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Abstract

The Revenue Equivalence Theorem states that for a variety of auction formats,
expected seller revenue and the final allocation of goods are the same. The proof relies
critically on perfect rationality of bidders. This paper considers repeated open bid
first and second price auctions with heterogenous bounded rational bidders. It shows
by mathematical and computational methods that the equivalence breaks down when
bidders play their best responses to past play. In this case, expected seller revenue
differs between auction formats and revenue volatility is persistently higher in first
than in second price auctions. The consequences are twofold: First, the literature on
auction theory should be revised to integrate the consequences of bounded rationality.
Second, many auction formats in the real world could be replaced by auctions like
second price auctions where bidding the true value is the dominant strategy. This
would significantly reduce risk in the economy.

1 Introduction and Outline

1.1 Introduction

Auctions, though existent in the economy since thousands of years, have increasingly gained
importance throughout the last decades. Nowadays, goods are allocated via auctions in a
multitude of economic settings.
Most of current auction theory assumes that each bidder makes her decisions perfectly ra-
tional and knows that each other agent also does so. Under this assumption, bidders bid
according to their Nash Equilibrium (NE) bidding functions. The most important theorem
in auction theory is the Revenue Equivalence Theorem (RET).
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The RET basically predicts that in the NE all auction formats are equivalent in two major
ways:1

• First, the auctions result in the same allocation of goods, independent of the specific
format. For auctions where the seller doesn’t post a reserve price, the allocation is
pareto-optimal.

• Second, expected seller revenue is the same for a wide range of formats.

According to the RET, first price auctions, higher price auctions like second or third price
auctions and all-pay auctions are equivalent. Thereby, the theory justifies the observeable
coexistence of different auction formats in the economy.
Today, most of current research still focuses on the investigation of Nash Equilibria in auc-
tions [14], [16]. The main interest is to assess the effects of relaxing the assumptions of the
RET.

The NE concept is a great tool to assess the outcome of games. However, it has several
weaknesses [4]. First, there is experimental and empricial evidence that players deviate in
many situations significantly from NE play. Second, the concept gets logically inconsistent
if the thinking cost for finding the optimal solution to a game are properly taken into
account. Third, we can not use the NE concept to assess the outcome of games if some
players incidentally deviate from perfect rational play. In particular, it is not clear, whether
players with initially heterogenous strategies will ever converge to NE play. Therefore, it is a
much more natural assumption to investigate games under bounded - or limited - rationality.
There, bidders use rules to select their strategies and update these rules according to some
prespecified learning scheme. This approach allows us to model learning in games.[8]

Under best response dynamics, players try to maximize their expected payoff by playing the
strategies that would have generated the highest payoff in the past. Considering the times
at which players update their strategies, the updating can be myopic when bidders consider
only information from the last round to update their strategies. Alternatively, they can have
a long memory so that they base their strategy updating on more than one round or even
the entire game.

My paper focuses on repeated open bid auctions under best response dynamics (fictituous
play). It shows with mathematical and computational methods that bidders under best re-
sponse play fail to find the NE bidding functions in first price auctions. In contrast, bidders
in second price auctions converge easily to NE play.

What is the intuition behind investigating best response dynamics? To which economic
situations can we apply our findings - and to which not? To start with, best response

1In detail, the assumptions of the RET are:
• For the bidders: Private independent values, identical commonly known value distributions, risk

neutrality, no budget constraint, perfect rationality
• For the different auction formats: Equal participation cost, equal probability of winning with the

highest bid
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dynamics is not a good model to describe experimental auctions. It is observed there that
experimental subjects significantly oberbid in first price auctions [5], [9], [13]. This behavior
is commonly explained by assuming a quantal response model of learning. There, players
play strategies in their strategy set with a probability that is proportional to the payoff that
these strategies would have generated in past auctions taken to the power of some exponent
γ. Like the best response dynamics, also quantal response can be myopic or with long
memory.2

Quantal response play with low γ seems to be a good model to describe experiments with
inexperienced bidders where only little profit is at stake. However, as the stakes increase, also
the significance of the gains and losses - modeled by the parameter γ - increases. Therefore
I claim that best response play - which is the limit case of γ → ∞ - is a good model to
describe economic environments where huge profits at stake. Professional economic agents
like firms or traders in markets try to outperform their competitiors by the use of research
departments, consultants and expert tools. This behavior can be modeled best by assuming
best response dynamics.

The mathematical analysis shows that under best response dynamics, myopic bidders in
first price auctions bid significantly below the NE prediction. As the memory strength of
players increases from myopic to long memory play, the seller revenue in first price auctions
also increases. I explicitely show how NE play emerges for players with perfect memory or
infinite sophistication.
Bounded rational players with limited memory capabilities, however will deviate from NE
play. A persistent volatility of bidding strategies accompanies this deviation. It comes from
the permanent mutual adaptation of bidders and results in riskier asset prices than necessary.
In contrast to first price auctions, players in second price auctions learn to bid according
to their NE functions even under myopic play. The main conclusion therefore is that the
prices of goods that are allocated via second price auctions are less volatile than in first price
auctions and that the goods always go to the bidder who values it the most. Therefore the
allocation of goods is maximal efficient in second price auctions.

The quantitative predictions of the mathematical analysis are replicated by computational
model runs. The Auction Simulator is an agent based model for the investigation of different
auction formats under various learning schemes. The double-check of computational results
with mathematical predictions shows that the model works correct. Therefore we can use it
as a starting base to investigate questions that can not so easily be tracked by mathematical
methods. Generalizations are for instance the mutual adaption of agents, the participation
of more than 2 bidders, arbitrary value distributions for bidders or statistical analyses of
price and strategy time series. The comparison of simulated data with statistical features of
empricial data like heteroscedasticity or leptokurtosis will allow the ’reality check’ of different
models of bounded rationality for different economic systems in the future.

In summary, mathematics and computation show that revenue volatility under best response
play is persistently higher in first than in second price auctions. In generalization, the results

2In another paper I have modeled this behavior for an exponent of γ = 1 and shown analytically and
computationally that myopic quantal response leads to the experimentally observed overbidding while for
sufficiently long memory it leads to underbidding.
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of this paper indicate that excess volatility of revenue is a property of any auction format that
gives bidders incentive to shade their true values. Such value shading designs of repeated
auctions can be found in many economic systems: Order books of financial or electricity
markets, the emerging market for greenhouse certificates or supply chains to name but a
few.

In conclusion, the paper suggests to take a closer look at the auction mechanisms that are
implemented in the economy. Since there are a lot of additional possible constraints on the
efficiency of auctions such as for instance the prevention of collusion, recommendations on
the optimal auction mechanism must depend on the specific system. However, I claim that
volatility in many markets could be substantially lowered by replacing value shading auction
designs by equivalents of second price auctions. This would result in a better allocation of
goods and in a decrease of risk for the economy as a whole.

1.2 Outline

The paper is structured as follows:
Chapter 2 mathematically analyzes the bids of 2 payoff-maximizing bidders who try to find
their best responses in open bid auctions. It is explicitely derived how a bidder can calculate
her best response against her opponents play if she is myopic or has perfect memory.
Chapter 3 introduces the Auction Simulator(AS). This agent based simulation correctly
reproduces the mathematical findings of chapter 2. I use the AS to assess the impact of
relaxing assumptions of the mathematical analysis.
Chapter 4 analyzes the implications of our findings for the real economy and gives an
outlook for future research directions.

The paper is completed by several appendices and a bibliography.

2 Best Responses in Open Bid Auctions

2.1 Introduction to Auction Theory

2.1.1 The Standard Model

In the symmetric independent private values framework (SIPV) of auction theory, two stan-
dard auctions are distinguished: the 1st price auction and the 2nd price auction.3 In the
theoretical standard setting, each bidder has a private value. Values are drawn from a com-
mon random distribution that is known to each bidder. Each bidder knows her own but not

3A range of other formats is also considered in the literature: 3rd and higher price auctions, all-pay
auctions, etc. However, for our theoretical analysis we will focus on first and second price auctions.
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the other players’ values. Dependending on her value, each bidder decides on a bid which
she secretly reports to the auctioneer. The assignment of a bid to each possible value is
called the bidding strategy. The object under auction goes to the bidder who submits the
highest bid. In the first price auction, the winner has to pay her own bid, in the second price
auction the second highest bid.
In sealed bid auctions, only the winning bid is published after the auction while in open bid
auctions every bid, also the loosing ones are published. In the one-shot auction, the pub-
lishing of information after the auction does not influence the bidding strategies of players
who have to decide on their bids before the auction. However, in a repeated setting, open
and sealed bid auctions are not equivalent because they induce a different informational
structure. We will focus in this paper on repeated open bid auctions.4

2.1.2 Revenue Equivalence in the Standard Model

The revenue eqivalence theorem (RET) was first formulated by Vickrey [19] and then gen-
eralized independently by Myerson [17] and Riley and Samuelson [18]. It states that all
auction forms yield the same expected seller revenue and allocation of goods as long as the
following conditions are met:

• The item goes to the bidder who submits the highest bid

• The cost of submitting the lowest feasible bid is the same for the different auction
formats

• Bidders have private independent values

• Bidders’ values are drawn from the same distribution and this distribution is known
to each bidder

• Bidders are risk neutral

• Bidders have no budget constraint

• Bidders are perfectly rational, they know that all the other players are also rational,
and they know that all bidders are symmetric to themselves. This implies that all
bidders bid according to their Nash Equilibrium bidding functions

The last point is often not explicitely mentioned because it is implicitely assumed in most
of game theory. However, as I will show, it is crucial for revenue equivalence to hold: If we
drop the assumption that each bidder knows that each other bidder is perfectly rational,
we arrive at the best response dynamics. In this chapter I show that then the RET breaks
down.

4I claim that under best response dynamics, repeated sealed bid auctions have even worse convergence
to the NE than their open bid equivalents. The reason is that each bidder has less information available to
calculate her best response.
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2.1.3 Deviating from the Standard Model

The derivation of Nash Equilibria implies that players are a priori homogenous in that they
play symmetric strategies. But can bidders find the NE bidding strategies if we don’t restrict
them to a priori symmetric solutions? What is the phase space dyamics of the system? Will
it eventually converge to the symmetric Nash Equilibrium?

To answer these questions, I consider a repeated two player open bid auction. My analysis
builds on the SIVP: I consider 2 risk neutral bidders without budget constraints. In each
round, bidders’ private values are drawn from a common distribution. To be specific, I
assume a uniform distribution vi ∼ U(0, 1).The NE in first price auctions is then bidding
half the value: bi = vi/2. In second price auctions, the NE is bidding the true value,
bi = vi. These assumptions are all in accordance with the assumptions of the standard
model, however I deviate in two aspects:

The main difference to the SIPV is that I consider heterogenous bidders under best response
dynamics: Bidders stay rational in that they try to optimize their payoff by playing the best
response to their opponents play. However, in contrast to the standard assumption of game
theory, bidders do not necessarily believe that their opponents are perfectly rational. This
implies that bidders can no more follow the reasoning that leads them to play NE strategies.

The second difference is that I restrict players to linear bidding functions bi(vi) = βi · vi

where βi ∈ (0, 1). This means that players have to decide on their strategy β
(t)
i upfront

before their value v
(t)
i is drawn. This prevents the (more realistic) modeling of players who

bid more aggressively for small values v
(t)
i than for large ones. However, the purpose of this

paper is to show that in first price auctions players fail to converge to NE play. In this
sense I reduce the infinite-dimensional search space of bidding functions bi(vi) for each agent
to the one-dimensional space βi ∈ (0, 1) that includes the NE bidding function βi = 1

2
. If

agents can not even find the NE in this space, they will certainly be unable to find it in the
infinite-dimensional original one. Therefore, this restriction does not weaken the conclusions
on exess volatility. On the contrary, it makes them even more pronounced.

2.1.4 Plan of this Chapter

In this chapter I analyze the best response dynamics in 2 player open auctions along the
following steps:

• 2.2 identifies the best response function of player 0 in first price open bid auctions
(1POBAs)5 βbr

0 (β1, v0, v1) if all parameters are known to her. I use the result to quantify
the average strategy of player 0 under myopic best response play.

• 2.3 identifies the best response function βbr
0 (β1) for v0 and v1 both ∼ U(0, 1); β1 fixed.

This is the best response against a known strategy if neither the own nor the opponent’s
value are known upfront. I use the result to analyze the average strategy of player 0
under long memory best response play.

5All abbreviations are found in the appendix
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• 2.4 analyzes the best response dynamics in second price auctions. I show that under
best response dynamics each player immediately learns the NE strategy of bidding her
true value.

• In 2.5 I conclude that the RET emerges from the best response dynamics if bidders have
infinite memory strength or are infinitely spohisticated. Under realistic assumptions
however the RET breaks down.

2.2 Unsophisticated Myopic Best Response in 1POBAs

2.2.1 The Payoff Function

The probability for player 0 to win a 1POBA is given by

pwin
0 =

{
1 if β0v0 > β1v1 ⇔ if β0v0

β1v1
> 1

0 if β0v0 < β1v1 ⇔ if β0v0

β1v1
< 1

So, the winning probability can be rewritten as

pwin
0 = Θ(β0v0 − β1v1)

For details on the Θ function please check Appendix A.
Player 0’s payoff is therefore given by

PO0(β0, β1, v0, v1) = v0(1− β0)Θ(β0v0 − β1v1) (2.1)

The following graph shows the payoff of player 0 for different choices of β0 when β1, v0 and
v1 are fixed.

[INSERT GRAPH ’PAYOFF OF STRATEGIES’]

The best response function of player 0 if she knows β1, v0 and v1 is therefore given by

βbr
0 (β1, v0, v1) =

{
lim
ε→0

β1v1

v0
+ ε = β1v1

v0
if β1v1

v0
< 1

arbitrary ∈ (0, 1) if β1v1

v0
> 1
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Figure 1: Payoff of Strategies

2.2.2 Unsophisticated Myopic Best Response Play

The best response function determines the average strategy of player 0 if she plays in each
round the β0 that would have maximized her last round’s payoff. I stick to the convention
that, if no feasible strategy6 of player 0 could have won the auction (because her value was
too low resp. player 1s value was unusually high) then she continues to use her previous
rounds strategy βold

0 .
Therefore player 0s next rounds strategy is given as

βnew
0 (β1, v0, v1) =

β1v1

v0

Θ(v0 − β1v1) + βold
0 Θ(β1v1 − v0)

βnew
0 (β1, v1) can be found by integrating over v0:

βnew
0 (β1, v1) =

1∫

0

dv0
β1v1

v0

Θ(v0 − β1v1) + βold
0

1∫

0

dv0Θ(β1v1 − v0) =

=

1∫

β1v1

dv0
β1v1

v0

+ βold
0

β1v1∫

0

dv0 = β1v1(β
old
0 − ln(β1v1))

6The set of feasible strategies for each player is the interval [0, 1]
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Integration over v1 yields

βnew
0 (β1) =

1∫

0

dv1β
new
0 (β1, v1) =

β1

4
(1 + 2βold

0 − 2lnβ1)

Now, since on average βnew
0 = βold

0
!
= βmbr

0 , we arrive at the following

Theorem 2.1 Consider a 2 player first price open bid auction with linear bidding strategies.
Assume that player 1 plays a fixed strategy and player 0 plays in each round the strategy that
would have maximized her payoff in the previous round. If she could not have won the last
round with any feasible strategy, she continues to use the previous round’s strategy. Then,
her average strategy satisfies

βmbr
0 (β1) =

β1 − 2β1lnβ1

4− 2β1

(2.2)

2.3 Long Memory Best Response in 1POBAs

2.3.1 Best Responses to Known Pure Strategies

The expected payoff EPO0(β0, β1, v0) for v1 ∼ U(0, 1) is obtained by integrating (2.1) over
v1:

EPO0(β0, β1, v0) =

1∫

0

dv1Θ(
β0v0

β1

− v1)v0(1− β0)

Now note that the Θ-function is 0 for v1 > β0v0

β1
, so the integrand takes non-zero values only

for v1 < β0v0

β1
. Additionally, the restriction v1 < 1 is imposed from the upper limit of the

integral. So, the integrand only takes non-zero values for

v1 < min(1,
β0v0

β1

) = 1−Θ(1− β0v0

β1

)(1− β0v0

β1

)

and therefore the integral transforms into

EPO0(β0, β1, v0) =

1−Θ(1−β0v0
β1

)(1−β0v0
β1

)∫

0

dv1v0(1− β0) = [1−Θ(1− β0v0

β1

)(1− β0v0

β1

)]v0(1− β0)

(2.3)

The following graph shows the expected payoff for player 0 for a fixed value v0 = 0.8 and
different strategies β1 of player 1. Note that for all β1 < 0.4 = v0

2
, player 0 maximizes her

payoff by playing less than the NE strategy β0 = 1
2
.
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Figure 2: Expected Payoff in 1POBA for fixed v0

[INSERT GRAPH ’EXPECTED PAYOFF IN 1POBA FOR FIXED v0’]

Now let us determine the optimal response function βbr
0 (β1), if both values v0 and v1 are

drawn from a uniform random distribution. This tells us how player 0 would play if she
knows player 1s strategy but not next rounds realizations of v0 and v1.
Using (2.3), the expected payoff is given by

EPO0(β0, β1) =

=

1∫

0

dv0EPO(β0, β1, v0) =

1∫

0

dv0[1−Θ(1− β0v0

β1

)(1− β0v0

β1

)]v0(1− β0)

=

1∫

0

dv0v0(1− β0)−
1∫

0

dv0Θ(
β1

β0

− v0)(1− β0v0

β1

)v0(1− β0) (2.4)

The integrand of the second integral only takes on positive values if v0 < β1

β0
and if v0 < 1.

Therefore, the condition

v0 < min(1,
β1

β0

) = 1−Θ(1− β1

β0

)(1− β1

β0

) = 1−Θ(β0 − β1)(1− β1

β0

)
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yields

EPO0(β0, β1) =
1

2
(1− β0)−

1−Θ(β0−β1)(1−β1
β0

)∫

0

dv0(1− β0v0

β1

)v0(1− β0) =

=
1

2
(1− β0)− (1− β0){1

2
[1−Θ(β0 − β1)(1− β1

β0

)]2 − β0

3β1

[1−Θ(β0 − β1)(1− β1

β0

)]3} =

= (1− β0){Θ(β0 − β1)(
1

2
− β2

1

6β2
0

− β0

3β1

) +
β0

3β1

} (2.5)

The next graph shows the expected payoff of player 0 for different strategies β1 of player 1.
Note that for all β1 ≥ 0.5, player 0 maximizes her payoff by playing her NE strategy β0 = 1

2
.

For all β1 < 0.5, player 0s best response is also smaller than the NE.

[INSERT GRAPH ’EXPECTED PAYOFF FOR v0, v1 ∼ U(0, 1)’]

Figure 3: Expected Payoff with v0, v1 ∼ U(0, 1)
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To analytically derive the optimal response function βbr
0 (β1), we have to discern the cases

β0





> β1

< β1

= β1

For β0 > β1, Θ(β0 − β1) = 1, therefore

EPO0(β0, β1) = (1− β0){1

2
− β2

1

6β2
0

}

so that the first order condition

∂

∂β0

EPO0(β0, β1)
!
= 0 =

β2
1

3β3
0

− β2
1

6β2
0

− 1

2

yields

βbr
0 (β1) =

β
4
3
1 − β

2
3
1 (

√
81 + β2

1 − 9)
2
3

3(
√

81 + β2
1 − 9)

1
3

(2.6)

as the only real solution. Plugging the solution back into the condition β0 > β1 shows that
this solution is valid as long as β1 ≤ 1

2
.

For β0 < β1, Θ(β0 − β1) = 0 and therefore

EPO0(β0, β1) = (1− β0)
β0

3β1

The first order condition yields the solution βbr
0 = 1

2
. Plugging this back into the condition

β0 < β1 shows that this solution is valid for β1 > 1
2
.

For the symmetric solution β0 = β1 we can’t proceed straight forward because the first
derivative of EPO0(β0, β1) is discontinuous in β0 = β1. Instead, we use the fact that the
first derivative to the left of a maximum of a continuous function has to positive whereas
right of the maximum it has to be negative. Therefore we look for the solution to the two
inequalities

∂

∂β0

EPO0(β0, β1)

{
> 0 for β0 = β1 − ε

< 0 for β0 = β1 + ε

For β0 = β1 − ε we obtain

∂

∂β0

EPO0(β0, β1) =
1− 2β0

β1

!
> 0
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The expression is > 0 if 2β0 < 1. Resubstituting β0 = β1 − ε and taking lim
ε→0

we arrive at

β1

!≤ 1

2
.

For β0 = β1 + ε we obtain

∂

∂β0

EPO0(β0, β1) =
β2

1

3β3
0

− β2
1

6β2
0

− 1

2

!
< 0

Resubstituting β0 = β1 + ε and taking lim
ε→0

, we arrive at

β1

!≥ 1

2
.

In conclusion, we see that β0 = β1 = 1
2

is the only symmetric solution. Our results can be
summarized as

Theorem 2.2 Consider a two bidder first price open bid auction where bidders bid according
to the linear bidding functions bi = βivi. Assume that

• β1 =const ∈ (0, 1)

• v0 ∈U(0, 1)

• v1 ∈U(0, 1)

Then, player 0 maximizes her payoff by choosing her best response bidding strategy βbr
0 (β1)

as

βbr
0 (β1) =

β
4
3
1 − β

2
3
1 (

√
81 + β2

1 − 9)
2
3

3(
√

81 + β2
1 − 9)

1
3

for β1 <
1

2
(2.7)

βbr
0 (β1) =

1

2
else (2.8)

In particular, βbr
0 (β1) satisfies

β1 < βbr
0 (β1) <

1

2
for β1 <

1

2

βbr
0 (β1) =

1

2
≤ β1 for β1 ≥ 1

2
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Figure 4: Best Responses to Pure Strategies

The following graph plots the best response function βbr
0 (β1) against β1. As stated in The-

orem 2.2, for β1 < 1
2
, the best response function satisfies β1 < βbr

0 (β1) < 1
2

- as can easily
be seen, since the function plot in this interval is always above the first median - the dashed
line - and below 1

2
.

[INSERT GRAPHICS ’BEST RESPONSES TO PURE STRATEGIES’]

It can be seen immediately from the graph that under PM, β∗0 = β∗1 = 1
2

is an NE for the
1POBA: If player 1 plays β1 = 1

2
, player 0s best response is βbr

0 (β∗1) = 1
2
.

However, the NE is not trembling-hand perfect: If player 1 starts to ’tremble’, the best
response to β1s that lie to the right of 1

2
is 1

2
while the best response to the β1s left of 1

2
is

smaller than 1
2
. So, 0s best response against 1s play will be smaller than 1

2
, showing that

the NE is not trembling-hand perfect. The next subsection explores this property in more
detail.

2.3.2 Long Memory Best Response Play

Let us now investigate 2 player 1POBAs where players don’t know their opponents strategy
for sure. Instead, they use previously observed bids to estimate their opponents strategy
and themselves play their best response against this estimate.

14



For a start let us imagine that player 1 always plays the same strategy β1. However, player
0 doesn’t know β1. What wil player 0s best response be?
Assume that the game has already been going on for say 1, 000 rounds. Then player 0 can
use the 1, 000 observed bids of player 1 to estimate her strategy β1 as

β̃1 =
999∑
t=0

b
(t)
1

500

since she knows that the values are distributed according to v
(t)
1 ∼ U(01). Her estimate β̃1

will be distributed symmetrically around the true value β1. Therefore, her best response will
in general deviate from the true best response βbr

0 (β1).

As we increase the number of rounds that player 0 uses for estimating β1, her estimate of β1

gets ever more accurate. In the limit of infinitely many rounds, her play therefore converges
to the best response function βbr

0 (β1).

Let us now drop the assumption that player 1 always sticks to the same strategy β1 but
let us consider mutually adapting players. Players use a strategy for a certain number of
rounds, after which they simulataneously update their strategy as a best response to their
opponents play. Assume for the moment that the number of rounds is sufficiently high so
that players can estimate their opponents true strategy accurately.7 Then, the sequence of
strategies at the strategy revision times will be:

β
(0)
0 , β

(1)
0 = βbr

0 (β
(0)
1 ), β

(2)
0 = βbr

0 (β
(1)
1 ) = βbr

0 (βbr
1 (β

(0)
0 )), · · ·

β
(0)
1 , β

(1)
1 = βbr

1 (β
(0)
0 ), β

(2)
1 = βbr

1 (β
(1)
0 ) = βbr

1 (βbr
0 (β

(0)
1 )), · · ·

Now, Theorem 2.2 shows that for β
(0)
0 < 1

2
,

β
(0)
0 < βbr

1 (β0) < β
(2)
0 = βbr

0 (βbr
1 (β

(0)
0 )) < β

(4)
0 < β

(6)
0 < · · · < 1

2

So, if β
(0)
0 < 1

2
, player 0s strategies constitute a monotonically increasing series and converge

to the NE of 1
2
.

If β
(0)
0 ≥ 1

2
, β

(1)
1 = 1

2
and therefore β

(2)
0 = β

(3)
0 = · · · = 1

2
.

An analogous consideration holds for player 1 so that mutually adaptive play converges to
the NE - under the assumption that players update their strategies after so many rounds
that they can estimate their oponent’s strategy absolutely accurate.

But in reality, if players update their strategies after finitely many rounds, they necessarily
have some uncertainty about their opponent’s true strategy. Therefore players underbid

7This is of course a pure Gedankenexperiment: Players can identify their opponent’s true strategy only
after infinitely many rounds; however, this would mean that players in fact never update their strategies.
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when compared to the NE:
Assume that one player plays the NE strategy but the opponent is not absolutely certain
about that. To account for the possibiliy that her opponent plays less than the NE strategy,
she will adjust her best response downwards. But the corresponding possibility that the
opponent plays above the NE doesn’t lead to an upwards shift since the best response
against all βi ≥ 1

2
is 1

2
.

In summary we arrive at

Theorem 2.3 Consider a 2 player first price open bid auction with linear bidding functions.
Players infer their opponents strategy in regular intervals from the last R observed bids and
revise their strategies according to the best response dynamics.
For infinite R the play converges to the NE. However it reaches it only after an infinitely
long time. For finite R the process leads to underbidding when compared with NE play.

2.4 Second Price Auctions

As already noted in the introduction, the payoff-maximizing bidding strategy in second
price open and closed bid auctions is always bidding the true value: Higher bids run the
risk of making negative payoff; lower bids might forego positive payoff. This result is well
established in the literature and holds for any number of participants and all kinds of risk
aversion.
This result can be rederived by using the methodology that we developed in the previous
sections. By following the analogous calculations we arrive at an expected payoff of

EPO0(β0, β1) = Θ(β0 − β1)(
β2

1

3β0

− β2
1

6β2
0

+
1

2
− β1

2
) + Θ(β1 − β0)(

β0

3β1

− β2
0

6β1

) (2.9)

[INSERT GRAPHICS ’EXPECTED PAYOFF IN 2POBAs’ ]

Differentiation of the expected payoff gives the closed form solution for the best response
function βbr

0 (β1) = 1 ∀β1 ∈ [0,∞). Alternatively, also graphical inspection shows that the
expected payoff always has its maximum in β0 = 1. Either way we arrive at

Theorem 2.4 The best response βbr
0 (β1) against any bidding strategy β1 in a second price

open bid auction with risk neutral bidders and private values v0, v1 drawn from U(0, 1) is
given by

β0 = 1 ∀β1.

Therefore, the best response dynamics in 2POBAs instantaneously leads to NE play for
myopic and long memory play.
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Figure 5: Expected Payoff in 2POBAs

2.5 Revenue Equivalence Revisited

In all considerations up till now we have implicitely assumed that each player believes that
her opponent will keep her strategy unchanged for the next numRounds auctions. This
assumption is crucial. A player that knows that the other player may change her strategy
plays different than a player that assumes that her opponent will stick to her strategy.

Consider a payoff-maximizing player 0 that starts with some bid β
(0)
0 . Instead of assuming

after the first numRounds auctions that player 1 will stick to her strategy β
(0)
1 , player 0

now assumes her to switch to the best response against her estimate of player 0s strategy
β

(1)
1 = βbr

1 (E[β
(0)
0 ]). Player 0s best response is now to play βbr

0 (β
(1)
1 ) = βbr

0 (βbr
1 (E[β

(0)
0 ])).

Taking this iteration a step further, player 1 would also foresee this behavior of player 0
and therefore herself play her best response against this new β0. This process can be taken
further and by induction like in 2.3.2., we see that it converges to β0 = β1 = 1

2
.

So, if payoff-maximizing agents have an infinite foresight horizon H, the process converges
to the NE within one round:

lim
H→∞

β
(t)
0 = lim

H→∞
β

(t)
1 =

1

2
∀t

The infinitely iterated process describes perfectly rational bidders wo assume that their
opponents are also perfectly rational. Therefore they bid according to the NE. However, if
bidders have limited foresight, i.e., they think this process through for a finite number of
rounds only, repeated 1POBAs will show persistent deviations from the NE strategies.

Therefore we arrive at
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Theorem 2.5 Consider a two bidder open bid auction with private values drawn from a
common random distribution. Bidders with a limited foresight horizon H bid in consecutive
auctions. Players update their strategies to the the best response against their opponent’s
play every R rounds.
Then, a repeated first price open bid auction gives lower expected seller revenue and higher
earnings volatiliy than a second price open bid auction. The Revenue Equivalence Theorem
emerges under the best response dynamics as lim

H→∞
or lim

R→∞
and lim

t→∞
.

3 The Auction Simulator

3.1 Motivation for the Use of Simulation

The idea of simulating auctions is not new [1], [3], [6]. Still, there are various reasons why I
developed my own computational auction model, the Auction Simulator(AS), in parallel to
the mathematical models about bounded rational bidding behavior:

• Maybe most important, the development of the model provided guidance in identify-
ing the drivers of bounded rational bidding in 1POBAs. Moreover, the model gave
significant help in structuring the analysis and the proofs in the mathematical part of
the paper.

• Even if several people have worked through mathematical proofs, this is still not a
guarantee that they have no flaws. Therefore it is a great help to be able to double-
check the quantitative results against a computational model.

• Conversely, the mathematics also provides a quality check for the computer program.
It is thereby easier to guarantee a bug-free program. As I will show, the Auction
Simulator correctly reproduces the results of the mathematical analysis. Therefore,
the AS is a good starting place to investigate topics that are mathematically nasty or
simply not trackable. To name a few:

– I have only analyzed the two player case. In many auctions there is a multitude
of participants. Moreover, the number of agents may fluctuate and bidders may
not know the number of their competitors in a specific auction.8

– Value distributions need not be uniform but may be normal, log-normal etc.

– The statistical properties of timeseries that are generated by interacting bounded
rational agents are mathematically very difficult if not impossible to track. How-
ever, I can use computationally generated timeseries to investigate advanced sta-
tistical properties of the process like heteroscedasticity or leptokurtosis.

Because of all these reasons I programmed the Auction Simulator. At the current stage,
the program can simulate single-unit open-bid first and second price auctions under best
response and quantal response dynamics. In this paper I focus only on the simulation of
best response dynamics.

8This setup of stochastic entry is not merely of academic interest. For instance in procurement auctions,
the suppliers often do not know the number of their competitors.
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3.2 Basic Simulation Setup

The Auction Simulator (AS) is programmed in SWARM. SWARM is a programming lan-
guage that was designed at the Santa Fe Institute for facilitating agent based modelling. In
principle it is a library of Objective C objects. It was published under the open GNU license
and is downloadable from www.swarm.org. The sourcecode of the AS can be obtained from
the author of this paper. Mail to: konrad richter@mckinsey.com

The AS simulates bidding behavior in repeated auctions. In the investigated setting of open
bid auctions, bidders maximize their expected payoff by trying to acquire as often an asset
as possible for as little a price as possible. The assets value for the seller is always 0 and
there is no reserve price.
The program simulates an arbitrary number of bidders, numPlayers. Each bidder i has
access to a private set of numStrategies strategies. Strategies are real numbers βi. Each
strategy assigns to the players private value a bid according to bid = β· value. Each
player chooses an active strategy that determines the bid that the bidder is actually placing.
All other strategies are evaluated as well to see how they would have performed if they
would have been the active ones. Changes of the active strategy are possible only every
numRounds ronds. In the GA case, at these times, the strategy population is replaced by a
new generation. In the FS case, a new strategy is chosen as active.

A model run consists of the following steps:

1. bidders randomly initialize their active and numStrategies-1 non-active strategies

2. for numGenerations generations of strategy sets

(a) bidders and seller reset their current payoffs
(b) for numRounds auctions

i. bidders’ values are chosen from a uniform distribution on [0, 1]
ii. bidders submit their bids
iii. the auction module determines the winner
iv. bidders update the current payoffs of their active and passive strategies

(c) bidders evaluate the payoff, their strategies (would) have generated during the
numRounds auctions and choose the best one as the active one for the next
numRounds auctions

(d) if the GA is used, the strategy population is updated

i. the best numElite strategies are kept unchanged for the next generation
ii. the best numParents strategies are taken as parents to create offspring
iii. bidders update their worst numStrategies-numElite strategies using the

genetic operators mutation and crossover

(e) proceed with (a)

For further reference and to get a feeling for the program capabilities, take a look at the
model parameters in Appendix B.
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3.3 Simulating Learning

3.3.1 Genetic Algorithms

In the Auction Simulator we are using real GAs instead of ones with bitstring populations.
Real GAs are faster than bitstring GAs, note however that the theoretical properties are less
well understood than for bitstring GAs [11], [15].

The implementation of the real GA in the AS is as follows:
In the beginning, numStrategies real numbers are randomly generated for each bidder and
used as bidding strategies. Strategy number 0 is used as the active strategy that determines
the playing behavior of the bidder. Subsequently, bidders use their active strategy for bid-
ding in numRounds consecutive auctions.
For each strategy, the payoff is added up for the numRounds rounds.9 After that, the popu-
lation of bidding strategies is updated:

The first step in the updating process is to rank the strategies according to their fitness:
The best strategy is chosen as the active one for the next generation.
The best numElite strategies are left unchanged for the next round. This elitism reflects
the assumption that a bidder would like to evaluate her most successful strategies also in
the next auction without any change.
The best numParents different strategies are collected in a breeding list. Two strategies βi

and βj are considered as different if | βi − βj |>strategyDistance.10. If there are less than
numParents different strategies in the strategy set, the missing positions are filled up by
randomly generated strategies.

The second step is the creation of numStrategies-numElite new strategies by application
of the crossover operator:
The crossover operator randomly selects two different parent strategies from the breedingList.
The selection probabilities are assigned according to their rank: The best strategy is selected
with relative probability numParents, the next with relative probability numParents-1 and
so on. The last strategy in the breedingList has a relative selection probability of 1.
Rank proportional selection is better suited than fitness proportional selection to maximize
expected payoff. The reason is that in fitness proportional selection, the selection pressure
rapidly declines if all strategies are near the global optimum. With rank-proportional selec-
tion, the best solutions in the breedingList are always much more likely to create offspring
than worse ones - even if their absolute fitness advantage is arbitrarily small.
Having selected the two strategies, denote the lower by βmin and the larger by βmax. A new
strategy is constructed by selecting a number between βmin(1−crossoverPar(βmax−βmin))
and βmax(1 + crossoverPar(βmax − βmin)) with uniform probability.11.

9For the inactive strategies this is the payoff, they would have generated if they had been the active one.
10This prevents the GA from getting stuck in too homogenous populations
11The extension of the crossover interval offsets the tendency of crossover to equalize all strategies. Usu-

ally the literature assumes a normal distribution for the mutation. However, in this simulation a uniform
distribution yields better results.
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The third step is the application of the mutation operator to the offspring:
With probability mutationProb strategy β is changed into another value according to a
normal distribution with mean β and a variance of mutationPar percent. The mutation
operator is a further mechanism that prevents the population from getting too homogenous.
Together with the numElite unchanged strategies, the newly constructed strategies form the
next generation strategy set.

3.3.2 Fixed Strategies

As an alternative simulation tool we employ fixed strategies:
In the beginning we partition the strategy space (0, 1) into a grid of equidistant strategies,
e.g. numStrategies=100 ranging from 0.00 to 0.99. One strategy is randomly selected as
active and determines the initial bidding behavior of the agent.
For each auction the current payoff that each strategy β0 would have generated in round i
is calculated by PO

curr;(i)
0 (β0) = v0(1− β0)Θ(β0v0 − β1v1).

After the first numRounds auctions, each strategies’ payoffs are added up and yield the payoff,
the strategy generated in the first numRounds auctions:

PO
numRounds;(1)
0 (β0) =

numRounds∑
i=1

PO
curr;(i)
0 (β0)

After, the strategy that generated the highest payoff is selected as the active one. If no
strategy has positive payoff, the currently active strategy remains active.12 Denote

PO
cum;(1)
0 (β0) = PO

numRounds;(1)
0 (β0)

After the next numRounds auctions the cumulated payoff is recalculated as a weighted sum
of the old cumulated payoff and the new payoff generated in the last numRounds auctions:

PO
cum;(2)
0 (β0) = memoryStrengthPO

cum;(1)
0 (β0) + PO

numRounds;(2)
0 (β0)

Again, the strategy that generated the highest payoff is selected as the active one and the
process starts anew.

3.4 Simulation Results

For details on the parameter settings please consult appendix B

12The case that no strategy has positive payoff happens if v0 < β1v1 for all auctions witin the last
generation
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3.4.1 Responses against Pure Strategies

The first experiment checks the predictions of the Theorems in chapter 2 against the com-
puter model. I show that the Auction Simulator correctly replicates the playing behavior of
boundedly rational players under best response dynamics.

I fix the values of β1 at numbers between 0.1 and 0.9 in steps of 0.1.
v0 and v1 are drawn from a uniform random distribution on (0, 1).
Each experiments consists of 4 runs. The random seeds for the runs are 10, 11, 12 and 13.
Each run consists of 6.000 generations after a phase-in of 4.000 generations.

For myopic best response play in 1POBAs, the theory predicts βmbr
0 (β1) as given by Theorem

2.1. For the simulation I use fixed strategies with the following parameter settings:

numRounds 1 numStrategies 100 selectionType 2 memoryStrength 0

Since I use only 100 strategies, I have to correct the result for the overestimation by 0.005.
I do not simulate Myopic Play with GAs since GAs are known to perform poorly when they
are confronted with a frequently varying fitness landscape.

For long memory best response, βlbr
0 (β1) is given according to Theorem 2.2. For the simula-

tion I use a GA with the following parameter settings:

numRounds 1000 numStrategies 10 numParents 5
numElite 2 strategyDistance 0.01 crossoverPar 0.1
mutationProb 7.5% mutationPar 0.1

Alternatively I use fixed strategies on (0, 1) with the following parameters:

numRounds 1000 numStrategies 100 selectionType 2 memoryStrength 1

Results are as follows:

βmbr
0 (β1) via FSs

β1 βth
0 (β1) βex

0 (β1) βcorr
0 (β1) dev(βth

0 ,βex
0 )

0.1 0.14750 0.15241 0.14741 -0.06%
0.2 0.23438 0.24044 0.23544 0.45%
0.3 0.30070 0.30420 0.29930 -0.50%
0.4 0.35407 0.35713 0.35213 -0.54%
0.5 0.39772 0.40256 0.39756 -0.04%
0.6 0.43321 0.43720 0.43220 -0.23%
0.7 0.46129 0.46643 0.46143 0.03
0.8 0.48210 0.48780 0.48280 0.15%
0.9 0.49530 0.49898 0.49398 -0.27%
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βlbr
0 (β1) via GAs and FSs

β1 βth
0 (β1) βGA

0 (β1) dev(βth
0 ,βex

0 ) βFS
0 (β1) dev(βth

0 ,βex
0 )

0.1 0.18231 0.18393 0.89% 0.18200 -0.17%
0.2 0.28390 0.28490 0.35 0.28320 -0.25%
0.3 0.36598 0.36673 0.20% 0.36507 -0.25%
0.4 0.43685 0.43665 -0.05% 0.43554 -0.30%
0.5 0.5 0.48909 -2.18% 0.48838 -2.32%
0.6 0.5 0.49789 -0.42% 0.49616 -0.76%
0.7 0.5 0.49659 -0.68% 0.49582 -0.84%
0.8 0.5 0.49709 -0.58% 0.49552 -0.90%
0.9 0.5 0.49273 -1.45% 0.49547 -0.91%

The table’s first column gives player 1s fixed strategy β1, the second column the optimal
response β0 predicted by the according Theorems. The third column shows the mean of the
simulated β0 time series, averaged over the four runs. The last column gives the deviation
between analytical prediction and simulation. In the first table, I use an additional column
to correct for the finite size of the strategy set.
In all cases, we see that the Auction Simulator replicates the analytical reults very well. The
simulation results lie within 1% of the theoretical values for nearly all parameter settings.
The persistent slight underbidding - that is especially pronounced β1 = 0.5 - stems from the
convex shape of the best response function βlbr

0 (β1).
For second price auctions I performed the analogous experiments with GAs and FSs. As
theoretically predicted, strategies in the experiments always converged to 1.13

From now on I will focus on simulations with FSs since they yield the same results as GAs
but allow for more flexiblity.

3.4.2 Mutual Adaptation

This experiment investigates the bidding strategies of two mutually adapting bidders in
1POBAs via FSs. In particular I examine the influence on the mean and the volatility of the
bidding strategies if bidders use more and more past information for revising their strategies.
I consider a two bidder first price auction with the NE of 0.5. Starting from a default setting
of completely myopic play (numRounds=1 and memoryStrength=1) I assess then the impact
of increasing numRounds and memoryStrength.

Results are as follows:

βbr;ad
0 (β1) in dependence of using past information

numR βex
0 σ2(βex

0 ) memS βex
0 σ2(βex

0 )
1 0.11933 0.17788 0 0.11930 0.17788
10 0.33264 0.11814 0.3 0.1918 0.14774
100 0.44303 0.05888 0.6 0.26193 0.12673
1000 0.47851 0.02727 1.0 0.46072 0.007531.0

13For FS, a positive but arbitrarily small memoryStrength is needed for convergence.
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We see that as predicted, under best response learning rules the bids are always below the
Nash Equilibrium. Bids get closer to the NE and volatility of bidding strategies drops as the
intervals for strategy updating get larger or the memory strength of bidders increases. This
supports the prediction of Theorem 2.5 that bidding behavior converges under best response
to the NE as more and more past information is used for strategy updating.
Note that this result is in line with others from the literature. Many models of bounded
rationality show supoptimality if strategies are revised too frequently [7], [12].

3.4.3 Increasing Number of Bidders

This experiment investigates the influence of the number of participants on the outcome of
first price auctions. In all of the experiments, numRounds was set to 1 and memoryStrength
was set to 0 respective 1.

First price auctions with more than two participants
numBidders βNE

0 βex
0 (0.0) dev(βNE

0 , βex
0 ) βex

0 (1.0) dev(βNE
0 , βex

0 )
2 0.5 0.11933 -76.1% 0.46072 -7.9%
5 0.8 0.70308 -12.1% 0.77881 -2.6%
10 0.9 0.85418 -5.1% 0.89181 -0.9%
100 0.99 0.98264 -0.7% 0.98467 -0.5%

The results show that best response leads to persistent underbidding for all numbers of bid-
ders. However, as the number of bidders increases, the bidding strategies converge towards
the NE. So we can conclude that deviations from NE play are especially pronounced if there
are only few participants. Additionally we see again the effect that perfect memory drives
the bids more towards the NE than myopic play.

3.4.4 Price volatility for normal distributed values

The following experiment deviates from the hitherto assumed uniform value distributions for
players. Instead I assume normal value distributions with varying standard deviations. I am
especially interested in how much first and second price auctions ’blow up’ the volatility of
the underlying value distribution. This gives us a good proxy for comparing the ’riskiness’
of first and second price auctions. I investigated here 20 players with 1.500 fixed strategies
each. The value of memoryStrength was set to 0.5.

Mutually adapting players with normal distributed values
µ(v) σ(v) σ(v) in % µ(POsell

1PA) σ(POsell
1PA) σ in % µ(POsell

2PA σ(POsell
2PA) σ in %

5 1 20% 6.31705 0.52755 8.4% 6.39466 0.39752 6.2%
5 0.1 2% 5.41903 0.17304 3.2% 5.4222 0.12599 2.3%
5 0.01 0.2% 5.1328 0.05569 1.1% 5.14062 0.03986 0.8%
5 0.001 0.02% 5.04195 0.01769 0.4% 5.04456 0.01260 0.2%
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The experiment shows that first price open bid auctions yield for all parameter settings a
higher price volatility than 2POBAs.14 When we compare the volatility of first and sec-
ond price auctions, we see that the differences between the auction formats become more
pronounced as the underlying value distribution gets more peaked. Graphical inspection
of graphs and histograms also suggests heteroscedasticity and leptokurtosis in the seller re-
turns in 1POBAs. This suggests that the model is a good starting point to investigate high
frequency data in financial markets. However, this is a topic for future research.

4 Conclusion and Outlook

In this paper I have used mathematical and computational methods to investigate repeated
auctions. 2 bidders bid in repeated open auctions for assets. They have different valuations
of the asset currently under auction which change for every auction. Over time, each bidder
tries to learn her optimal bidding strategy that maximizes her payoff.
The results of mathematical and computational analysis showed that 1POBAs under best
response dynamics show excess volatility and therefore a suboptimal allocation of goods. In
contrast, players in 2POBAs find the NE easily - either upfront by simple reasoning or in
the course of time by following the best response strategy updating. Similar arguments show
that in the sealed bid case second price auctions are more efficient than first price auctions.

The underlying reason of the optimal properties of second price auctions is that in these
auctions bidding the true value is always a (weakly) dominant strategy. Therefore, the
optimal strategy doesn’t depend on the other players’ strategies. In contrast, the optimal
bid in value shading auctions -like first price auctions, all-pay auctions etc. - depends on
the strategies of all other players. An analysis parallel to the one we performed for single
unit auctions shows that any value shading auction design must show excess volatility when
compared to an auction design where bidding the true value is dominant.
For single unit auctions this showed that the second price auction allocates goods optimal
and minimizes volatility. For multi-unit auctions the corresponding optimal auction would
be the Ausubel auction [2]. For double auctions, I currently know of no auction mechanism
where bidding the true value is the dominant strategy. The development of such a format is
a question for further research.

What do these results imply for the economy?
A first obvious application is to stock and derivative markets. Floor-based interaction be-
tween brokers is a repeated open double-sided multi-unit auction. Current orderbook designs
are uniform price auctions that incentivize for bid shading. This is especially true for bids
of large players. My aim is to redesign order books to an auction format where bidding the
true value is the dominant strategy.
The increased stability of stock prices would have clear advantages for the productive econ-
omy: First, it would reduce the need for firms to purchase financial derivatives for risk

14Strictly speaking, the price distribution in 1POBAs is not normal, so σ is not the correct measure for
the volatility. However, here I use this measure as a proxy to compare the riskiness of first and second price
auctions.
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hedging purposes; therefore more money could be invested in the productive sector. Second,
the allocation of capital would be more efficient since stock and derivative prices would better
reflect the underlying fundamental value. Third it would reduce the occurence of bubbles
and crashes since there would be less random price movements that can be exploited by
chartists; therefore it would help to stabilize the world economy.

Other markets where order book redesign would have clear advantages are electricity markets
and the currently emerging global market for emission certificates. Especially the latter
would be the ideal place for a first implementation of revised order books: It is a new
market without strong incumbents and the declared aim is -according to the Kyoto protocol
- to use the certificates as efficiently as possible.

Another important application is with respect to supply chains and -networks. In experiment
4 we saw the destabilizing power of first price auctions to blow up the volatility of values to
a much higher volatility of prices. Supply chains can be viewed as chains of interconnected
double auctions. If these auctions incentivize for value shading, even a very small volatility
of production cost could result in highly exeggerated price volatility on the consumer side.
However, the introduction of second price auctions and equivalents would have to be accom-
panied by measures to prevent collusion among the participants.
Further possible applications of auction redesign include landconservation auctions [10],
IPOs, treasury bill auctions, procurement auctions and many more.

As an intermediary step of my future research I want to computationally and mathematically
investigate multi-unit double auctions. The tools needed for this are in principle the ones
I developed in this paper. I hope that the improved understanding of double sided multi-
unit auctions will allow me to develop specific improvement recommendations that help to
stabilize the economic system.

A The Θ function

The Θ function is defined by

Θ(x) =

{
0 for x < 0
1 for x ≥ 0

The minimum of two values x and y can be written as

min(x, y) = x−Θ(x− y)(x− y)
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B Simulation Parameters

Parameters in model.setup
parameter explanation
numRounds number of auctions played between strategy updatings
auctionType if ==1: first price sealed bid auction

if ==2: second price sealed bid auction
transactionFee transaction fee payed in each round by winning bidder and seller
numPlayers number of bidders participating in the auction
startOfAverageCalculation number of initial strategy updatings after which the

calculation of averages for graphical output starts
reportingPlayerID ID of player that reports her strategy list
randomSeed sets the initial state of the random generator
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Parameters in player.setup for GAs and Fixed Strategies
parameter explanation
learningType if==1, FS are used; if==2, GA is used
selectionType if==1, fitness proportional selection; if==2, rank proportional selection
fixedStrategyMarker if ==0: each player updates her strategy set; mutual adaptation

if ==1: player 1 plays a fixed strategy, all others update their strategy sets
if ==2: player 0 updates her strategy set, all others play fixed strategies

fixedBeta this parameter is only important if fixedStrategyMarker 6= 0
if ∈ (0, 1): β=fixedBeta; if ∈ (−1, 0): β ∼ U(−fixedBeta, 1)

fixedValueMarker if==0: each player has random values
if==1: player 1 alwas has fixed value; all other values are random
if==2: player 0 has random value; all other players have fixed value

fixedValue determines respective values if fixedValueMarker6= 0
player0FixedValueMarker if ==0: random v0; if ==1: fixed v0

player0FixedValue if player0FixedValueMarker==1, then v0= player0FixedValue
numStrategies number of strategies in each players strategy set
valDistShape if==0: values from normal Dist; if==1: values from uniform Dist
valDet0 lower bound for uniform Dist, resp. variance for normal Dist
valDet1 upper bound for uniform Dist, resp. mean for normal Dist

Parameters in player.setup for Fixed Strategies only
parameter explanation
memoryStrength multiplicative weigthing factor for previous rounds’ payoffs
minStrategy value of the minimal strategy
maxStrategy value of the maximal strategy

Parameters in player.setup for GAs only
parameter explanation
strategyDistance minimum distance between strategies in the breedingList
numElite number of fittest strategies that stay unchanged in the population
numParents number of fittest strategies that are used for creating offspring by crossover
crossoverPar fraction of the interval between two parent strategies

by which offspring is allowed to lie outside the interval
mutationType if==0: uniform Dist between β(1± mutationPar)

if==1: normal Dist with variance β· mutationPar
mutationProb probability of mutation of a strategy
mutationPar determines extent of mutation; see mutationType

C Abbreviations

abbreviation explanation
1POBA, 1PSBA First Price Open Bid Auction resp. Sealed Bid Auction
2POBA, 2PSBA Second Price Open Bid Auction resp. Sealed Bid Auction
AS Auction Simulator
BR Best Response
FS Fixed Strategy
GA Genetic Algorithm
LBR Long Memory Best Response
MBR Myopic Best Response
NE Nash Equilibrium
RET Revenue Equivalence Theorem
SIPV Symmetric Independend Private Values Framework

28



References

[1] Andreoni J. and Miller J., 1995, Auctions with Artificial Adaptive Agents, Games and Economic Be-
havior, 10, 39-64

[2] Ausubel L. M., 1997, An efficient Ascending-Bid Auction for Multiple Objects, Working Paper 97-06,
University of Maryland

[3] Byde A., 2002, Applying Ecolutionary Game Theory to Auction Mechanism Design, Hewlett-Packard
Workingpaper, http://www.hpl.hp.com/techreports/2002/HPL-2002-321.pdf

[4] Conlisk J., 1996, Why Bounded Rationality?, Journal of Economic Literature, XXXIV, 669-700

[5] Cox J., Roberson B. and Smith V. L., 1982, Theory and Behavior of Single Object Auctions, in Vernon
L. Smith, ed., Research in Experimental Economics, Greenwich, JAI Press

[6] Dawid H., 1999, On the convergence of genetic learning in a double auction market, Journal of Economic
Dynamics & Control, 1545-1567

[7] Ellison G. and Fudenberg D., 1995, Word-of-Mouth Communication and Social Learning, Quarterly
Journal of Economics, 110, 93-125

[8] Fudenberg D., and Levine D., 1999, The Theory of Learning in Games, MIT Press, Cambridge, London,
second edition

[9] Harrison G. W., 1989, Theory and Misbehavior of First-Price Auctions, American Economic Review,
79, 749-62

[10] Hailu A. and Schilizzi S., 2002, Learning in a ’Basket of Crabs’: An Agent-Based Computational Model
of Repeated Conservation Auctions, www.bwl.uni-kiel.de/vwlinstitute/gwrp/wehia/papers/hailu.pdf

[11] Holland J., 1992, Adaptation in Natural and Artificial Systems, Massachusetts, MIT Press, 2nd edition

[12] Joshi S., Parker J., Bedau M., 1999, Financial Markets can be at Sub-Optimal Equilibria, SFI Work-
ingpaper, www.santafe.edu/sfi/publications/Working-Papers/99-03-023.pdf

[13] Kagel J. H., 1995, Auctions: A survey of Experimental Research, in Kagel and Roth ed., The Handbook
of Experimental Economics, Princeton, Princeton University Press

[14] Lebrun B., 1999, First Price Auctions in the Asymmetric N Bidder Case, International Economic
Review, 40, No.1, 125-142

[15] Lux T. and Schornstein S., 2002, Genetic Learning as an Explanation of
Stylized Facts of Foreign Exchange Markets, Workingpaper, www.bwl.uni-
kiel.de/vwlinstitute/gwrp/publications/lux gen learning.pdf

[16] Maskin E. S. and Riley J. G., 2000, Asymmetric Auctions, Review of Economic Studies, 67, 413-438

[17] Myerson, R. B., 1981, Optimal Auction Design, Mathematics of Operations Research, 6, 58-73

[18] Riley J. G. and Samuelson, W. F., 1981, Optimal Auctions, American Economic Review, 71, 381-92

[19] Vickrey W., 1961, Counterspeculation, Auctions and Competitive Sealed Tenders, J. Finance, 16, 8-37


