see for instance

[ Aliprantis, C.D; Brown, D.J.; Burkinshaw, O.], conditions:

(i) ( Inada condition) limu′i(xi) = ∞ if xi → ∂(X+), for each i = 1, 2, ..., n and for each

utility function, by ∂(X+), we denote the frontier of the positive cone of X. It assumes that

marginal utility is infinite for consumption at zero.

(ii) All strictly positive bundle set is preferable to all bundle set with at least one zero component

in one state of the world.

An economy will be represented by

E = {X, ui, wi, I} ,

where X is the consumption set(in our case X+) ui the utility function and wi the initial endow-

ments of the i-agent, and I the set of the agents, in our case I = {1, 2, ..., n} .

As examples of economies with the properties above mentioned, consider those where the

consumption set is X+ = C++(M, Rn) and utility functions are ui(x) =
∫
M Ui(x(t), t)dt, see

[Chichilnisky, G. and Zhou, Y. (1988)] and [ Aliprantis, C.D; Brown, D.J.; Burkinshaw, O.].

It is well known that the demand function is a good tool to deal with the equilibrium man-

ifold in economies in which consumption spaces are subset of Hilbert spaces, in particular Rl

[Mas-Colell, A. (1985)]. But unfortunately if the consumption spaces are subsets of infinite di-

mensional spaces (not a Hilbert space), the demand function may not be a differentiable function

[Araujo, A. (1987)], or it is not well definite because the price space is very large or the positive

cone where prices are definite has empty interior. Despite in many of these cases it is possi-

ble, to characterize the equilibria set using the function of excess of utility , see for instance

[Accinelli, E. (1996)], and it is possible using this function to introduce in infinite dimensional

models differentiable techniques with wide generality. Then it is possible to solve problems de-

fined in spaces of infinite dimension by means of techniques of differential calculus own of the finite
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case. And in this way to generalize the result obtained by [Chichilnisky, G. and Zhou, Y. (1988)]

for smooth infinite dimensional economies to the case with no separable utilities.

In this work, following the Negishi approach, we will characterize the equilibrium set of the

economy, as the set of zeroes of the excess utility function e : int[∆] × Ω+ → Rn−1. So, the

equilibrium set will be denoted by

Eq = {(λ, w) ∈ int[∆]× Ω+ : e((λ,w) = 0}

Where ∆ symbolize the social weight set,

∆ =

{
λ ∈ Rn :

n∑

i=1

λi = 1, 0 ≤ λi ≤ 1 ∀i
}

,

and int[∆] symbolize the set of λ ∈ ∆, such that λi > 0,∀i. In the considered hypothesis, the

fact that each agent has non-null initial endowments, implies that the result of a process of

maximization of the utility functions will be a strictly positive bundle set. Then each relative

weight cannot be zero. Because in other case, if for some consumer j ∈ [1, 2, ..., n] λj = 0

this consumer receive xj = 0. So, without loss of generality, we can consider only cases where

λ ∈ ∆++ = int[∆]. We will use the fact that this set is a Banach submanifold in Rn−1. By the

symbol int[·] we represent the interior of de set ·.
In section (3) in order to prove that Eq restricted to w ∈ Ω0, where Ω0 is an open and

dense (residual) subset included in Ω++ is a Banach manifold. In this section we assume that

the positive cone Ω+ of the consumption space has non-empty interior. Typically examples of

such spaces are L∞(M, Rn) where M is any compact manifold, with the supremun norm, see

[Chichilnisky, G. and Zhou, Y. (1988)]. So, we show that in this cases, the set of regular economies

is large, and its complement is a rare set. This is not a consequence of the Debreu theorems, here

it follows from an alternative approach with particular interest in infinite dimensional cases.

Next we will focuses on the complement of regular economies, this kind of economies will be

called singular economies. Up till now the characteristics of this kind of economies are no well

know. To characterize this subset of economies, we adopt the point of view of the smooth analysis.

So, in this section we will consider economies which utility functions are in C∞(X+, R), certainly

this is a strong restriction but it is necessary to analyze singularities from the point of view of the

smooth analysis.

Singular economies, in contrast with regular economies, characterize the sudden qualitative and

unforeseen changes in the economy. More explicitly, all regular economies have locally, the same

behavior, this means that in a neighborhood of a regular economy there is not big changes, and all

economy in this neighborhood is a regular economy too. If the economy is regular, small changes
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in the distribution of the endowments do not imply big changes in the behavior of the economy

as a system, and the new economy will be a regular economy also (this means that regualar

economies are structuraly stable) but, in a neighborhood of a singular economy small changes in

the distribution of the endowments usually, imply big changes in the main characteristics of the

economy, for instance its number of equilibria, (so singular economies are structuraly instables).

Our object in this section will be to analyze this kind of economies.

An economy is singular if the zero is a singular value of the excess utility function of this

economy, and as the utilities appear explicitly in the excess utility function, the strong relation

between the characteristics of the agent preferences, and the behavior of the economy appear

clearly reflected in this function. In spite of to be singular economies from a topological or

measure theory point of view a very small set, but it play central role in economics. For instance,

the existence of multiplicity of equilibria in an economy is a straightforward result of the existence

of singularities in the excess utility function, then its existence depend on characteristics of the

utility functions. This relation between the kind of singularities and the characteristics of the

utility functions of the economy appear clearly in our approach.

Taking care of the type of singularity, it is possible to introduce in the space of the economies a

classification, that introduce a partition of this set in equivalence classes. Economies with the same

possible singularities will form an equivalence class and anyone of the members represents them,

because they react of way similar to small modifications in its parameters. Regular economies have

locally the same behavior, this is not true for singular economies, but the behavior of the economy

is locally similar if singularities are of the same class. Small modifications of the parameters do not

imply great modifications in the behavior of the economy if this is a regular economy, but in the

case of a singular economy, imperceptible changes in the parameters could give rise to situations

completely different from the original one, i.e. singular economies are very sensitives to political

and social choices.

Despite its importance to understand the economic changes, there are not many works about

singular economies. Y. Balasko has several works on singularities, for instance [Balasko, Y. (1988)],

[Balasko, Y. (1997a)] and also in [Mas-Colell, A. (1985)] there are characterizations of the singular

economies, however the General Equilibrium Theory is indebted with singularities. We hope to

make a little collaboration in the long way to pay the debt with this topic.
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2 Some of notation and mathematical facts

In this section we recalling some basic mathematical definitions that will be used later. Our main

reference for considerations on Functional Analysis is [Zeidler, E. (1993)], in special vol 1 and vol

4.

Definition 1 Let M be a topological space, M is said to be a Ck Banach manifold (B-manifold),

if and only if there exists a Ck atlas for M.

Recall that a Ck atlas for a topological space M is a collection of charts (Uα, φα) (α ranging in

some indexing set) such that the: (i) φ : U → Uφ is a homeomorphism, from an open subset U

in M onto Uφ an open subset of a Banach space Xφ. The map φ is called a chart map. (ii) The

Uα cover M. (iii) Any two charts (U, φ), (V, ψ) are Ck compatible. This means that U ∩ V = ∅ or

φ(ψ)−1 and ψ(φ)−1 are Ck, k ≥ 0.

1. Obviously each open set in a Banach space is a C∞ manifold.

2. If M and N are Ck B-manifold, then M ×N is also a Ck B-manifold.

Definition 2 Let M be a Ck B-manifold. Then by TxM we symbolize the tangent space to M

at the point x i.e., the set of all tangent vectors at x.

As it is well known, much of the theory of the differential calculus in B-space, can be extended

to B-manifolds. This can be doing by means of the charts. Certainly if M and N are B-manifolds,

and f : M → N let (U, φ) and (V, ψ) be charts in M and N then f̄ = ψ(f((ψ)−1)) : Xφ → Xψ,

this is a function between B-spaces, and it is considered as representative of f. So we say that a

function f : (M, φ) → (N, ψ) is in Ck(M, N) if and only if f̄ : Xφ → Xψ is a Ck(Xφ, Xψ) function.

Definition 3 Let f : Dom(f) ⊆ M → N be a mapping between two B-manifolds M and N here

Dom(f) is the domain of f, then there exists a linear continuous map f ′(x) : TxM → Tf(x)N at

each point x ∈ M.

This is an extension to manifolds of the concept of F-derivatives, so f ′ : M → L(TM, TN),

where TM = {(x, TxM) : x ∈ M} and TN =
{
(f(x), Tf(x)N) : x ∈ M

}
, defined by f ′(x) ∈

L(TxM, Tf(x)N). We will call this map the Fréchet derivative (F-derivative) at the point x for

the map f. This map is called in some literature the tangent map, and it is symbolized by Txf or

Df(x) or df(x).
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Definition 4 Let M be a Ck B-manifold, k ≥ 0. A subset S of M is a submanifold if and only

if for each point x ∈ S there exists and admissible chart (U, φ) in M with x ∈ U such that: (i) The

chart space Xφ contains a linear, closed subspace Yφ which splits Xφ. And (ii) the chart image

φ(U ∩ S) is an open set in Yφ.

It is easy to see that every submanifold S of a Ck B-manifold is itself a Ck B-manifold

Definition 5 Let f : M → N be Ck, k ≥ 1 where M and N are Ck B-manifolds. Then

• f is called a submersion at the point x if and only if f ′(x) is onto and the null space

Ker(f ′(x)) =
{
x ∈ X : f ′(x) = 0

}
,

splits TxM.

Recall that the linear subspace Y1 = Ker(f ′(x)) split TxM if and only if there exists Y2, a linear

subspace in TxM, such that TxM is the topological direct sum of Y1 and Y2 i.e. TxM = Y1 ⊕ Y2.

The function f is called a submersion in the subset Z ⊆ M if and only if f is a submersion at

each x ∈ Z.

We will denote the image set of a linear operator T : X → Y by

R(T ) = {y ∈ Y : there exists x ∈ X : y = T (x)} ,

the dimension of R(T ) will be denoted by rank T, and the codimension of (R(T )) will be sym-

bolized as corank T = dim [X/ker(T )] , where X/ker(T ) is the factor space.

Since rank f ′(x) = dimR(f ′(x)) this provide a natural classification of maps between mani-

folds, according to the behavior of the linearizations.

Definition 6 The following are well know concepts for maps between B-spaces, here they are

carried to maps between B-manifolds. Let f : M → N, be a Ck,K ≥ 1 M and N are B-manifolds.

1. The point x ∈ M is called a regular point of f iff f is a submersion at x. Otherwise x is

called singular point.

2. The point y ∈ N is called a regular value of f if and only if f−1 is empty or consists solely

of regular points. Otherwise y is called singular value.

3. Let M be a B-manifold, it follows that f : U(x0) ⊂ M → R where U(x0) is an open

neighborhood of x0, has a singular point at x0 if an only if f ′(x0) = 0. Such point will be

non-degenerate if and only if the bilinear form (h, k) → f
′′
(x0)hk is non-degenerate.
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Definition 7 A function f : M → R is called a Morse function if every singular point is a no

degenerate singular point.

Theorem 1 ( Generalized Morse Lemma) Let M be a Banach manifold, and let f : U(x0) ⊂
M → R be a smooth function, x0 ∈ X is a no degenerate singular point of f Then there exists a

local diffeomorphism ψ (in a neighborhood U(x0) of x0) such that:

f(ψ(y)) = f(x0) + f
′′
(x0)y2/2 (1)

is satisfy for all y ∈ U(p), where p = ψ(x0), and U(p) = ψ(U(x0)).

The following global result is shown in [Zeidler, E. (1993)]:

Theorem 2 (Preimage Theorem) Let M and N be B-manifolds. If y is a regular valued of

f : M → N, with 1 ≤ k ≤ ∞, then the set Z of all solutions of f(x) = y is a Ck submanifold of

M.

Definition 8 A map f : M → N is a Fredholm map if f ′x : M → N is a linear Fredholm

operator, see [Zeidler, E. (1993)].

A linear map T : X → Y is called a Fredholm operator if and only if is continuous and

both numbers the dimension of the ker(T ), dim(Ker(T )) and the codimension of the rank of

f, codim(R(T )) are finite. The index of f is defined by: ind(T ) = dim(Ker(T ))− codim(R(T )).

3 The Negishi approach

The Negishi approach starts considering a social welfare function given by: Uλ : Ω+ → R defined

as:

Uλ(x) =
n∑

i=1

λiui(xi). (2)

where ui is the utility function of the agent indexed by i, λ = (λ1, λ2, ..., λn) ∈ int[∆] (each

λi represents the social weight of the agent in the market), and Ω+ is the positive cone in the

consumption space Ω = Xn.

As it is well know if x∗ ∈ Ω solves the maximization problem of Uλ∗(x) for a given λ∗, subject

to be a feasible allocation i.e.,

x∗ ∈ F =

{
x ∈ Ω+ :

n∑

i=1

xi ≤
n∑

i=1

wi

}

7



then x∗ is a Pareto optimal allocation 1. Reciprocally it can be proved that if a feasible al-

location x∗, is Pareto optimal, then there exists any λ∗ ∈ ∆ such that x∗, maximize Uλ∗ , see

[Accinelli, E. (1996)]. There exist some Pareto optimal allocations where x∗i = 0 for some i ∈ I ′

where I ′ ⊆ I. However if each agent has positive no null endowments, these cases are possible if

and only if the agents indexed in this subset be out of the market, i.e., if and only if λi = 0 for

al i ∈ I ′. Then we can restrict ourselves, without loss of generality, to consider only cases where

λ ∈ ∆++. Moreover we are interested only in individually rational Pareto optimal allocations,

this is the subset of Pareto optimal allocations such that ui(xi) ≥ ui(wi), ∀i. Clearly if x is an

individually rational Pareto optimal allocation, then the corresponding λ is a strictly positive

vector.

In this way characterized the set of Pareto optimal allocations, our next step is to choose the

elements x∗ in the Pareto optimal set such that can be supported by a price p and satisfying

px∗ = pwi for all i = 1, 2, ..., n i.e., an equilibrium allocation.

We symbolize by W =
∑n

i=1 wi ∈ int[X+] the aggregate endowments of the economy, and

by w ∈= Ω++ the vector of the initial endowments, w = (w1, w2, ..., wn), such that wi > 0,∀i.
Suppose that the aggregate endowment of the economy is fixed.

We will use the following notation: For any λ ∈ int [∆] = {λ ∈ ∆ : λi > 0 ∀i ∈ I} ,

x(λ,W ) = argmax

{
n∑

i=1

λiui(xi), s.t
n∑

i=1

xi =
n∑

i=1

wi

}
. (3)

This element is well defined if the closedness condition2 is verified, see [Accinelli, E. (2002)]. Let

e : int[∆]× Ω → Rn be the excess utility function, which coordinates are given by:

ei(λ, w) = u′i(xi(λ,W ))(xi(λ,W ))− wi).

Here u′i(xi(λ,W )) : X → R is the F-differential of the utility ui(xi(λ,W )).

Definition 9 For fixed utility functions, for each w ∈ Ω++, we define the set

Eq(w) = {λ ∈ int[∆] : ew(λ) = 0} ,

it will be called the set of the Equilibrium Social Weights.
1We say that an allocation x ∈ F is Pareto optimal if there is no y ∈ F such that ui(xi) ≥ ui(yi) ∀i = 1, 2, ...n;

with strict inequality for at least one i.
2Recall that the closedness condition is verified, if and only if the utility set, U =

{(u1(x1), u2(x2), ..., un(xn)) : (x1, x2, ..., xn) ∈ F} is closed, [Mas-Colell, A. Zame, W. (1991).]. Every econ-
omy with order interval [0, W ] weakly compact, verify the closedness condition. However an exchange economy
can satisfy closedness condition without order interval [0, W ] being weakly compact. The weakly compact-
ness of order interval is, a sufficient condition for the existence of a rational Pareto optimal allocation. See
[ Aliprantis, C.D; Brown, D.J.; Burkinshaw, O.]
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In [Accinelli, E. (1996)] is show that the equilibrium social weights is a non-empty set.

Theorem 3 Let λ ∈ Eq(w), and let x∗(λ) be a feasible allocation, solution of the maximization

problem of Wλ and let γ(λ) be the corresponding vector of Lagrange multipliers. Then, the pair

(x∗(λ), γ(λ)) is a walrasian equilibrium and reciprocally, if (p, x) is a walrasian equilibrium then,

there exists λ̄ ∈ Eq such that x maximize Wλ̄ restricted to the feasible allocations set, and p will

be the corresponding vector of Lagrange multipliers i.e., p = γ(λ̄).

The proof can be see in [Accinelli, E. (1996)].

4 The equilibrium set as a Banach manifold

The allocation x∗ ∈ Ω++ solve (3), if and only if there exists γ̄ ∈ X∗ (here X∗ symbolize the dual

space of X, i.e: the set of the linear continuous functionals,) such that the following identities are

verified: see [Luenberger, D. (1969)]:

λiu
′
i(x

∗
i )− γ̄ = 0

∑n
i=1 x∗i −

∑n
i=1 wi = θ,

(4)

Both terms in the first equation of (4) are linear operator, consequently the second member

symbolize de null operator. In the second equation by θ we represent de null element of X.

Then for an arbitrary h ∈ X it follows that:

λiu
′
i(x

∗
i )h− γ̄h = 0

∑n
i=1 x∗i −W = θ,

(5)

These equalities represent the first order conditions for the maximization problem. Observe

that from our hypothesis there are necessary and sufficient conditions for a solution of this problem.

Let us define γ∗ as the real number given by γ̄h. Then if for a given, (λ̃, W̃ ) ∈ int[∆]×X++ there

exist x∗ ∈ X++ and a real number γ∗ solving the equations (5) then, x∗ is a solution for the

maximization problem (3) with λ = λ̃ and W = W̃ .

Using the implicit function theorem (see appendix), we can show that there exist functions

f : Uλ̃ × UW̃ → Ω++ defined by f(λ,W ) = x∗ and g : Uλ̃ × UW̃ → R defined by g(λ,W ) = γ∗.

Where Uλ̃ ⊆ int[∆] is an open neighborhood of λ̃ and UW̃ ⊆ X++ is an open neighborhood of W̃ .

We recall that int[∆] and X++ are B-manifolds .

Moreover from this theorem, and from the preliminary hypothesis on utility functions, it

follows that this functions are Ck. Let us now redefine this function as x∗(λ,W ) and γ∗(λ,W ).
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From this notation, we will denote by x∗i,λj
(λ,W ) and xi,wj (λ,W ) de partial F-derivatives with

respect to the variable λj and wj respectively, j ∈ {1, 2, ..., n}. The derivatives with respect to wj

follows using the chain rule 3.

The following are well know properties of the excess utility function:

(1) λe(λ,w) = 0.

(2) e(αλ,w) = e(λ, w),∀α > 0.

See for instance [Accinelli, E. (1996)].

From item (1) it follows that the rank of the jacobian matrix Jλe(·, w) 4 of the excess utility

function e(·, w) : int[∆] → Rn is at most equal to n − 1. And as from item (2) we know that

if ei(λ,w) = 0 ∀i = 1, 2, ..., n − 1, then en(λ, w) = 0, we will consider the restricted function

ē : int[∆]×Ω+ → Rn−1 obtained from the excess utility function removing one of its coordinates,

for instance en.

The following theorem holds:

Theorem 4 If the positive cone of the consumption space, has a non-empty interior 5 then, there

exists an open and dense subset Ω0 ⊆ Ωε such that

Eq/Ω0 = {(λ,w) ∈ int[∆]× Ω0 : e(λ,w) = 0}

is a Banach manifold.

Proof: To prove this theorem, we will prove the following assertions:

(i) There exists a residual set Ω0 ⊆ Ω such that, the mapping ē : int[∆]× Ω0 → Rn−1 is C1, 6

and zero is a regular value of e i.e. for all (λ,w) ∈ int[∆] × Ω0, such that e(λ,w) = 0 the

mapping ē is a submersion.

(ii) For each parameter w ∈ Ω0, the mapping ē(·, w) : int[∆] → Rn−1 is Fredholm of index zero.

• Now, from [Zeidler, E. (1993)] section (4.19), the theorem follows.

3x∗i,wj
(λ, w) = ∂x∗(λ,W )

∂W
∂W
∂wj

.
4As int[∆] is a B-manifold whose chart map is Xφ = R(n−1) we can consider the concept of F − derivative of

this map, here we represent e′(·, w) by means of the symbol Jλe(·, w).
5Basically these space are Ck(X, R), and L∞.
6We use here the concept of generalized local F derivative. As int[∆] and Ω0 are Banach manifolds, then

int[∆] × Ω0 is a Banach manifold (where the cart space is Xφ = Rn−1 × Ω)then, from the definition of manifold
there is a natural way to define the derivative of ē. See [Zeidler, E. (1993)] vol 1.
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From this theorem, it follows that:

Corolary 1 For each w ∈ Ω0 the equation e(λ,w) = 0, λ ∈ int[∆] has at most finitely many

solutions λ of ew(λ) = 0.

Proof of the corollary: The convergence of ē(λn, wn) → 0 as n → ∞ and convergence of {wn}
implies the existence of a convergent subsequence of {λn} in int[∆]. Note that under the assump-

tions of our model and as wi > 0 ∀i, if λn → λ̄ ∈ Fr(∆++) then there exists some i such that

λ̄i = 0 then xi(λn) → 0 and u′i(x((λn) →∞ when λn → λ̄. So ‖ei(λn)‖ → ∞.

• The oddness of this solutions is proved in [Accinelli, E. (1996)].

Proof of the step (i): Consider the mapping from int[∆]×Ω+ → Rn−1 defined by the formula:

λ,w → ē(λ,w),

where ē(λ,w) ∈ Rn−1 defined by n− 1 first coordinates of the vector e(λ,w).

We will prove that 0 is a regular value of the restricted excess utility function restricted to an

open and dense subset, Ω0 ⊂ Ω+. It is to say that the restricted excess utility function ē/Ω0 is a

submersion at each point (λ,w) ∈ int[∆]× Ω0, i.e, ē′(λ, w) : Rn−1 × Ω → Rn−1 is surjective and

the null space Ker(e′(λ, w)) splits Rn−1 × Ω, for each (λ,w) ∈ Eq/Ω0.

We begin showing that the linear tangent mapping is always onto, or equivalently that the

rank of the linear map ē′ is equal to n− 1 in each (λ, w) ∈ Eq/Ω0, where by Eq/Ω0 we represent

the set of (λ,w) ∈ Eq with w ∈ Ω0. We will prove that the affirmation is true in the residual set

Ω0.

To see this consider a a vector h ∈ X++ and a little change in the endowments given by

w(η) = (w + η), where η ∈ Ω such that w + η ∈ Ω++ where η = (η1, η2, ..., ηn) ηi = vih, vi ∈
R, i = 1, 2, ..., (n − 1) and vn = −∑n−1

i=1 vi. The vector η will be thought as a state-independent

parameter for redistributions of initial endowments. We define η̄ = (η1, ..., ηn−1). Observe that
∑n

i=1 wi(η) =
∑n

i=1 wi = W. So, the allocations that solve (3) for the economies E(v) and E are

the same.

The excess utility function for the economy E(η) = {ui, w(η)i, I} will be:

e(λ,w(η)) = (e1(λ,w1 + v1h), ..., en(λ,wn + vnh)) , (6)

where

ei(λ,wi + vih) = u′i(x
∗
i (λ,W ))[xi(λ,W )− wi − vih].

11



Observe that the function ei(λ,wi + vih) depends only on the real variable vi, and we write

ei(λ,wi+vih) = ẽi(vi). So e(λ,w+η) is a function on the n real variables v = (v1, ..., vn) and let us

define v̄ = (v1, ..., vn−1). So we can write the following identity e(λ, w + η) = ẽ(v1, ..., vn) = ẽ(v),

observe that ẽ : R(n−1) → Rn.

The derivative of ẽi with respect to vi evaluated at (λ,w(η)) is given by:

∂ei(λ,wi + vih)
∂vi

=
∂ẽi(vi)

∂vi
= −u′i(xi(λ,W ))h.

Then it follows that:

∂e(λ,w(η))
∂vi

=
∂ẽ(v)
∂vi

= (0, ..., 0,
∂ẽi(vi)

∂vi
, 0..., 0) = (0, ..., 0,−u′i(xi(λ, W ))h, 0, ..., 0)

Let ē : Rn−1 → Rn−1 be the function defined by the n− 1 first coordinates of ẽ, i.e:

ē(λ,w + η) = (e1(λ, v1h), ..., en−1(λ, vn−1h) = (ẽ1(v1), ..., ẽn−1(vn−1)).

Then:

∂ē

∂v̄
(λ,w(v)) = −




u′1(x∗1)h 0 . . . 0
0 u′2(x∗2)h . . . 0
...

...
...

...
0 0 . . . u′n−1(x

∗
n−1)h



∈ L

(
R(n−1), R(n−1)

)
. (7)

The rank of this matrix is equal to n − 1, as the rank of a matrix is locally invariant, then

for all w there exists an arbitrarily close vector w(η) : such that the rank of e(λ,w(η)) is equal to

n− 1 this prove the denseness of Ω0.

Let ∆w = {λ ∈ int[∆] : ui(x(λ) ≥ ui(wi)} be the set of the rational social weights. Then for

give ε > 0 there exists δ > 0 such that if |ei(λ,w(η) − ei(λ,w)| ≤ ‖u′i‖‖h‖ < ε for h : ‖h‖ < δ,

where ‖u′i‖ = sup|u′i(x(λ,W )|, λ ∈ ∆w, i.e. the excess utility function of the perturbed economy

is in a neighborhood of the excess utility function of the original one.

To prove that zero is a regular value for e we need to prove that Ker(e′) splits Rn−1×Ω. In our

case, as the image of e = Rn−1, the quotient space (Rn−1×Ω)/Ker(e′) has finite dimension, then

codim[Ker(e′)] < ∞ and the splitting property is automatically satisfied, see [Zeidler, E. (1993)].

Proof of the step (ii) We will prove that, ē(·, w) : int[∆] → Rn−1 is a Fredholm operator of

index zero. This map will be a Fredholm operator if is F-differentiable and if Jλē(·, w) : int[∆] →
L(Rn−1, Rn−1) is a linear Fredholm operator for each λ ∈ int[∆]. The index of Jλē(·, w) at λ is

ind(Jλē(λ,w)) = dim(Ker(Jλē(λ,w))) + codim(R(Jλē(λ,w))).

12



The operator, (Jλe(λ,w)) is, for each w ∈ Ω0 a finite linear operator from Rn−1 → Rn−1 and

then, for each λ ∈ int[∆] is a Fredholm map of index zero.

The economies E = {wi, ui, I} where w ∈ Ω0 will be called Regular Economies.

In [Mas-Colell, A. (1990)] is proved that the set of regular economies is an open and dense set

in the space of the economies, and to obtain this result it is not necessary to assume the non-

emptiness of the interior of the positive cone of the consumption space. It is sufficient to allow

for the possibility that w is not positive. In this work, we need this assumption to characterize

the equilibria set as a Banach manifold.

In the next sections we attempt to show some of the main characteristics of the complementary

set of Ω0, this is the set of singular economies.

5 Singular economies and their properties

In this section utility functions are fixed and we describe each economy by its excess utility

function e : int[∆]×Ω → Rn−1. The equilibria of an economy are described by the state variables

λ = (λ1, λ2, ..., λn),∈ Eq(w) these equilibrium states change when the parameters w ∈ Ω change,

these parameters are called external or control parameters. Given w the set of λ such that

e(λ,w) = ew(λ) = 0 determine the state of the system, i.e. the equilibrium in which the system

rest. The parameters w describe the dependence of the system on external forces, the action of

these forces cause changes in the states of the economy. Generically these changes are no so big,

and the new state is similar to the previous one, this is because generically economies are regular.

Nevertheless in some cases, a sudden transition resulting from a continuous parameter change,

can be shown. This kind of changes is referred to as a catastrophe. A catastrophe can take place

only in a neighborhood of a singular economy.

A state, or equilibrium λ ∈ Eq(w) such that the corank of the jacobian matrix Jλew is positive,

will be called singular or critical equilibrium. Singular economies will be classified in two big

classes:

Definition 10 The set of singular economies such that:

1. for all λ̄ ∈ Eq(w) the corankJλew(λ̄) ≤ 1 and with strict inequality for at least one λ ∈
Eq(w) This is the set of no degenerate singular economies. And the states of equilibria

corresponding will be called critical no degenerate equilibria.

2. And the set of all remain singular economies, it will will be called the set of degenerate

singular economies. An equilibrium λ̄ ∈ Eq′(w) where corankJλew(λ̄) > 1, will be called

13



a degenerate critical equilibrium.

The corank of Jλew(λ̄) is given by:

corank
[
Jλew(λ̄)

]
= (n− 1)− dim

[
Jλew(λ̄)

]
.

In this way we can say that the corank is a measure for the degree of the degeneration of the

equilibria.

To clarify these considerations and to justify the introduction to the Catastrophe Theory in

economics, let us now consider the following two examples:

Example 1 Let E(W) =
{
R2

+, ui, wi; i = 1, 2
}

be the set of interchange economies which total

endowment W = (W1, W2) are fixed. This means that:

Wj = w1j + w2j , j = 1, 2; (∗)

where wij is the initial endowment of agent i in the commodity j. Initial endowment may be

redistributed but the total endowment can not be modified, so the components of W are constants.

The equilibrium set will be symbolized by:

VW = {(λ, w) ∈ int[∆]× Ω, : e(λ,w) = 0, w1j + w2j = Wj ; j = 1, 2}

An equilibrium is a pair (λ,w) such that e1(λ,w) = 0, e2(λ, w) = 0. As in this example the

total supply is fixed, to characterize the equilibrium, we can consider, without loss of generality

the initial endowments of the only one agent, for instance the agent indexed by 1. And from the

fact that social weight are in the sphere of radius 1, it is enough to consider only one component

of λ. So, a pair (λ,w) will be an equilibrium if and only if, e1(λ1; w11, w12) = 0.

Suppose that the excess utility function of the agent 1 is given by:

e1(λ1, w11, w12) = 3W1λ1 − 3w11(λ1)
1
3 + w12. (8)

In terms of catastrophe theory λ1 is the state variable and w1 are the control parameters.

The social equilibria of this economy will be given by the set of pairs (λ,w) such that its compo-

nents (λ1, w11, w12) solve the equation e1(λ1, w11, w12) = 0 and by the corresponding (λ2, w21, w22)

obtained from the former. The set

CF = {(λ1, w11, w12) ∈ VW : detJλ1e1(λ1, w11, w12) = 0},
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is the Catastrophe surface.

The economies whose endowments are in this surface are the singular economies. In our case

this surface is defined by:

CF =
{

(λ1, w11, w12) ∈ VW :
∂e

∂λ1
= 3W1 − w11λ

− 2
3 = 0

}
.

Explicitly:

CF =





(
w11

3W1

) 3
2

, w11,
2w

3
2
11

(3W1)
1
2



 .

The projection of this set in the space of parameters will be called the Bifurcation set. In

our case:

BF =



w11,

2w
3
2
11

(3W1)
1
2



 .

This set is represented in the space of parameters, w11, w12 by a parabola. By varying the

parameters continuously, and crossing this parabola, something unusual happens: the number of

possible states of equilibria associated with the initial endowments w change: increases or decreases

by two.

The number of equilibria is given by the sign of δ where:

δ = 27
(

w11

W1

)2

− 4
(

w12

W1

)3

so if:

• δ < 0 associate with w, there exist three regular equilibria.

• δ > 0 there is one regular equilibrium associate with w.

• δ = 0, w11w22 6= 0 there exists one critical (or singular) equilibrium and one regular equi-

librium.

The additional consideration taken from [ Balasko, Y. (1997b)]: the set of regular economies

with a unique equilibrium is arc connected in the two agents case, help us to obtain a good

geometric representation of economies. Therefore, the set of economies where δ > 0 is an arc-

connected set.

The hessian matrix of the considerate excess utility function (the matrix defined by the second

order derivatives of ew at λ) is singular, this means, as we will see later, that the critical equilib-

rium is degenerate. So economies with endowments which satisfy δ = 0 are degenerate singular

economies.
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Example 2 Consider the economy E =
{
R2

+, uα,i, wi, i = 1, 2
}

whose utility functions are:

uα,1 = x11 − 1
αx−α

12

uα,2 = − 1
αx−α

21 + x22,

and endowments W = w1 + w2.

Following the Negishi approach we begin solving the optimization problem:

maxWλ(x) = λ1u1(x1) + λ2u2(x2),

restricted to the factible set:. F =
{
x ∈ R4

+ :
∑2

i=1 xi ≤
∑2

i=1 wi

}

Denoting λ1 = λ it follows that λ2 = 1− λ. Then we write the excess utility function:

euw =





(
1−λ

λ

) α
1+α −

(
1−λ

λ

) 1
1+α − w12

(
1−λ

λ

)
+ w21

(
1−λ

λ

) −α
1+α −

(
1−λ

λ

) −1
1+α − w21

(
1−λ

λ

)−1
+ w12

The catastrophe surface is given by:

CF =
{

(λ,w11, w12) ∈ VW : w12 =
α

1 + α
h

1
1+α − 1

1 + α
h

α
1+α

}

where h = λ
1−λ .

Then economies E, which endowments are given by (w11, w12, w21, w22) verifying

W = w1 + w2

and

w12 =
α

1 + α
h

1
1+α − 1

1 + α
h

α
1+α

are singular. Solving eu(λ, w) = 0 it is easy to see that in all neighborhood of this economies there

exist economies with one equilibrium and economies with three equilibria.

6 Catastrophe theory and economic theory

The catastrophe theory can be applied with wide generality in quasiestatical models, (models

which equilibria states are modified only by cause of external forces) in which little changes in

its parameters cause sudden changes. When the system is a rest in a position of equilibrium

the state variables, (λ in our case,) determine the state of the system. The parameters, (initial
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endowments of the economy) describe the dependence of the system on external forces. The action

of these forces usually give raise to sudden jump from an equilibrium position to another, these

sudden transitions, when originate from continuous modifications in parameters are referred as

catastrophes. In General Equilibrium models this kind of transition only can be observed in a

neighborhood of a singular economy.

Catastrophe theory shows that it is possible to analyze this kind of transition by means of few

canonical forms. The behavior of economies which utility functions give place to the same kind

of singularities is locally similar, then it is possible to classify the economies according to the the

stereotype in correspondence with its singularities. So, the aims of this work is to get a survey of

the possible qualitative structures in economies.

We start this section considering the most elemental case of economies with two agents. In

this case the equilibrium states can be characterized by only one of the components of the excess

utility function, for instance ei : int[∆]× Ω+ → R where i may be equal to 1 or equal to 2, that

is a real function. In this case the main theorem to study singularities is the Generalized Morse

theorem [Zeidler, E. (1993)]. This theorem states that locally around a no degenerate singular

economy all excess utility function can be transformed to a simple standard form by changing

coordinates. There are exactly 3 such forms and these are quadratic forms. To each function

corresponds exactly one of these canonical forms.

Later more general cases will be considered.

6.1 Two agents economies

If ew : Uλ0 ⊆ int[∆] → Rn−1 is a Ck submersion at λ0 then there exists a local ck diffeomorphism

φ with φ(λ0) = 0, and φ′(λ0) = I, such that the following normal local form holds: e(φ(λ0)) =

e′(λ0)λ, see [Zeidler, E. (1993)] vol 4. The question is when ew is not a submersion at λ0 is the

a coordinate transformation φ and a local normal form? For an economy with two agents, the

Morse lemma is the answer.

Let E = {ui, wi; i = 1, 2} be an interchange economy with two agents and l commodities. The

property 2 of definition 4, allow us to characterize the economy by one component of its excess

utility function as a function of the initial endowments, and property 1 of the same definition,

allow us consider only one of the two social weight. Let ei : (0, 1)×Ω+ → R be the excess utility

function of the agent indexed by i. The function is defined by (λi, w) → ei(λi, w).

Then we can classify this kind of economies by looking for the Taylor expansion of ei. If

g : R → R is a smooth function such that g(x̄) = g′(x̄) = ... = g(k)(x̄) = 0 then there exista a

smooth function l such that g(x) = (x− x̄)l(x), and l(λ̄) = 0.
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But if g(k)(x̄) 6= 0. Then there exists a smooth local change of coordinates under which g takes

the form xk, (k odd); ±xk, (k even). See [Poston, T.; Stewart, l. (1978)].

The characterization of no degenerates singular points in terms of the hessian matrix (see

section (2))is a comfortable condition to characterize singular economies:

Remark 1 A two agents interchange economy w, is a degenerate singular economy if and only if

the hessian matrix of ewi :

∂ewi =
{

∂ewi(λ)
∂λhλk

}
, h, k = 1, 2..., n.

is singular for at least one λ ∈ Eq(w).

The significance of Morse’s Lemma is in reducing the family of all smooth functions vanishing

at the origin (f(p) = 0) in Rn with the origin as a no degenerate singular point, to just n + 1

simple stereotypes.

Applying this theorem in economic setting it follows that, in a neighborhood Uλ̄ of a social

equilibrium λ̄ of a no degenerate singular economy w̄, the excess utilities functions ew̄ will behave

in similar way for every non degenerate w̄ with independence of utilities. Moreover, if given the

utility function, there are only no degenerates singular economies, then by smooth coordinate

transformation it is possible to reduce the family of all excess utility function to just 3 simple

stereotypes, namely:

ew̄i(ψ(λ)) = ±λ2
1 ± λ2

2.

The following two theorems, help us to know some characteristics of the no degenerates singular

economies

Theorem 5 Let f : X → R be a smooth function with a no degenerate singular point p. Then

there exists a neighborhood V of p in X such that no other singular point of f are in V, i. e., no

degenerate singular points are isolates.

So, no degenerate singular points are isolates, and if we consider endowments in a finite subset

of Ω there are finite number of they. Moreover, generically in Ω, there exists only one λ such that

ew(λ) = 0 is a critical no degenerate social equilibrium. This follows as a conclusion of the next

theorem:

Theorem 6 Let X be a smooth manifold. The set of Morse functions all of whose singular values

are distinct (i.e., if p and q are distinct singular points of f in X, then f(p) 6= f(q)) form a residual

set in C∞(X, R).
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Figure 1: Two goods two agents economies

This means that generically, if the economy E = {ui, wi, I} is singular no degenerate, then

there exists only one critical equilibrium λ ∈ Eq(w).

Remark 2 (About singularities and oddness in the number of equilibria) In terms of

the economic theory this means that, generically a singular no degenerate economy w, with 2

agents has only one critical equilibrium. The oddness of the number of equilibria force that in

a neighborhood of the singular economy there are economies w̄ with only one λ ∈ Eq(w̄) and

economies ¯̄w with three distinct λ ∈ Eq( ¯̄w)

If we add the hypothesis of 2 commodities, the oddness and the arc-connectedness properties of

the regular economies with one equilibrium before mentioned, allows us to show the picture as

generically representative of the behavior of this kind of economies.

More in general, the splitting theorem, see [Poston, T.; Stewart, l. (1978)] allow us to classify

degenerates singular two agents economies. This theorem say that if a smooth function F : Rn →
R has codimension n− r (i.e the corank of the hessian matrix is n− r) then there exists a change

of coordinates, that allow us to write F in this new coordinates in the form:

F (u1, u2, ..., un) = ±u2
1 ± u2

2...± u2
r + f(ur+1 + ... + un).

This means that the excess utility function, in a neighborhood of a critical degenerate equilibrium

with corank 1, after a change of coordinates has the form: e(λ1, λ2) = ±λ2
1 + g(λ2).

Finally, the economic interpretation of the above considerations is that:

1) Regular economies have a similar behavior around an equilibrium.

2) Two agent economies can be classified from the Taylor expansion of the one of the two

coordinates of its excess utility function.

3) The excess utility function of all no degenerate singular economy with two agents, have a

similar behavior in a neighborhood of a no degenerate critical equilibrium. And this behavior

is characterized by a second order polynomial.

19



4) Singular degenerate two agent economies can be classified using the splitting theorem.

Our objective is to classify the economies in more general cases too, then the following question

is of major importance for a qualitative understanding of many economical (in general scientific)

phenomena:

When does the Taylor expansion up to some order k

jk
xf(u) = f(x) + f(x)u + ... + fk(x)uk/k!

provide enough information to understand the local behavior of a function f at x?

We say that a function f is k-determined if and only if it follows from jkf = jkg that such

that f and g are locally right-equivalent i.e., there exists a diffeomorphism φ such that

φ(0) = 0, g(u) = f(φ(u)) + constant.

Example 3 Consider f : U(0) ⊂ Rn → R

• a)Let f ′(0) 6= 0, i.e., not all the terms vanish in the Taylor expansion of f at zero. Then F

and H, with H(u) = ξ1 are locally right equivalent. Consequently, f is 1-determined. And

the local normal form is given by: f(φ(x)) = f(0) + f ′(0)x.

• b) If f ′(0) = 0, and the matrix f ′′(0) for the second-order partial derivatives of f at 0 is

invertible, then f is 2-determined in Rn. And the local normal form is given by: f(φ(x)) =

f(0) + f ′′(0)x2.

• c) Recall that in general a function cannot be determined by its Taylor polynomial in an

arbitrary point x. For instance the functions f : R2 → R, f(x, y) = x2, and g : R2 →
R, g(x, y) = x2 − y2l, have the same k−polynomial at 0 ∈ R2 when l > k/2 holds, but if if

φ = (φ1, φ2) is any local diffeomorphism at 0 ∈ R2 then:

f(φ(0, y)) = (φ1(0, y))2 6= −y2l = g(0, y)

is true for nonzero y ∈ R. Thus, there is no number k such that f is k-determined.

In economics terms this question takes the following expression: it would be possible, to character-

ize the behavior of an economy from the Taylor expansion up to some order k, of its excess utility

function ?

• The above example, prove that all regular two-agent economy is one-determined. Then the

local normal form for the excess utility function is: e(φ(λ0)) = e′(λ0)λ.

• As we shown above, using the Morse lemma no degenerate two-agent economies are 2- de-

termined. And the local normal form for the excess utility function is: e(φ(λ0)) = e′′(λ0)λ2.
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7 Starting a classification: The Sr classification

We begin this section with an important question of the catastrophe theory, the k-determination

of Ck(X, Y ) functions. After discussing this point in abstract, we will relate it to the possible

changes in the qualitative behavior of an economy in a neighborhood of herself 7. We will consider

economies with an arbitrary but finite number of consumers and then we focus our attention

on two kind of singularities: the folds and the cusps. Finally we will connect the kind of the

singularities that it can appear in a particular economy with the number of agent and goods that

this economy has.

The question previously formulated, is to say, the question of the k−determination of a func-

tion:

When a function f is determined in a neighborhood of a point x by some of its Taylor polyno-

mials at x in the sense that, every other function having the same Taylor polynomial coincide with

f in a neighborhood of x up to a diffeomorphism? It is a fundamental question to the catastrophe

theory.

Let us introduce another characterization of functions with an esential similar behavior.

We will say that a map f ∈ Ck(X, Y ), is k-equivalent at a point x0 ∈ X to a map

g ∈ Ck(U, V ) at a point u0 if and only if there exist local Ck diffeomorphisms at u0 and f(x0)

respectively with φ(u0) = x0 and ψ(f(x0) = g(u0). In this case f and g need only be defined in

a neighborhood of x0 and u0. Where X,Y, U, and V are Banach-manifolds. There is no obvious

relationship between this two kind of equivalence, despite these two concepts are strongly related.

Example 4 1. Let f : U(p) ⊂ X → Y be Ck(X, Y ), k ≥ 1 and X and Y Banach manifolds

and let g = j1
k(f) i.e.,

g(u) = f(x) + f ′(x)u

If f is submersion or inmersion at x then f is k−equivalent to g at 0.

2. If X = Rn and Y = Rm and f is a submersion at x then f is k-equivalent at x to g at 0.

Moreover, if rankf ′(x) = r, then f is k-equivalent at x to h : X → Y with

h(x1, ..., xn) = (x1, ..., xr, 0...0)

Definition 11 We will say that the economy E = {ui, wi, i ∈ I} is k-equivalent at a λ0 ∈ Eq(w) to

the economy E ′ = {ui, w
′
i, i ∈ I} at λ1 ∈ Eq(w) if and only if its respective excess utility functions

ew and e′w are k − equivalent functions at λ0 and λ1 .
7We say that the economy, E = {Xi, ui, wi, I} is in a neighborhood of the economy E ′ = {Xi, ui, w

′
i, I} if w is in

a neighborhood Uw′ ⊂ Ω+ of w′.
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This definition and (2) in example 4, show that the excess utility function of all regular economy

is 1− determined.

Thus, if the polynomial of Taylor of first order of two functions of excess of utility in its

respective points of equilibrium,λ0 and λ1 agree (to less of diffeomorphisms) then the economies

that this function represent display the same behavior, locally speaking.

Now let us to relate the k-equivalence concept with k-determination. A function f : U(x) ⊂
X → Rm is k− determined if and only if for each function g : U(x) ⊂ X → Rm with the same

Taylor polinomial of degree k, jk
pf, there exists a local C∞ diffeomorphism φ ∈ Rn such that

g(φ(u)) = jk
xf(u) in a neighborhood of x.

Roughly speaking, a function f will be k-determined if all function which differ from f only

in terms of order higher than k behave qualitatively like the k − th Taylor polinomial of f. This

means that the Taylor expansion up to order k completely determines f and its perturbations

with terms of order higher than k.

So, if the excess utility function of a given economy ew is k-determined, then all economy which

excess utility function have the same Taylor polinomial up to order k, show the same qualitative

behavior than the former, i.e., for some k, jkew express the essential behavior of the economy in

a neighborhood of each of its equilibria.

We will look at what is called the k − jet of that function at p ∈ Dom(f), and then we will

show some characteristic of the set of singularities of each clase of functions identified in this way.

Definition 12 Jet Bundles: Let X and Y be n and m dimensional, smooth manifolds and

f, g : X → Y, f(x) = g(x) = y be smooth functions. Consider the following equivalence relation:

f ∼k g will mean that the k − th Taylor expansion of f coincides with the k − th expansion of g

at x. The equivalence class of f at x under this relation is called the k-jet of f at x, and will be

denoted by Jk(f)x.

• By the symbol Dhf we represent the set of partial derivatives such that: ∂|h|f
∂x

h1
1 ...∂xhn

n

where

|h| = ∑n
j=1 hj , hi ≥ 0 i = 1, 2, ..., n.

• Let Jk(X,Y )x,y denote the set of equivalence classes under ∼k at p of mapping f : X → Y

where f(x) = y.

• An element σ ∈ Jk(X, Y ) = ∪(x,y)∈X×Y Jk(X, Y )x,y, is called k-jet where f(x) = y.

• let Jk(X,Y ) = ∪(x,y)∈X×Y Jk(X, Y )x,y (disjoint union). Then Jk(X, Y ) is the set of all k-jet

with source X and target Y.
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Theorem 7 Let X and Y be smooth manifolds with n = dimX and m = dimY. Then, Jk(X, Y )

is a smooth manifold with:

dimJk(X,Y ) = m + n + dim(Bk
n,m),

where Bk
n,m is the space of formed by the direct sum of polynomial in n−variables with degree ≤ k.

The object of our analysis is the excess utility function, and the social equilibria. Obviously

its critical values can be other than zero, but our interest is focused at the origin, because only

this value have an economical means: The preimagen of zero by e is the set of the social equilibria,

i.e. e−1(0) = Eq. So we will consider the functions ew :
∫
[∆] → Rn−1.

Then we are interested in consider the class Jk(X, Y )(λ,w),0 that is, the k−jet σ with source

λ) ∈ int[∆] and target 0 ∈ Y = Rn−1.

Remark 3 (Notation) To avoid future possible mistakes arose from the notation, from now on

we will represent the jacobian matrix of a mapping f at p by the symbol: (∂f)x.

Let σ ∈ J1(X,Y ); then σ defines a unique linear mapping of TxX → TyY, where x is the

source of σ and y is the target of σ. Let f be a representative of σ in C∞(X,Y ). Then (∂f)x

is that linear mapping. Define rank(σ) = rank(∂f)p and corank(σ) = µ − rankσ, where µ =

min(dimX, dimY ). Let

Sr =
{
σ ∈ J1(X,Y ) : corank(σ) = r

}
.

This is the subset of the equivalence classes under ∼1 in C∞(X, Y ) such that the corank(∂f)p = r

where p is the source of σ. The subset Sr is a submanifold of J1(X, Y ) with

codim Sr = (n− µ + r)(m− µ + r),

see [Golubistki, M. and Guillemin,V.(1973)].

As we said above our interest is the class σ ∈ J1(int[∆], Rn−1) with source λ and target

0 ∈ Y = Rn−1. It follows that: dimX = (n − 1) and dimY = n − 1, then µ = n − 1. So,

codimSr = r2.

The set of singularities of f : X → Y where the rank of it jacobian matrix drops by r

i.e., the set x ∈ X where rank(∂f)x = min(dimX, dimY ) − r is represented by the symbol:

Sr(f) = (j1f)−1(Sr). Then Sr(f) will be, generically, a manifold of the same codimension that

(Sr), [Golubistki, M. and Guillemin,V.(1973)].

As codimSr(f) = dimX − dimSr(f) ≥ 0 there is a relation between the kind of singularities

possible for each f ∈ C∞(X,Y ) and the dimension of the manifold.
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Applying this concepts to economics, Sr(ew) is the set of critical points of ew where the jacobian

matrix of ew drops rank by r. This set is a manifold and the set of critical social equilibria is the

subset of (λ,w) : λ ∈ Sr(ew) and e(λ, w) = 0. For instance, S1(ew) is the set of no degenerate

critical social equilibria that is, the set of pairs (λ,w) ∈ int[∆]× Ω such that e(λ,w) = 0.

It follows that, there exists a relation between the number of agents and the form of pos-

sible singularities. In others words, the excess utility function could have only some types of

singularities, and these will be determined by the number of consumers in the economy.

Then, codimSr(f) > |dimX − dimY |, then dimSr(f) < dimY. Applying this observation to

economics, where: X = int[∆], Y = Rn−1 and f is the excess utility function ew, it follows that:

if n is the number of consumers of the economy then, dimSr(ew) < n − 1. In cases where n = 2

we obtain that singular economies are generically isolates points in Ω.

It is important to remind that the topology used in theorems about transversality of maps

in C∞(X,Y ) is the Withney topology, this is a very strong topology, therefore if a proposition

is satisfy generically in a topological space with the Whitney topology, is indeed satisfy in quite

large sense and is a strong result.

The next example clarify these considerations:

Example 5 If the economy have n consumers then it follows that that dimX = dimY = n − 1

and codimSr = r2 so, ew could have only singularities of kind Sr such that r2 < n− 1. Note that

if n = 2 we obtain that critical social equilibria are isolate points.

Now we will show some characteristic of S1 singularities:

7.1 The Fold and the Cusp in economics

Definition 13 (Submersions with Folds) Let X and Y be a smooth manifolds with dimX ≥
dimY Let f : X → Y be a smooth mapping, such that J1f is transversal to S1. Then a point

p ∈ S1(f) is called fold point if:

TxS1(f) + Ker(∂f)x = TxX.

Definition 14 We say that a map is one generic if J1f is transversal to S1. This is a generic

situation. [Golubistki, M. and Guillemin,V.(1973)].

Where S1 is the submanifold of J1(X,Y ) of jets of corank 1, then S1(f) = (j1f)−1(S1) is a

submanifold of X with codimS1(f) = codim(S1) = k + 1 where k = dimX − dimY. Note that is

x ∈ S1(f) then dimKer(∂f)x = k +1. That is, the tangent space to S1(f) and the kernel of (∂f)x

have complementary dimensions.
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Therefore, codimS1(e) = 1 it follows that if (λ,w) ∈ S1(ew) then, dimKer(∂e : w)λ) = 1.

The next theorem characterize the local behavior of a submersion with folds near a fold, similar

to the Morse theorem for real function. (Recall that if X and Y are manifolds, and f : X → Y is

differentiable mapping, with rank(∂f)p the maximum possible, is a submersion if dimX ≥ dimY.)

Theorem 8 Let f : X → Y be a submersion with folds and let p be in S1(f). Then there exist

coordinates x1, x2, ..., xn centered at x0 and y1, y2, ...yn centered at f(p) so that in these coordinates

f is given by:

(x1, x2, ..., xn) → (x1, x2, ..., xm−1, x
2
m ± ...± x2

n)

This theorem is proved in [Golubistki, M. and Guillemin,V.(1973)].

Taking a particularly simple example of 2-manifolds (manifolds with dimension equal 2), we

see the reason for the nomenclature fold point. In this case the normal form is given by: (x1, x2) →
(x1, x

2
2). This transformation is obtained by means of the following steps:

• (1))Map the (x1, x2) map onto the parabolic cylinder, (x1, x2, x
2
2),

• (2))then, project onto the (x1, x3) plane.

Example 6 3-agent economies:

Let X and Y be 2-manifolds and let f : X → Y be a one generic mapping. By our computation

codimS1(f) = 1 in X, and S2 does not occur, since it would to have codimension 4. Let p be a

point in S1(f) and q = f(p). One of the following two situations can occur:

(a) TpS1(f)⊕Ker(∂f)p = TpX.

(b) TpS1(f) = Ker(∂f)p

Remark 4 Whitney proved that if f belongs to C∞(X, Y ) generically the only singularities are

folds and simple cusp.

Note that only if the interchange economy has 3 agents and fixed initial endowment the excess

utility function is a mapping between 2-manifolds, ew : int[∆] → R2.

Let λ̄ = (λ̄1, λ̄2, λ̄3) ∈ ∆ be a singular social equilibrium for the economy w.

i) In the first case (item (a)) applying 8 one can choose a system of coordinates (λ1, λ2)

centered at (λ̄1, λ̄2) ∈ S1(ew) and (e1, e2) centered at ew(λ̄) = 0 such that ew is a fold:

(λ1, λ2) → (λ1, λ
2
2).
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ii) If (b) holds the situation is considerable more complicated. Generically singularities, in this

case, are simple cusps. In this case one can find coordinates (λ̄1, λ̄2) centered at e(λ̄) such

that:

(λ̄1, λ̄2) → (λ̄1, λ̄1λ̄2 + λ̄3
2).

In a neighborhood of a cusp or a fold there exist regular economies with different number of

equilibrium. Recall that, at the moment of through a singularity the changes in the number of

equilibria appear.

7.2 The Sr,s singularities

Let f : X → Y be one generic. We will denote by Sr,s(f) the set of points where the map

f : Sr(f) → Y drops by rank s. Analogous to the Sr it si possible to build:

Sr,s ⊂ {σ ∈ J2(X, Y ) : corank(σ) = r}.

Note that x ∈ Sr,s(f) if and only if x ∈ Sr(f) and the kernel of (∂f)x intersects the tangent

space to Sr(f) in a subspace a s dimensional subspace. From dimSr(e) < n− 1 it follows that in

cases of economies where n = 2 the singularities are S1,0(e) folds, or S1,1(e) cusps.

Using the Transversality Theorem in [Golubistki, M. and Guillemin,V.(1973)] is proved that

j2f is generically transversal to Sr,s and then the sets Sr,s are submanifolds in J2(X, Y ) and like

in the case of Sr(f),

Sr,s(f) = (j2(f))−1(Sr,s).

In the cited work the dimension of Sr,s(f) is computed.

Generically Sr,s(f) are submanifolds in X whose dimensions are given by:

dimSr,s(f) = dimX − r2 − µr − (codimSr,s(f) in Sr(f)) . (9)

where

codimSr,s =
m

2
(k + 1)− m

2
(k − s)(k − s + 1)− s(k − s), (10)

where

• m = dimY − dimX + k

• k = r + max(dimX − dimY, 0) and

• µ = min {dimX, dimY } .
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[Golubistki, M. and Guillemin,V.(1973)]

In this way we see that the set of possible singularities in economics are strongly relate with

the number of agents and commodities, then it follows that some kind of singularities appear only

if the number of agents are big enough.

7.3 Singularities and its relations with the dimension of the economy

Applying to economies with a finite number of agents and commodities, we obtain that:

• k = m = r

• where n is the number of agents, and r is the codimension of (∂ew) evaluated at the singu-

larity.

So, generically, we obtain substituting in (10) that:

codimSr,s(e) =
r

2
(r + 1)− r

2
(r − s)(r − s + 1)− s(r − s).

In particular for S1,1 it follows that codimS11 = 1 and dimS11 = n− 2 holds.

Substituting r = 1 and s = 2 in the formula above it follows that generically, singularities

like S1,2(e) only could appear if the number of consumer is n > 3, because n > 3 is a necessary

condition to be dimS1,2(e) ≥ 0. So for economies with three agents, are only possible singularities

of the type S1,0 and S1,1, folds and cusps, as we already saw it in example (6).

8 Conclusions

The introduction of the function excess of utility allows us to work with economies of infinite

dimension in analogous form to which we do in the finite case and on the other hand, to improve

our understanding of the way in which equilibria depend upon economic parameters (initial en-

dowments or utility functions) and shows the strong relation existing between preferences and the

behavior of the economic system.

This function reflects the weight of consumers in the markets, and show the changes in their

relative weights in equilibrium, when the initial endowments change. Near a regular economy

these changes are smooth and there is not qualitative changes, but around a singularity sudden

and big changes occur. The economic weight of the agents change drastically, overthrowing the

existent order. The uncertainty in the behavior of the economy is a direct result of the existence

of singular economies. If there were not singularities, economics would be a science with perfect
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prediction. In a neighborhood of a singular economy, the central planer need to be extremely

careful. Because if he acts according with its experience, can do small changes in endowment

hopping that things follows not much different than in the previous situation, but this hope can

not occur, if the economy is a singular one the perturbed economy will be to much different than

the previous one, and it is no possible to can back by means of small changes.

Nevertheless, most part of the literature in economics have focused on regular economies

whose equilibria change smoothly according to the changes in the endowments. The study of the

discontinuous behavior requires to consider singularities, this led us to the catastrophe theory. This

theory refers to drastic changes, however to be sudden, abrupt and unexpected the catastrophe

theory show that these changes have a similar substratum that allows us to do a classification

according its geometric representation. So, the study of singularities require catastrophe theory

and the theory of mapping and their singularities, in this way one might have an approximation

to understanding the forms of the unexpected changes in economics. The economies can be

characterized by their singularities, and these are those that really characterize the essential of

their behavior. Economies with the same type of singularities will present the same possibilities

of changes.

A final consideration: The excess utility function allows us to extend the analysis of singulari-

ties for economies with finite dimensional consumption spaces, to infinite dimensional economies.

Showing in this way that also in these cases, the catastrophe theory may be a gate to begin to

understand the behavior of an economical system with infinitely many goods in a neighborhood

of a singularity.

9 Appendix

In this section we consider the implicit function theorem in Banach manifolds. The concept of

chart map alow us to carry much of the differential theory useful in Banach space to Banach

Manifold. The charts establish a local diffeomorphism between a B-manifold and a B-space. And

the correspondences between manifolds are translated, by means of these chart maps in local

correspondences between B-spaces. So if φ and ψ are charts for M and N, and f : M → N then

f̄ = ψ(f((φ)−1) : Xφ → Xψ where Xφ and Xψ are B-spaces (the chart spaces for (M, φ), and

(N, ψ) respectively). Recall that f ′ : TxM → Tf(x)N, where TxM and Tf(x)N are respectively,

the tangent spaces for M at the point x and for N at the point f(x).

Theorem: Let E, F, G Banach manifolds, let A ⊂ E × F be a nonempty open set. Let

f : A → G continuously differentiable in A. Let (u0, v0) be a point in A such that f(u0, v0) = 0 and
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let the derivative with respect to the second variable, D2f(u0, v0) : F → G be an homeomorphism

on G. Then there exists a neighborhood U of u0 in E and a neighborhood W of (u0, v0) in A and

a differentiable map g : U → F such that for all u ∈ U ; v = g(u) verify f(u, g(u)) = 0. This map

is a Ck map if f ∈ Ck. See [Zeidler, E. (1993)].

For a given k ∈ X let us introduce the following n real variables α = (α1, ..., αn). We introduce

the following notation: x∗ + αk = (x∗1 + α1k, ..., x∗n + αnk). Let us now consider the functions

fi : (0, 1) × R × R → R; i = 1, 2, ..., n and fn+1 : Rn × X+ → X consider also the function

f : int[∆]×X++ ×Rn ×R → Rn ×X+ given by:

f(λ,W,α, γ) = (f1(λ1, α1, γ), ..., fn(λn, αn, γ), fn+1(α, W )

defined as:
fi(λ,αi, γ

∗) = λiu
′
i(x

∗
i + αik)h− γ∗

fn+1(α, W ) =
∑n

i=1(x
∗
i + αik)−W

(11)

We know that for f(λ̃, W̃ , 0, γ∗) = 0. Let us introduce the notation m = (λ,W ) and v = (x, γ).

Let Mm̃ = Uλ̃ × UW̃ be a neighborhood of m̃ = (λ̃, W̃ ). Analogously, let Vv∗ = V0 × Vγ∗ be a

neighborhood of v∗ = (0, γ∗). The jacobian matrix of this system with respect to the variables α

and γ is given by D2f(ũ, v∗)k = f ′v(ũ, v∗)k i.e.:



λ1u
′′
1(x

∗
1)hk 0 0 . . . 0 1

0 λ2u
′′
2(x

∗
2)hk 0 . . . 0 1

...
...

...
...

...
...

0 0 0 . . . λnu′′n(x∗n)hk 1

k k k . . . k 0




from our hypothesis on utility functions, this is a bijective transformation from Rn ×X onto

Rn ×X, so we can apply the implicit function theorem to obtain x∗(λ,W ) = x∗ + α(λ, W )k, so

for all (λ,W ) ∈Mm and h ∈ X the following identities are verified:

λiu
′
i(x

∗
i (λ,W ))h− γ∗(λ,W ) = 0, i = 1, 2, ..., n.

∑n
i=1 x∗i (λ,W )−W = 0

then, for each (λ,W ) ∈Mm the feasible allocation x∗(λ,W ) solves the problem (3).
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