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Abstract 

The literature of asset pricing in general and speculative bubble in particular is massive. 
Nonetheless the theoretical development and empirical studies are more or less focused 
on the stock, the foreign exchange and the bond markets. The less populous studies on 
property market, when available, are usually conducted using data from OECD 
countries, such as US, UK and Japan. This paper is a study on the Seoul property market. 
We estimate, using Kalman filter technique and EM algorithm, a type of bubble in the 
property price which collapses periodically. The estimation is based on the state space 
form representation of the present value model. We found that bubble do appear to be 
important in driving the Seoul property prices. However the simple present value model 
without bubbles and the AR(1) model performs better in terms of in-sample estimation 
errors and out-of sample forecast accuracies.  
 

1. Introduction 

 

In the 1990s, many Asian property markets experienced rapid price increases. The 

property fever came to a sudden end in most of these markets with the Asian financial 

crises in late 1997. However, the Korean property prices move opposite of this general 
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trend---rising in the second half of 1980s, falling in 1990s, and rising steadily again after 

2001. The recent rise in the property prices is suspected, in the popular press, to be driven 

by bubbles. Figure 1.1 shows the CPI deflated housing price and rent indices in Seoul, 

Korea, between January 1986 and June 2003. 

 

Figure 1.1.  Seoul Housing Price and Rent Indices
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Source: CEIC database 

 

The purpose of this paper is to investigate the behavior of the property prices, in 

particular the possibility of existence of speculative bubbles, in Seoul, Korea in the past 

two decades. 

 

Price bubble is a sharp, temporary price increase that cannot be plausibly explained by 

changes in fundamental value drivers. A bubble can be rational or irrational. Rational 

bubble occurs if investors have asymmetric and incomplete information; irrational bubble 
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occurs if investors buy already overpriced assets on the belief that they can resell it at a 

even higher price. 

 

The literature of asset pricing in general and speculative bubble in particular is massive. 

Nonetheless the theoretical development and empirical studies are more or less focused 

on the stock, the foreign exchange and the bond markets. The less populous studies on 

property market, when available, are usually conducted using data from OECD countries, 

such as US, UK and Japan. 

 

Like bonds and equities, the value of commercial real estate depends on the expected 

cash flows it can generate in its lifetime. Unlike bonds and equities, the markets for real 

estate are thin and the information on market transactions is scarce, which makes the 

valuation of real estate much more difficult.  Furthermore, the high transaction costs in 

the real estate market limit the ability of investors to trade on their opinion, hence market 

price may fail to fully reflect information available on the market; the lengthy lags in 

bringing substitute assets to the market can extend the period in which excess cash flows 

will be earned. Such excess cash flows seem to rationalize high prices but fail to reflect 

changes in the fundamentals of the economy. Lax bank lending is another factor 

conducive of property bubbles. Developments are often funded with lines of credit. This 

virtually guarantees eventual completion of a development once a loan is negotiated, 

even the underlying economics of the property market have soured in the process. New 

substitute assets being created in a property boom may continue to be produced well after 

the boom ends. Consequently, overshooting in property value on the downside may 
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occur. All those factors make the real estate market more prone to rational bubbles than 

many other asset markets. 

 

2. Theoretical Background and Empirical Evidences 

 

In standard asset pricing model, individuals estimate asset values based on their 

expectations of future cash flows and required rates of return (discount rate). They buy 

(sell) when prices fall below (rise above) their value estimates. Knowledgeable investors 

recognize that their estimates contain errors which, combined with risk-aversion and 

capital constraints, make them unwilling to buy (sell) unless prices deviate significantly 

from what they perceive to be true. How much a risk-averse investor is willing to commit 

beyond a particular asset position depends on his wealth and ability to borrow, as well as 

the size of his current position. Investors’ flow demand (supply) schedules will 

systematically create an increased demand (supply) for an asset whose price falls (rises). 

Consequently, prices should be fairly stable in the absence of new information.  

 

Investors are heterogeneous in their estimates of the intrinsic asset values. When 

investors have different opinions, the market price will reflect their willingness and 

ability to trade. If most investors believe an asset is under-valued, their willingness to buy 

causes the price of the asset to rise. Investors who are generally correct in their estimates 

of asset values tend to make money and accumulate wealth, thus have more influence on 

price-setting. This will improve asset pricing overtime. 
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In all, asset prices will eventually return to its fundamental true value, but disturbances, 

which cause information noise, can drive the asset price way above or below its true 

value for lengthy periods of time. 

 

2.1 Present Value Model and Speculative Bubble---the Theory 

 

If economic agents are risk neutral, the price of one equity share, tP , would be equal to 

the expected discounted present value of the dividend accruing to ownership of the equity 

share during the ownership period, tD , plus the price at which the share can be sold at the 

end of the ownership period, 1+tP . Mathematically, 

 

 
t

ttt
t R

DPE
P

+
+

= +

1
][ 1        (2.1.1) 

where 

 tP : the real price of the property asset at time t; 

 tD : the real total rents received during the period t; 

 tR : the time-varying real discount rate. 

Define 

 ( )tt Rr +≡ 1log        (2.1.2) 

Hence 

 [ ]( ) ( )ttttt PDPEr loglog 1 −+≡ +      (2.1.3) 
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In a static world, dividends grows at constant rate, g , and the log of dividend-to-price 

ratio is also a constant. That is, 

 gddd
D
D

ttt
t

t =∆=−=







−

−
1

1

log      (2.1.4) 
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 δ=−=
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−
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t
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P

D
1
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Equation (2.4) and (2.5)  would imply that the asset price grows at the same rate as the 

dividend, and the ratio of asset price to the sum of asset price and dividend is also a 

constant. That is 
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and  

 ρ
δ

≡
+

=
+

=
+ −− )exp(1

1

1

1
11

t

ttt

t

P
DDP

P
    (2.1.7) 

In such a world the log of the gross discount rate, tr , would also be a constant. To see 

this, define 

 tttt pdp −−++≡ + )1(1 ρρκξ      (2.1.8) 

Given the characteristics of the static world, ξδρκξ ≡−++≡ )1(gt , which is a 

constant. If we set 

 ( ) δρρκ )1(log −−−=       (2.1.9) 
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Then 

( ) [ ]
r

P
DPE

g ttt =








 +
=+−= +1loglog ρξ     (2.1.10) 

Thus in a static world 

ξρρκξ =−−++== + ttttt pdpr )1(1     (2.1.11) 

When the world is evolving over time, equation (2.11) would hold only approximately. 

 

Solve (2.11) for tp  by forward iteration 

tp [ ] ttt dpE )1(1 ρρξκ −++−= +  

     [ ] [ ]{ } ttttt ddEpE )1()1( 12 ρρρξκρξκ −+−++−+−= ++  

     ...=  

        [ ] [ ]∑
−

=
++ −++

−
−

=
1

0
)1(

1

i

j
jtt

j
itt

i dEpE ρρρ
ρ
ξκ    (2.1.12) 

If the boundary condition, [ ] 0lim =+→∝ itt
i

i
pEρ , is satisfied, we would have the fundamental 

solution for property price 

 [ ]∑
∝

=
+−+

−
−

==
0

)1(
1 j

jtt
jf

tt dEpp ρρ
ρ
ξκ     (2.1.13) 

This is the present value model for asset pricing. 

 

However, the transversality condition may fail to hold. In such case, we would expect the 

bubbly solution for the asset price 

 t
f

tt bpp +=         (2.1.14) 

where the bubble component 
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 [ ] tiitt bbE
ρ
1

=+        (2.1.15) 

which implies 

 tt bb
ρ
1

1 =+         (2.1.15`) 

If the log property prices and the log property rents are I(1) processes, i.e. having one unit 

root, the following model may be estimated instead 

 [ ] [ ]{ }∑
∝

=
−++− −−=−=∆

0
11 )1(

j
jttjtt

jf
t

f
t

f
t dEdEppp ρρ   (2.1.16) 

Suppose the growth of the dividends follows an AR(1) process (justification will be given 

for this assumption in section 3.) 

 ttt dd δφ +∆=∆ −1 ;  [ ] ,0=tE δ  [ ] 2
δσδ =tVar   (2.1.17) 

then 

 11 )1(
11

1
−− ∆−+∆≡∆

−
−∆

−
=∆ tttt

f
t ddddp ψψ

φρ
φρ

φρ
  (2.1.18) 

If bubble is present 

 t
f

tt bpp ∆+∆=∆        (2.1.19) 

where 

 tt bb ∆=∆ + ρ
1

1         (2.1.20) 

Suppose the bubble process is itself stochastic, we can write the bubble equation as, 

 ttt bb ζ
ρ

+∆=∆ +
1

1   [ ] ,0=tE ζ  [ ] 2
ζσζ =tVar   (2.1.20`) 

 

2.2 Speculative Bubbles---Empirics 
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The methods employed in the empirical studies can be broadly divided into two classes: 

one based on a completely specified fundamental model, the other tests the implications 

of efficient market hypothesis on the behavior of the asset prices without parametric 

specification. Most authors testing the existence of speculative bubbles do not distinguish 

between rational and irrational bubbles, given the obvious difficulty of the task. 

 

Campbell and Shiller (1987) based their tests on the implication of the present value 

model of the form 

 ∑
∞

=
+−=

0
)1(

i
itt

i
t dEp δδθ       (2.2.1) 

If the variables in equation (2.2.1) are stationary in their first differences, one can define 

 ttt dpS θ−≡         (2.2.2) 

Equation (2.2.1) would imply 

 *

1
ttitt

i

i
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∞
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∑δθ       (2.2.3) 

They estimated the following VAR model 
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Restriction of equation (2.2.3) implies 

 ii θαγ −= , i=1…p;        (2.2.5a) 

 11
1 θβ
δ

λ −=         (2.2.5b) 

and ii θβλ −= , i=2…p.       (2.2.5c) 
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Their test shows that the present value model hypothesis is rejected statistically at the 

conventional significance levels. However, the strength of the evidence depends 

sensitively on the discount rate assumed in the test. And when applied to bubble tests, the 

procedure is biased towards accepting the hypothesis of no-bubble when the rational 

bubble collapses periodically. 

 

Wests (1987) introduced a test based on present value model and Hausman’s (1978) 

specification test. In his test, the null hypothesis of no bubble is rejected by the data. 

However, the equation used for the basis of test could be mis-specified.  

 

The direct test approach, which is based on the formulation and estimation of a complete 

parametric specification, is susceptible to the criticism that it is unable to detect bubbles 

other than those belonging to the specific parametric class under consideration. So failure 

to reject the no-bubble hypothesis does not necessarily imply the absence of other 

unspecified types of bubbles.  

 

Many empirical works testing the existence of bubbles do not specify an equilibrium 

model to which the market adjusts in the long run. One such test is based on the second 

moments of the asset prices. 

 

According to Shiller (1981), the perfect foresight rational asset price is  

 ∑
∞

=
+




+

=
1

*

1
1

i
it

i

t d
r

p        (2.2.6) 

the actual asset price  
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 [ ]*
tt pEp =         (2.2.7) 

since 

 [ ] ttttt upupEp +=+= **       (2.2.8) 

therefore 

 ( ) ( )*
tt pVarpVar ≤        (2.2.9) 

Notice that equation (2.2.1) is not measurable. Grossman and Shiller (1981) hence 

estimated the following equation 

 T

tTtT

i
it
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t p
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d
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p
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=
+ 
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

+

+
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
+

= ∑ 1
1

1
1ˆ

1
     (2.2.10) 

where T is the last observation in the sample. They then compare the variance of tp̂ with 

the variance of the actual asset price. However, this test is not valid, since if bubble 

exists, Tp  in equation (2.2.5) would contain the bubble, i.e. T
f

TT bpp += . Shiller (1981) 

uses 
T

p
p

T

t
t

T

∑
== 1*  to replace Tp . However i

Ti

Ti

T d
r

p ∑
∞

+=

−






+

≠
1

*

1
1 , and the results can be 

misleading if dividends are smoothed by the management. 

 

Other non-parametric tests in the literature are variance decomposition tests introduced 

by Campbell (1991) and Cochrane (1992), sign tests by Evans (1986), run tests and tail 

tests by Blanchard and Watson (1982), etc. Those tests show mixed results. 

 

Diba and Grossman (1984, 1988) and Hamilton and Whiteman (1985) put forward a class 

of indirect tests based on checking the order of integration of a given pair of variables. 
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The idea is that if asset prices are not more explosive than the relevant driving 

fundamental variable, then it can be concluded that rational bubbles are not present. 

However, this indirect procedure is not always reliable. In the majority of applications, 

part of the difficulty is that the stationarity properties of the relevant time series are 

analyzed by testing the null hypothesis of a unit root in the levels and differences of the 

series against one-sided stationary alternatives rather than the more relevant explosive 

ones. Although in theory such tests should be capable of revealing the existence of a 

rational bubble, in small samples, series with explosive bubble components could look 

very much like stationary processes when differenced a sufficient number of times. 

 

In addition to these difficulties, Evans (1991) has demonstrated that the use of standard 

unit root and cointegration tests for prices and underlying fundamentals can erroneously 

lead to acceptance of the no-bubble hypothesis for an important class of rational bubbles 

that collapse periodically. In such cases, even a direct test for explosive behavior in the 

levels of the relevant series may fail to detect the bubble since such a test tends to have 

low power. Evans’ basic argument is that integration and cointegration tests are likely to 

have some power to detect a rational bubble only when the latter lasts for most of the 

period under investigation. In theory, a deterministic bubble will continue to infinity, and 

integration tests should clearly provide a good way of detecting such an event. 

Nevertheless, the real world bubbles, if exist, are stochastic, or periodic, so that periods 

of expansion will eventually be followed by a collapse or contraction. Evans argued, 

despite having explosive conditional means, such collapsing bubbles will appear to 

standard unit root tests as stationary processes, and tests with either stationary or 
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explosive alternatives will have little or no power to detect the bubbles. The basic 

problem is that the periodically collapsing bubbles only exhibit characteristic bubble 

behavior during their expansion phase. As a result, a test is more likely to find evidence 

of systematic divergence between asset prices and fundamentals if it is based only on data 

points that are associated with the expansion phase of the bubble.  

 

There are researchers who, instead of testing for the existence of bubble, attempt to 

estimate the bubble in equation (2.1.14). Yangru Wu (1997) estimated the type of rational 

bubbles in the stock market which can collapse and restart continuously. In his paper, the 

bubble is treated as an unobserved state variable and can be estimated using the Kalman 

filter. His study shows that much of the deviations of stock prices from the present-value 

model are captured by the bubble.  

 

Our paper applies the Kalman filter approach to estimate bubbles in the property prices of 

Seoul, Korea. 

 

3. The Data 

 

The time series selected for estimation in this paper are the CPI deflated housing price 

index and housing rent index for Seoul. The data are taken from CEIC database. Both 

series run from January 1986 to June 2003---hence there are 210 observations for each. 

After differencing and taking lags, the actual sample size for estimation is 208. 
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The data identification process shows that both series have slowly decaying sample ACF 

and the Phillips-Perron tests indicate that each has one unit root. Performing log-

transformations on these series do not improve the situation. Hence the first difference is 

applied to the log-transformed series.  

 

The sample partial ACF of the first difference of the log-price exhibit AR(1) pattern. 

Thus a preliminary AR(1) model, 1−∆+=∆ tpt pp ϕµ , is fit to the data by conditional least 

square estimation. The result shows that the intercept is not distinguishable from zero, but 

the coefficient on the first lag is highly significant. However the residuals are not white 

noise, indicating that the model is not adequate. The same results are obtained for the first 

difference of the log-rent series. Although based on AIC statistics, an AR(15) model is 

selected for the latter series, all coefficients, except for the first and the fifth lag are 

statistically insignificant. Besides, adding 14 extra parameters do no change the fact that 

the residuals are not white noise. The summary statistics are presented below in table 3.1 

and table 3.2. Given these result, we assume in our paper that rents follows a AR(1) 

process with zero intercept. 

 

Table 3.1. Autocorrelation and Unit Root Tests 

 Differenced Log Price Differenced Log Rent 

Lag Box Ljung  

statistics 

( pχ ) 

Probability Lag Box Ljung  

statistics 

( pχ ) 

Probability H0: no auto-

correlation 

6 143.11 0.000 6 100.93 0.000 
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Lag=0 Phillips –Perron 

statistics  

Probability Lag=0 Phillips –Perron 

statistics  

Probability 

Zero 

mean 

-7.3736 0.0001 Zero 

mean 

-7.8034 0.0001 

Single 

mean 

-7.3693 0.0001 Single 

mean 

-7.8219 0.0001 

H0: exist one 

unit root 

Trend -7.4162 0.0001 Trend -7.8095 0.0001 

 

Table 3.2. Conditional Least Square Estimates of ARMA Models 

  Differenced Log Price Differenced Log Rent 

Intercept 

(t ratio) 

-0.0009 

(-0.49) 

0.0020 

(0.78) 

AR 1 

(t ratio)  

0.5817 

(10.27) 

0.5425 

(9.29) 

Standard error estimate 0.0101 0.017 

 

AR(1) 

H0: residuals are white noise, lag=6 

(probability) 

16.05 

(0.007) 

49.07 

(0.000) 

Intercept 

(t ratio) 

-0.0008 

(-0.45) 

0.0020 

(0.83) 

 MA1 

(t ratio) 

0.1243 

(1.05) 

-0.2192 

(-1.83) 

ARMA(1,1) 

AR1 

(t ratio) 

0.6649 0.3983 
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(7.45) (3.53) 

Standard error estimate 0.0106 0.0171 

 

H0: residuals are white noise, lag=6 

(probability) 

15.52 

(0.004) 

30.65 

(0.000) 

Intercept 

(t ratio) 

-.0009 

(-0.38) 

0.0019 

(0.94) 

AR1 

(t ratio) 

0.5385 

(7.48) 

0.5329 

(7.47) 

AR2 

(t ratio) 

0.1886 

(2.30) 

0.0606 

(0.75) 

AR3 

(t ratio) 

-0.2001 

(-2.41) 

-0.1328 

(-1.64) 

AR4 

(t ratio) 

-0.0074 

(-0.09) 

-0.0150 

(-0.19) 

AR5 

(t ratio) 

0.0988 

(1.18) 

0.2002 

(2.48) 

AR6 

(t ratio) 

0.1127 

(1.36) 

0.0221 

(0.27) 

AR7 

(t ratio) 

0.0311 

(0.37) 

-0.0637 

(-0.78) 

AR8 

(t ratio) 

-0.1107 

(-1.33) 

-0.0727 

(-0.89) 

AR(15) 

AR9 -0.0223 0.0277 
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(t ratio) (-0.27) (0.34) 

AR10 

(t ratio) 

0.1837 

(2.20) 

-0.0346 

(-0.42) 

AR11 

(t ratio) 

-0.1296 

(-1.54) 

0.0581 

(0.72) 

AR12 

(t ratio) 

-0.1527 

(-1.79) 

0.1385 

(1.71) 

AR13 

(t ratio) 

-0.0496 

(-0.58) 

-0.0025 

(-0.03) 

AR14 

(t ratio) 

-0.0549 

(-0.66) 

-0.1050 

(-1.30) 

AR15 

(t ratio) 

-0.0225 

(-0.30) 

-0.1354 

(-1.89) 

Standard error estimate 0.0102 0.0155 

 

 

H0: residuals are white noise,  lag=6 

(probability) 

0.00 

(0.000) 

0.00 

(0.000) 

 

4. State Space Form,  Kalman Filter and Estimation Strategies 

 

4.1 State Space Form 
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To make use of the Kalman filter, we first express the present value model, presented in 

section 2.1, in a time-invariant state space form.  

 

Let tz be a −nz vector of state variables, tx  a −l vector of inputs, and ty a −ny vector of 

outputs. The state space model consists of two equations: 

 

The measurement equation: 

tttt BxHzy ε++= ; 0)( =tE ε , Rt =)var(ε     (4.1) 

and the transition equation: 

tttt AxFzz η++= −1 ; 0)( =tE η , Vt =)var(η    (4.2) 

 

where the system matrices H, B, F, A, the measurement variance R and the transition 

variance V are all time-invariant. We also assume that  tε  and tη and uncorrelated.  

 

In our case, 

 
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
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


=

00
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A ,  
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 







= 20

00

δσ
R ,  2

ζσ=V      (4.3) 
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4.2 Kalman Filter and the Bubble Estimation 

 

The bubble component, tb∆ , is not observable but can be estimated as a state variable 

using the Kalman filter, assuming the system parameters are known. The Kalmal filter 

consists of a set of recursive equations. Suppose we estimate the initial value of the state 

variable to be 0z ,  with estimation error 0P . The predicted value of the state variable and 

the prediction error at time t , given information set available at time 1−t , 

{ }11111 ,...,,,... −−− =Ξ ttt xxyy , can be calculated using the prediction equations recursively 

forward: 

 1111 −−−− += ttttt AxFzz        (4.4a) 

 VFFPP tttt += −−− `111        (4.4b) 

When time t  information becomes available, we can update our estimation of the bubbles 

and their estimation errors using the filtering equations recursively forward: 

 11 −− += ttttttt zz εκ        (4.5a) 

 11 −− −= ttttttt HPPP κ        (4.5b) 

where 

 1
11 ` −
−−= ttttt DHPκ        (4.5c) 

 )`( 11 RHHPD tttt += −−        (4.5d) 

 tttttt BxHzy −−= −− 11ε       (4.5e) 

Once we obtained the sequences { }T
tttz 11 =− , { }T

tttP 11 =− , { }T
tttz 1= and { }T

tttP 1= , we can have 

a more efficient estimation of the state variable and its estimation errors, using the full set 
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of information, { }TTT xxyy ,...,,,... 11=Ξ , and the following smoothing equations by 

backward recursion: 

 )( 11 ttTttttTt zzJzz ++ −+=       (4.6a) 

 tttTttttTt JPPJPP )( 11 ++ −+=      (4.6b) 

where 

 1
1` −
+= ttttt PFPJ        (4.6c) 

The starting values for smoothing are TTz  and TTP  obtained from the filtering process. 

 

4.3 The Model Parameter Estimation Strategy 

 

There are only four unknown parameters in the model given in section 2.1, which are ρ , 

φ , 2
ζσ and 2

δσ . These parameters are estimated by maximizing the log likelihood 

function of ty , Tt ,...2,1= , which is 

 1
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2
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t
tt DDnyTxyLogL εεπθ  (4.7) 
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= δζ σσφρθ

      (4.8) 

We obtained the estimates of θ  using EM algorithm.  
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In applying the EM algorithm, we first obtain 
i

xyLog
θ

θ
∂

∂ ),;( , 4,3,2,1=i , then take the 

expectation of 
i

xyLog
θ

θ
∂

∂ ),;(  with respect to information set { }TTT xxyy ,...,,,... 11=Ξ  

and set it to zero. By solving the set of four equations hence obtained, we get the ML 

estimators: 
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where 

 `)1( 1
1

1, TtTt

T

t
Tttt zzPS −

=
− += ∑  

 `)0(
1

TtTt

T

t
Ttt zzPS += ∑

=

      (4.10) 

TttP 1, − : estimated covariance between tz  and 1−tz . 

In computing equation (4.9), we need estimated values of the state variable and their 

estimation errors. Thus we have to provide a guess starting value for the system 

parameters. The estimation process is as following: 

Step 1: initiate guessed system parameter values; 

Step 2: run through equations (4.4), (4.5) and (4.6), to obtain the sequences 

{ }T
tttz 11 =− , { }T

tttP 11 =− , { }T
tttz 1= , { }T

tttP 1= { }T
tTtz 1=  and { }T

tTtP 1= ; 

Step3: compute ML estimates of system parameters using equation (4.9). 
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Step4: repeat step 2 and 3 until convergence occurs. 

The convergence criterion is set to be 




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xxabs 1 for the estimates 

of the parameters, and 
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
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
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x
xxabs  for the log likelihood. 

 

The initial system parameter values in our experiment are based on the preliminary OLS 

estimate of the simple present value model without bubble component. The initial values 

of the state variable for the thi )1( + iteration is updated using estimates from the thi  

iteration by the set of equations, 

 
iiii

i
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ii
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0
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0        (4.11) 

 

4.4 Asymptotic Properties of the ML Estimators 

 

Suppose θ~  is the ML estimator of θ  obtained by maximizing (4.7). 

Subject to certain regularity conditions (Caines, 1988, Ch7),  

 ),0()~( 0
2
1

,2 INT d
TD →−θθϕ      (4.12) 

i.e. 

 ),(~ 1
,2

1
0

−−→ TD
d TN ϕθθ       (4.12`) 

where TD ,2ϕ  is the information matrix from the sample of size T 

                                                 
1 ix  is the estimate of x  obtained in the thi iteration. 



  23 









=

∂∂
∂

−= ∑
=

T

t

t
TD

LogL
E

T 1
0

2

,2 `
1 θθ

θθ
ϕ      (4.13) 

with 

 1
1

111 `
2
1log

2
12log

2 −
−

−−− −−−= ttttttttt DDnyLogL εεπ , Tt ,...,2,1=  (4.14) 

and 









=

∂∂
∂

−=→ ∑
=

∞→

T

t

tp
TDT

LogL
T 1

2

,2
~

`
1ˆlim θθ

θθ
ϕϕ    (4.15) 

The reported standard errors for θ~  are the square roots of the diagonal elements of 
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The Hessian is calculated numerically in our paper. The method is described below. First 

we collect the estimated parameters in a 1×r  vector θ~ . We perturb one parameter at a 

time by 01.0+=∆ . Running through the Kalman filter again and recalculate the log-

likelihood of the data. We then perturb one parameter at a time by 01.0−=∆ . Running 

through the Kalman filter again and recalculate the log-likelihood of the data. The 

Hessian is calculated using the formula2 

( ) ( )
22

2 )~(2)~;(;

i

ii

i

LogLLogLyLogLyLogL
∆

∆−+×−∆+
≈

∂
∂ θθθ

θ
θ   (4.16) 

where 

 i∆ : a 1×r  vector with all elements, except the i-th which is 0.01, to be zero; 

and 

                                                 
2 Refer to Gerald Wheatley “applied numerical analysis”, seventh edition, page 267. 
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iθ : the thi element of θ~ .  

The standard error of iθ  is approximated using the equation, 

 ( ) ( ) 1

2

2 ~;
−












∂
∂

−=
i

i
yLogLSE

θ
θθ       (4.17) 

 

5. Estimation Results 

 

In the estimation process, we encountered negative variances. In such cases, following 

the usual practices, we set the variance to zero. The estimation of the model achieved 

convergence after 61 iterations. The results are shown in Table 5.1, which indicates that 

onlyφ  is significant at the conventional levels.  

 

Table 5.1. ML Parameter Estimates and Statistical Properties 

 

ρ
β 1
=  

φ  2
ζσ  2

δσ  

ML estimates 0.0067 0.5462 0.0004 0.00030 

Standard Error 0.0205 0.0568 0.0005 0.0004 

t ratio  0.3268 9.6162 0.8 0.75 

 

The fact the 
ρ
1  is indistinguishable from zero implies that 0=ψ  and 11 =−ψ  i.e. 

111 )1(
11

1
−−− ∆=∆−+∆≡∆

−
−∆

−
=∆ ttttt

f
t dddddp ψψ

φρ
φρ

φρ
. That is the fundamental 

price depends only on rent in the previous period. In another word, future cash flows can 
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be approximated by rent received in the previous period. If the change in rent in the past 

period is zero, there should be no change in the fundamental price. Hence if change in the 

actual price occurs, it is attributable to bubble. Figure 5.1 shows that when the difference 

between the percentage change in rent and percentage change in price increases 

(decreases), the estimated percentage change in bubble also increases (decreases). The 

magnitude of change in bubble in general exceeds that in the rent-price differential. This 

could be caused by market information noise. 

Figure 5.1.  Bubble and Differences between Prices and Rents
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The model implies that the predicted percentage change in price should mimic that in 

rent, except for the time when the change in bubble is large. This trend can be seen by 

comparing Figure 5.1 and Figure 5.2. 
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Figure 5.2.  Rend and  Predicted Price
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The Kalman filter computed bubble values are change in log values, i.e. percentage 

changes. To convert them back to level values, we need to make certain assumptions. 

According to Diba and Grossman (1988), the principle of free disposal rules out negative 

bubble, and if a positive rational bubble exists it can start only on the first date of trading 

of a stock. Assuming the starting of the sample to be the first trading date, and assuming 

the price at that data contains 50% of bubble, we can obtain the level values for bubble 

from its percentage changes. The results are shown in Figure 5.3. The figure shows that 

the portion of price which is non-fundamental fluctuates between 30% and 65%, given 

the assumption of initial condition. The fluctuation in the bubbly portion of price could 

be caused by noise in the market information. In times of better information, the bubbly 

portion declines (collapses). But when market information is plagued by noised, this 

portion swells up (expands). Figure 5.3 shows that, contradictory to the popular press, the 

rise of property prices after 2001 is accompanies by a squeeze out of bubble. That is the 

recent rise in property price in Seoul is due to improvement in economic fundamental 

rather than speculative bubbles. 
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Figure 5.3. Bubble as Percentage of Price
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The estimated bubble does appear to be an important driving force for the prices. Refer to 

figure 5.4. In general, percentage changes in bubble move closely together with 

percentage changes in prices. In times (April 1991, June 1999 and August 2000) the 

change in bubble far exceeds the change in price, reflecting, possibly, increased noise in 

market information in those time periods.  

Figure 5.4. Changes in Price and  Bubble
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Table 5.2 compares the results of the state space model with the results from the simple 

present value model without bubble and from the AR(1) model. The simple present value 

model has the best in-sample performance in terms of sum of squared errors. But the 

AR(1) model is the best, speaking of forecasting accuracy. Overall the state space model 

under-perform both simple PV model and AR(1) model. 

Table 5.2. Model Comparison 

 State space model  Simple present value model AR(1) model 

In sample sum of squared error 0.0787 0.0173 0.0235 

8-step forecast sum of squared 

errors 

0.0013 0.0010 0.0007 

 

6. Conclusion 

 

This paper tries to find out the importance of bubble, estimated as an unobservable state 

variable using Kalman filter, in driving the property prices of Seoul, Korea. Based on the 

model introduced in section 2.1, we found that speculative bubble appears to be an 

important factor driving the Seoul property prices. But performance of the model is not 

entirely satisfactory, compared with the simple present value model with no bubble 

component. When forecasting performance is concerned, the AR(1) model does even a 

better job. This is indeed not surprising given the characteristics of the price and the rent 

series. Both series move closely together showing strong positive correlations, hence the 

simple present value model should do a reasonable job. These series also exhibit positive 

serial correlations in that rising prices and rents tend to cause further increases in prices 
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and rents and vise versa, indicating AR(p) model might be useful in forecasting future 

prices. 

 

We have a few comments before ending the paper. First, in our paper, the unobserved 

state variable is interpreted as speculative bubble, which may in fact represent some 

economic fundamentals unobserved by the researcher. Secondly, as argued in section 

one, due to the lengthy lags in bringing substitute assets into the market, excess rents 

might be earned for sustained period of time, which superficially justifies high property 

prices, but fail to reflect changes in economic fundamentals. For example, the twin rises 

in rent and price in late 1980s and in the period after 1999 could indeed be caused by 

speculative bubbles, but such bubble will not be captured by our model. 

 

The unsatisfactory performance in our model, in terms of in-sample and out-of-sample 

sum of squared error, might have been caused by the existence of structural break. Future 

investigation can incorporate such fact and allow the model parameters to take on 

different values in different regimes. Furthermore, it is unclear, if there is any information 

loss in differencing the time series before estimation. Future studies might base the model 

on the level series instead, using appropriate techniques available in the literature (Gomez 

and Maravall, 1994). 
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