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 ABSTRACT 

This paper examines the impact of alternative institutional arrangements in the 

generation, distribution and allocation of water. More specifically, it develops a spatial 

framework to address what happens to aggregate water use, output and prices as well 

as to the pattern of water allocation, technology investments and quasi-rents over space 

under alternative market structures such as an output monopoly, a water-users’ 

association, a public utility and a project without government intervention. The analytical 

results are illustrated with data from California agriculture and suggest that if 

government intervention is costly, an output or input monopoly may be a preferred 

second-best alternative to a decentralized project under high output elasticities. 
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SPATIAL  WATER MANAGEMENT UNDER ALTERNATIVE INSTITUTIONAL 

ARRANGEMENTS  

 
1. INTRODUCTION  

Most water projects suffer from high losses in distribution canals and in individual farms. 

It has been estimated that on average, these two sources result in 65 per cent of the 

water being lost before reaching the root zone of the plant. Principles for optimal 

investment in reducing conveyance losses and in increasing on-farm efficiency have 

been developed in earlier work (see Chakravorty and Roumasset (1991), Chakravorty, 

Hochman and Zilberman (1995)). These papers suggest that market mechanisms will in 

general not ensure optimal investment in water transmission and have compared 

socially optimal allocation with sub-optimal regimes under water markets and other 

uniform pricing schemes. They have shown that substantial gains in economic benefits 

and "equitable" distribution of benefits over space could be achieved through centralized 

conveyance investments by a water utility. 

 

This paper extends the above analysis to investigate the economic impacts of 

alternative market structures. In particular, the spatial allocation of investment and 

production under a monopoly, and under a decentralized, competitive regime are 

compared with the socially optimal. In the theoretical literature on externalities, it is well 

known that a monopoly may be less-efficient than a competitive system. This paper 

provides a concrete application of the above theory to water management and 

examines the spatial impacts of alternative market structures. An illustration with data 
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from California agriculture shows the order of magnitude differences in output, water 

use and rents. It is concluded that for regions producing agricultural output 

characterized by high demand elasticities (e.g., export high-valued crops) monopoly in 

water distribution may be preferred to a decentralized regime.  

 

2. THE MODEL 

The model consider here is a more general form of the one developed by Chakravorty, 

Hochman and Zilberman (1995), henceforth referred to as CHZ. It is a simple 

one-period (i.e., one cropping season), model of a water project with no uncertainty. 

Water is supplied by the utility from a point source (e.g., a dam or a diversion) into a 

canal. Identical firms are located over a continuum on either side of the canal on land of 

uniform quality. Firms at location x draw water from the canal, where x is distance 

measured from the source. Let r(=0) be the opportunity rent per unit area of agricultural 

land. Define α  to be the constant width of the project area.  

 

Let z0 denote the amount of water supplied from the source. The cost of supplying z0 

units of water is g(z0), assumed to be an increasing, twice differentiable, convex 

function, g'(z0)>0, g''(z0)>0. The quantity of water delivered (per unit land area) to a firm 

at location x  is q(x), with q(x)≥0. The fraction of water lost in conveyance per unit length 

of canal is given by the function a(x), with a(x)≥0. Let z(x) be the residual quantity of 

water flowing in the canal through location x, z(x)≥0. Then 

 

z’(x) = - q(x)α - a(x)z(x)                   (1) 
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where the right-hand side terms indicate, respectively, water delivered and water lost in 

conveyance at location x. It suggests that z'(x)<0, i.e., the residual flow of water in the 

canal decreases away from the source. Let X  be the length of the canal. Then  

 

z0 = [q(x)α + a(x)z(x)]dx.                  (2) 
0

X

∫

 

From (1) and (2), z(X)=0, i.e., the flow of water in the canal reduces to zero at the 

project boundary. The loss function a(x) depends on k(x), defined as the maintenance 

expenditures per unit surface area of the canal, which can vary with location. If k(x)=0 

(e.g., unlined canals), then the fraction of water lost a(x) equals the base loss rate a0,  

where a0 ∈ [0,1]. If k(x)>0 (e.g., concrete-lined canals), then a(x)<a0. Let the reduction 

in the conveyance loss rate obtained by investing k(x) be given by m(k(x)). Then  

 

a(x) = a0 - m(k(x)).                    (3) 

 

Assume m(•) to be an increasing, twice differentiable function with decreasing returns to 

scale in k, the last limit suggests that marginal returns to conveyance investments 

approach infinity with decrease in k. Let a(x)=a0 when k=0, i.e., investing zero dollars 

reduces conveyance losses to zero (e.g., metal piping). From (3), a(x) ∈ [0,a0].  

 

Annualized investments in conveyance at each location x  are assumed to be given by 
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u(z,k) = v(z)k  where v(•)  denotes the canal perimeter which increases with the amount 

of water z  flowing in the canal. Since z  can be taken to represent the cross-sectional 

area, we assume that the perimeter is an increasing, concave function of z, i.e., v'(z)>0, 

v''(z)<0. This formulation generates a distinction between investment in canal quality 

given by the function k(x), and the cost of carrying a given volume of flow denoted by 

the multiplicative component v(z). This specification also implies increasing returns to 

scale in conveyance investments. 

 

Firms invest in technology (e.g., drip or sprinkler irrigation) that conserves water on their 

land and thereby increases the efficiency of the water delivered, q(x).  Let I(x) denote 

firm-specific investment in water conservation. Then h(I)  gives the proportion of water 

delivered that actually reaches the plant, assumed to be increasing, twice differentiable 

and concave, i.e.,  the price of I  is unity. Also let e(x)= qh(I) where e(x) is "effective 

water," i.e., the amount of water actually applied to the crop. Similar distinctions 

between 'delivered' and 'applied' input use have been made elsewhere (e.g., for energy-

conserving appliances, see Repetto (1986)). Then the production technology for each 

firm is given by f(e) which is assumed to exhibit constant returns to scale with respect to 

land and other production inputs. Let f(•) be twice differentiable with f(•)>0; ∂f/∂q>0; 

∂f/∂I>0; ∂2f/∂q2<0 and ∂2f/∂I2<0 which in turn yields f'(e)>0, f''(e)<0.  Let e  be bounded 

from above, i.e., there exists a maximal evapotranspiration rate beyond which the plant 

begins to wilt (Vaux (1983)). In order to ensure strict concavity of the production 

function, the elasticity of marginal product (ηf'=f''e/f') is assumed to be in the range -∞ 

<ηf'< -1. This condition is sufficient for the Hessian to be strictly positive.  
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Let Y  be the aggregate output from the project. It is then given by  

Y = f(e)α dx. (4) 
0

X

∫
 

Define the total cost of producing a given output level Y  as C(Y) which can then be 

expressed as   

 

C(Y) = g(z0) + [kv(z) + (l(x) + r)α]dx. (5) 
0

X

∫
 

In (5) the cost of output Y is the sum of the cost of water generation, conveyance, 

irrigation investment and the rent to land. The utility chooses control functions q(x), I(x), 

k(x), and values for X  and z0  that maximize aggregate net benefits from the project as 

follows:  

 

minimize  g(z0) + [kv(z) + (l(x) + r)α]dx 6(a) 
0

X

∫
q,l,k,X,z0 
 
 
subject to  

z’(x) = - q(x)α - a(x)z(x)                  6(b) 

Y ’(x) = f(e)α                     6(c) 

q(x) ≥ 0, l(x) ≥ 0, k(x) ≥ 0, z(x) ≥ 0,              6(d) 

zo free, z(X) = 0, X ≥ 0, X free.                6(e) 

 

Then the Hamiltonian and corresponding Lagrangian are 
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H = kv(z) + (l + r)α + λ1(qα + az) - λ2f(e)α            7(a) 

L = H(•) - λ3 z,                    7(b) 

 

where λ1(x), λ2(x) and λ3(x)  are functions associated with 6(b,c) and the state constraint 

z(x)≥0 respectively. The necessary conditions for a solution to problem (6a)-(6e) are  

 

(λ1 - λ2f ’h(l))α ≤ 0 ( = 0 if q > 0)               (8) 

(1 - λ2f ’qh’(l))α ≤ 0 ( = 0 if l > 0)               (9) 

v(z) - λ1zm’(k) ≤ 0 ( = 0 if k > 0)               (10) 

λ1’ (x) = v’(z)k + λ1a - λ3                 

 (11) 

λ2’ (x) = 0                      (12) 

λ2  = C’(Y)                     (13) 

λ3 (x) ≥ 0 ( = 0 if z(x) > 0)                 (14) 

λ1 (0) = g’(z0),                    (15) 

λ1 (X-) - λ1 (X) = β,                   (16) 

and 

L(X) = 0                      (17) 

 

where β  is a constant. From (1), if z(x)=0  at any x ∈ [0,X), it could not increase from 

that value. Then the state constraint is never tight except possibly at x=X. From the 

maximum principle, λ1(x) is continuous on [0,X), λ3(x)=0  on [0,X) and q(x), I(x) and k(x) 
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are  continuous except at x=X. 

 

In the above, λ1(x) is interpreted as the shadow price of delivered water at location x. 

Condition (11) suggests that λ1'(x) = v'(z)k + λ1a ∀ x ∈ [0,X). Because λ1(0)>0 by (15), 

this suggests that λ1'(x)>0 for x ∈ [0,X).  Intuitively, the shadow price of delivered water 

increases away from the source because of the cost of conveyance. In order to simplify 

the analysis, consider the limiting case of a "flat" canal cross-section in which the 

elasticity of conveyance, given by ηv(= v'(z)z/v(z)), equals zero. That is, the ratio of the 

canal perimeter to cross-sectional area, v(z) is constant. Then (11) yields λ1'(x) = λa, or 

that the shadow price of delivered water increases with distance at the conveyance loss 

rate. 

 

Substituting the limiting values of f'(0) and m'(0)  in (8)-(10) suggests that q(x)>0, I(x)>0, 

k(x)>0 and the corresponding necessary conditions hold with equality. Their spatial 

distribution as well as the spatial allocation of effective water and output is characterized 

as follows:  

 

Proposition 1: (a) q'(x)<0 (b) I'(x)>0 (c) k'(x)<0 (d) e'(x)<0; and (e) y'(x)<0. 

Proof: see CHZ.  
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An increase in the shadow price of water from head (upstream) to tail (downstream) 

causes a decrease in the amount of water used by each firm, which in turn makes 

conservation more profitable. So firms situated downstream of the project receive less 



water, but spend more on conservation relative to those located upstream. The 'price' of 

effective water (Pf'(e) = λ/h(I)) increases with distance leading to a decrease in its use, 

and a fall in output with distance.  

 

Of particular interest is the result that conveyance investments decrease with distance. 

Although the shadow price of water increases away from the source, the volume of 

water flowing in the canal decreases at a higher rate. The net effect is a decrease in the 

"value" of the residual water flowing in the canal, causing a decrease in conveyance 

expenditures. The assumption ηv=0 implies that the sectional area to be lined is 

independent of the volume of flow. If ηv=1, i.e., there are economies of scale in 

conveyance (canal perimeter is an increasing, concave function of volume), then it is 

easy to see that ηm'(k)k'/k = -λ'/λ <0  and therefore k'(x)>0. Therefore, the presence of 

increasing returns to scale in conveyance may cause conveyance investments to rise 

with distance, a somewhat counter-intuitive result.  

 

At the project boundary X, (17) gives 

L(X) = k(X)v(z(X)) + [I(X) - r]α + λ1(X)[q(X)α + az(X)] - λ2f(e(X))α - λ3(X)z(X) = 0. (18) 

 

Substituting z(X)=0 and v(0)=0 and rearranging, yields  

 

λ2f(e(X)) - I(X) - λ1q(X) = r                  

 (19) 
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which implies that net benefits from expanding the land area by one unit must equal the 

opportunity rent of land, r. Thus the equilibrium value of X  is inversely related to r. If r=0 

(land is in infinite supply), that would imply a greater project area. If r  increased with x  

because say, the downstream locations were closer to an urban center, then X would 

be smaller. On the other hand if an urban area were closer to the upstream section, 

then the function r(x) would be negatively sloping and various cases may arise 

depending on the relative magnitude of the land rent function and r(x). For instance, in 

regions where r(x) is larger than quasi-rents to land, land is better allocated for 

residential or commercial use than in farming. 

 

3. ALTERNATIVE INSTITUTIONS FOR WATER MANAGEMENT 

In this section we compare the optimal allocation derived above with water allocation 

and conveyance investments under three different market structures, each of which are 

explained as follows: 

 

Decentralized Water Market Model:  In this model we assume that the water utility is 

weak and fails to provide optimal conveyance in the project. Thus water losses in the 

canal are higher and farmers trade in water rights and pay spot shadow prices at each 

location. The output from the project is sold as a competitive industry. This stylized 

model is meant to represent typical water projects in developing and developed 

countries where there is a general failure in operation and maintenance leading to a 

system of laissez faire (see Wade (1987), Repetto (1986)). A possibly more relevant 

model may be one with sub-optimal pricing and uniform pricing (e.g., an output tax or 
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land tax) that is unrelated to water use. This would then lead to sub-optimal water use 

and concentration of production activity closer to the source. However, the selection of 

institutional arrangements in this paper is driven by normative criteria relating to the 

performance of alternative institutions that can help upgrade water management and 

not those that are already in place.  

  

Output Monopoly:  Here we investigate the effect of monopolistic behavior in the 

output market on social welfare as well as aggregate water use and spatial allocation of 

input use. This behavior could be the outcome, for example, of a water-users’ 

association that maintains the canal structures and supervises the allocation process. 

The allocation of water within the project is done either through some form of water 

trading or rationing scheme but what is important is that the project output is marketed 

as a monopoly. The monopolist buys the aggregate amount of water required from the 

water district at the marginal cost of water generation. 

 

Input Monopsony:  In this model, we focus on the market for water. We assume that 

the project is a monopsonist buying water from the water district or utility and a 

competitive industry in the output market. Thus, this may be an example of an 

especially strong water users’ association that has monopoly power in determining the 

price of the water bought for the project. The point behind choosing the monopsonist is 

to show the differential impacts of market power in the input and the output markets. 

This comparison yields insight into the behavior of a middleman in which the project 

behaves as an input monopsony as well as an output monopoly, although for reasons of 
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brevity, we do not develop this case separately.  

 

Institutional Comparisons 

The next step is to develop the apparatus for comparisons across the above institutional 

settings. Let the consumers’ utility function for aggregate output Y from the project be 

defined by U(Y) where U(0)=0, U’(Y)>0, U’’(Y)<0. We can now derive equilibrium price 

and output when the water project is operated as a monopoly in the output market. 

Within the project for any given level of output Y, both the central planner and the 

monopolist must solve program 6(a)-6(e). Their total cost of producing a given Y would 

be identical assuming that the program 6(a)-6(e) has a unique solution, since both a 

social planner and a monopolist would allocate water efficiently over space. However, 

aggregate output, water use and output prices will in general not be the same.  Denote 

this common cost function by C*(Y), where * denotes optimality. 

 

Let the consumers' utility function for aggregate output Y  from the project be defined by 

U(Y) where it is assumed that U(0)=0, U'(Y)>0, U''(Y)<0. We can now derive equilibrium 

price and output when the irrigation project is operated as a monopoly in the output 

market. The monopolist either buys water at marginal cost from the water development 

authority or develops the water generation capacity within the project. In either case, the 

monopolist invests optimally in conveyance and chooses the profit-maximizing output 

and price. The monopolist's cost minimization program is identical to (9), so the relevant 

cost function faced by the monopolist is C*(Y). Monopoly output Ym is chosen to 

maximize profits Πm as follows:  

 11



 

Maximize Πm = pY - C*(Y)                 (20) 

and Ym solves  

MR(Y) - C*'(Y) =0                    (21) 

and 

MR'(Y) - C*''(Y) <0                   (22) 

 

where p is the output price of the agricultural commodity. Let pm be the output price 

under monopoly. Then pm=U'(Ym).  

 

Let the corresponding cost function under a water market be Cw(Y). Purely competitive 

(or decentralized) behavior will result when individual farmers act competitively. 

Farmers purchase water from the water utility at its marginal cost at source, and choose 

optimal amounts of water and on-farm technology. The optimization problem for a 

farmer at location 'x' is given by 

  

Maximize πw = [pf(qh(I)) - λ0q – I]α - k             
 (23) 
    q,I,k 
 
where πw represents competitive profits at 'x'. It is clear from (23) that in a decentralized, 

competitive regime, the individual farmer will not invest in conveyance, and since the 

maximization problem is independent of 'x', conveyance expenditures under competition 

are zero at each 'x'. Let us denote the cost function for aggregate output under 

competition as Cw(Y). Equilibrium aggregate output Yw and price pw in competition are 
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then obtained as follows: 

  
Yw ∈ argmax U(Y) - Cw(Y)                  (24) 
           Y 
 
and solves 
 
U'(Y) - Cw'(Y) =0                    (25) 

and 

U''(Y) - Cw''(Y) <0.                   (26) 

 

Then the following proposition establishes the relationship between C*(Y) and Cw(Y): 

 

Proposition 2: (a) C*(Y)<Cw(Y) (b) C*'(Y)>0 (c) C*''(Y)>0 (d) Cw'(Y)>C*'(Y) and (e) 

Cw''(Y)>C*''(Y). 

Proof: (a) The cost function C*(Y) is optimal by definition while the function Cw(Y) is the 

total cost of producing output Y under the additional restriction that k(x) is identically 

equal to zero. By the envelop theorem, C*(Y) must be smaller than Cw(Y). 

(b) Follows directly from complementary slackness, i.e., the shadow price of aggregate 

output must be non-negative (see Repetto (1986)). 

(c) C’’(Y) >0 follows from the comparative statics results derived from the sufficient 

second order conditions for cost minimization for the problem 6(a-e) (see Silberberg 

(1991)). The details are available in a technical appendix from the authors. Intuitively, as 

output increases, a higher aggregate stock of water is used, which in turn implies a 

higher marginal cost of water generation (g’(z0)) which increases the marginal cost of 

output.  

 13



(d,e) These results too follow directly from the application of the envelop theorem to the 

two cost functions C*(Y) and Cw(Y). The cost function Cw(Y) is tangential and lies 

everywhere above the unrestricted cost function C*(Y). Thus the first and second 

derivatives of the former are greater in the neighborhood of the minimum point of the 

restricted cost function than the corresponding derivatives of the unrestricted cost 

function. 

 

In summary, the above proposition states that the cost of producing a unit of output 

under the competitive system in which conveyance investments are fixed to be zero 

must be greater than in the optimal system. Since the marginal cost of output is 

increasing, the marginal cost of output for the competitive model is higher than the 

optimal. Fig.1 shows the marginal cost functions in the optimal and competitive case, 

C*'(Y) and Cw'(Y). Both the socially optimal irrigation project and the monopolist operate 

with the marginal cost function C*'(Y). The socially optimal price P** and output Y** are 

obtained at the point of intersection of the demand function D and C*'(Y). The 

competitive price Pw and quantity Yw are given by intersecting demand with Cw'(Y). The 

monopolist equates marginal revenue MR(Y) with C*'(Y) to give price Pm and quantity 

Ym. The figure has been drawn such that the monopolist produces a higher quantity and 

charges a lower price than the competitive case. However, it is easy to see that the 

converse could happen under alternative parameter values. 

 

The following proposition compares monopoly and competitive output and water use: 
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Proposition 3: If Pm ≥ Pw then (i) Ym ≤ Yw (ii) z0m<z0w, and (iii) Xm<Xw. 

Proof: The proof is obvious from Fig.1. A higher monopoly price implies a lower 

aggregate output. Since the monopolist is more efficient, it produces a lower (or equal) 

output relative to competition by using a smaller aggregate water stock at source and 

distributing it over a smaller project area.  However, when Pm<Pw, then Ym>Yw, but the 

relative sizes of the water stock and acreage are unclear. That is, if competitive output 

were higher than the monopoly output, the relative order of aggregate output and 

project area are indeterminate. 

 

Comparing the monopoly and socially optimal models, we obtain: 

  

Proposition 4: (i) Pm>P** (ii) Ym<Y** (iii) z0m<z0** (iv) Xm<X**,  

where '**' denotes the parameters of the socially optimal model. 

Proof: Same as above.  

  

The monopoly price (output) is always higher (lower) than optimal. Therefore, an 

irrigation system under monopoly uses less water and irrigates a smaller area, as 

compared to a system that maximizes net social benefits.  Comparison between the 

optimal and competitive models yield: 

 

Proposition 5: (i) Pw>P** (ii) Yw<Y**.   

Proof:  Follows from Proposition 2 and is obvious from Fig.1. Since the marginal cost 

function under competition is everywhere higher than optimal, it intersects the demand 
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function at a higher price and smaller aggregate output. However, the relative 

magnitude of water use and acreage in the two models is indeterminate.    

 

The following results examine the impact of the elasticity of demand on monopoly and 

competitive resource allocation: 

 

Proposition 6: (i) dPm/d|ε| <0 (ii) dYm/d|ε| >0 (iii) dz0m/d|ε| >0 (iv) dXm/d|ε| >0 (v) 

dPw/d|ε| <0 (vi) dYw/d|ε| <0 (vii) dz0w/d|ε| <0 (viii) dXw/d|ε| <0. 

Proof: The proofs of (iii), (iv), (vi), (vii) and (viii) are omitted because they are similar to 

the following: 

 

(i) The pricing rule for a monopolist is given by  

Pm(1 + 1/ε)=C*' which gives Pm=C*'ε /(1+ε). Differentiating with respect to ε by using the 

quotient rule, we obtain  

dPm /dε = C*'/(1+ε)2 >0. Since ε<0, we get the desired result. 

(ii) The monopolist sets the output price off the consumer's demand function, or 

U'(Ym)=Pm. Differentiating totally, we get U''(Ym)dYm /dPm = 1 or dYm /dPm <0. By the 

chain rule, using Proposition 6(i), we get dYm /d|ε| >0. 

(v) The competitive price is set by the condition Pw=U'(Yw), or Pw=U''(Yw)Yw /ε. 

Differentiating with respect to ε, we get dPw /dε= -U''(Yw)Y/ε >0, which gives the result. 

 

The above proposition suggests that as the absolute value of demand elasticity 
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increases, output prices under both the monopolistic and the competitive systems 

decrease. However, the output under monopoly increases while the competitive output 

decreases. With increase in absolute elasticity, the monopolist produces more output by 

using more water and expanding irrigated acreage, while the competitive system 

shrinks in acreage, and uses a smaller water stock. This asymmetry between 

competitive and monopoly behavior has major implications for second-best water 

allocation: if demand elasticity is relatively high (low), monopoly (competitive) behavior 

in water may be the preferred institutional choice. 

 

Finally, the water monopsonist chooses to buy z0 units of water to maximize total net 

benefits as follows: 

 

Max D(z0 ) – C’(z0 )z0                  (27) 
  Z0 
 

where D(z0 ) is the derived demand for the aggregate input of water. The necessary 

conditions are given by: 

 

D’(z0 ) = MO(z0 )                     (28) 

 

where MO is the marginal outlay or marginal factor cost of Z0. The purchase price of 

water is shown in Fig.2 as b. It is easy to see that aggregate water use by the 

monopsonist will be smaller than optimal, which in turn implies that aggregate output 

and project area too will be lower than optimal. However, the relative size of water use, 
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output and area in the monopoly and monopsony cases is indeterminate. 

 

4. AN ILLUSTRATION 

This section presents a simple illustration of the optimal model and the three cases 

described in section 3 by using typical cost and demand parameters for Western U.S. 

agriculture. A quadratic production function for California cotton is derived in terms of 

effective water e such that a maximum yield of 1,500 lbs. can be obtained when e=3.0 

acre-feet and a yield of 1,200 lbs. are obtained when e=2.0 acre-feet (Hanemann 

(1987)). Using cotton prices of US$ 0.75 per lb. gives the revenue function 

 

pf(e) = - 0.2224 + 1.0944•e - 0.5984•e 2                     (29) 

 

where revenue is in US$, and e is in m/m2 of water. Differentiating (29) with respect to e 

gives the value of marginal product function 

 

pf'(e) = 1.0944 - 1.1968•e.                 (30) 

 

The on-farm conservation function is approximated from cost estimates of investing in 

irrigation technologies in California as shown in Table 1. When furrow irrigation is 

applied, it is assumed that there is no investment cost to the farmer so that h(0)=0.6, 

i.e., 60 per cent of the water delivered at the farm-gate reaches the plant. The function 

h(I) increases at a decreasing rate as more sophisticated technologies such as sprinkler 

and drip are employed, and is approximated as a continuous function of I as follows:  
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h(I) = 0.6 + 21.67•I - 333.3•I 2                (31) 

 

where I is in $/m2. Fixed costs for irrigated farming are taken to be $433 per acre or 

$0.107/m2 (University of California (1988)). A quadratic function for conveyance 

expenditures was constructed from average lining and piping costs in 17 states in 

Western United States (U.S. Department of Interior (1979), Table 15, p. 87). An 

investment of $200/m length of canal in piped systems results in zero conveyance 

losses in the system. Concrete lining with an investment of $100/m attains a loss factor 

of 10-5/m or a conveyance efficiency of 0.8 over a 20 km length of canal. For simplicity, 

v is taken to be unity, i.e., a relatively 'flat' canal cross-section. When k=0, the loss 

factor is 4•10-5/m giving an overall conveyance efficiency of 0.2. Thus we get  

 

a = 4•10-5 - (4•10-7k - 10-9k2)                (32) 

 

so that from condition (3), a0 = 4•10-5, and                            

 

m(k) = 4•10-7k - 10-9k2,    0<k<200.              (33) 

 

The conveyance loss figures are consistent with findings from engineering studies (Bos 

and Nugteren (1974)). The exact loss coefficient, however, would depend on soil 

characteristics, ambient temperatures, and other environmental factors. The results 

were found to be generally insensitive to variations in the value of a0.  
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A rising long-run marginal cost function for water supply was constructed from average 

water supply cost data from 18 irrigation projects in the Western United States (Wahl 

(1985)) as  

 

g'(z0) = 0.003785 + (3.785•10-11z0 )              (34) 

 

where marginal cost is in $ and z0 is in cu.m. It gives a marginal cost of 0.003785$/m3 

($4.67 per acre-foot) when z0=0, and marginal cost values in the range 0.068 to 0.16 

$/m3 (93.34 to 195.9 $/acre-foot) for the various models analyzed (see Table 2). A linear 

functional form was assumed to keep the formulation simple. For computational 

purposes, the width of the rectangular cropped area, α is taken to be 105m. The width, 

of course, does not affect the relative orders of magnitude across models. 

 

A computer algorithm was written that starts by assuming an initial value of output price 

P and z0, and computes λ0 from (15). At x=0, (10) gives m'(k). By iterating on k, we 

compute k(x) that satisfies (33), and (32) gives a(x). Knowing λ1(0), (8) and (9) used 

simultaneously yield I(x), q(x) and thus e(x), y(x) and RL(x) respectively. Next, when 

x=1, using a(0) and λ1(0) in the solution to (11) gives λ1(1), and z(1) is obtained from (1) 

by subtracting the water already used up previously. Again, λ1(1) and z(1) give k(1) from 

(10) and the cycle is repeated to give q(1), I(1), etc.. The process is continued with 

increasing values of x until exhaustion of z0 terminates the cycle, and a new value of z0 

is assumed. Aggregate land rents are calculated for each z0 by summing over RL(x) and 

aggregate rents to water are computed similarly. The algorithm selects the value of z0 
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that minimizes total cost (given by (6(a)). For each price P, the corresponding Y is 

computed to generate the supply function. The equilibrium is computed by solving the 

supply and demand equations (see below) jointly. The algorithm was modified suitably 

for the competitive, monopoly and monopsony solutions.  

 

The above models are illustrated by using the functional forms given in section 4. An 

iso-elastic demand function for the commodity (California cotton) is constructed for 

elasticity values ranging from -1 to -3 (with intervals of 1) such that at the price of $0.75, 

the quantity produced is 17.7*108 lbs. The demand function is of the form Y=DPε where 

D is a constant and ε <0. The results are shown in Table 2 and can be summarized as 

follows: 

 

1. With increase in the elasticity of demand, monopoly output increases while prices  

decrease, while both price and output under competition decrease. Therefore, at high  

demand elasticities, monopoly produces more output and charges a lower output price. 

2. Irrigated acreage and water use also increases with elasticity under monopoly, while 

they decrease under a competitive system. Also note that when demand elasticity is 

unity, both the competitive and the optimal models use roughly the same water, but the 

latter produces double the output.  

3. Land rents at the head reaches decrease with increasing elasticity in both monopoly 

and competitive systems. However, rents accruing to farmers under monopoly and 

competition are many times higher than in the optimal model, mainly because of the 

combined effect of higher output prices and lower water charges (due to a smaller water 
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stock) in the former models. 

4. Welfare effects are highest under the optimal model, closely followed by the 

competitive model when demand elasticity is unity. Producer surplus decreases with 

increasing elasticity under both monopoly and competition, since output price 

decreases, while consumer surplus goes down because of shifts in the demand curve 

resulting from increasing elasticity. Thus total welfare decreases with increasing output 

elasticity. In our example, the welfare gains from monopoly always exceed those from 

competition. 

5. Aggregate rents to water are highest in the optimal model. They decrease with 

elasticity in the competitive case, but increase with increased output elasticity under 

monopoly. This is because, as elasticity increases, the monopolist produces more 

output and uses more water, leading to rising shadow prices of water. The reverse is 

true for the competitive model. 

6. Although it is difficult to define the relationship between output monopoly and the 

input monopsony, the simulation results show that both equilibrium price and the output 

for each case decrease as elasticity increases. When the elasticity is unity, both output 

and input monopsonist produce larger consumer surplus and total welfare compared to 

the competitive model. Except for the unitary elasticity case, output, project area, total 

welfare water use for the input monopsonist are quite similar to those for the output 

monopolist. Also, the input monopoly produces higher output and uses more aggregate 

water than the output monopoly at higher demand elasticities.  

 

5. Concluding Remarks  
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In this paper we have examined the effect of alternative market structures on irrigation 

system performance. The behavior of optimal, purely competitive, monopolistic and 

monopsonistic arrangements were examined under a range of assumptions regarding 

elasticity of the demand function. The analytical results show that under low demand 

elasticities, competitive (without conveyance investments) behavior will result in a higher 

output and lower output price than monopoly. However, when the output elasticities are 

high, monopoly will produce more output at a lower price. A system that permits 

intervention in the form of conveyance investments but also maximizes net social 

benefit would dominate both of the above.  

 

These results yield insights into the performance of alternative water institutions and 

may be particularly appropriate in countries or regions with weak administrative 

capacity, i.e., where government intervention in the operation and maintenance of 

irrigation projects may be costly or difficult to implement. Our results indicate that for 

crops that are characterized by high demand elasticities, e.g., high-valued crops, or 

export-oriented agricultural products, a monopolist might be preferred to a competitive 

system. However, for low-elasticity crops such as those grown in subsistence farming or 

for domestic consumption, a competitive system is likely to result in lower prices, more 

output and larger net economic benefits. Farmers' cooperatives, or marketing boards 

that engage in monopoly behavior in the output market could be viable policy options in 

the high-elasticity regime. This is consistent with observed behavior, e.g., in the case of 

plantation crops such as rubber or cocoa, where producers often operate under a 

marketing cooperative or cartel.   
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The fact that rents to water increase with absolute value of the elasticity in the case of 

the monopoly point to the viability of promoting institutions that combine the 

maintenance and marketing functions in irrigation. Organizations that supply water, and 

buy the produce from individual farmers might be an economically attractive proposition, 

especially for high-elasticity crops. Such an arrangement would also reduce 

administrative costs, since the task of collecting water charges and paying farmers their 

output price could be integrated into one.  
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Figure 1. Equilibrium price and quantity
for the optimal, competitive and monopoly case
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Figure 2. Purchase price of water for the input monopsony
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Figure 3. Optimal and Competitive Equilibrium Price and Quantity
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Figure 4. Output Monopoly Equilibrium Quantity
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Figure 5. Input Monopsony Equilibrium Price and Quantity
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 TABLE 1: UNIT COST OF ON-FARM TECHNOLOGY a 

 

Technology     Cost($/acre)   h(I) 

Furrow Irrigation     0    0.6 

Short-Run Furrow    20    0.7 

Hand-move Sprinkler    60    0.8 

Drip        120   0.95 

 

aAdapted from Hanemman et al. (1987). 



 
TABLE 2. SIMULATION RESULTS 

 
 
    ε=−1    ε=−2     ε=−3 
   __________________  __________________________  __________________________ 
   *(=O) C I  * C I O  * C I O 
 
P ($)   0.75 1.49 0.96  0.80 1.26 0.97 1.18  0.84 1.18 0.974 1.01 
Y (108 lbs.)  17.70 8.92 13.89  20.67 8.41 14.28 9.58  22.58 8.16 14.53 13.15 
A (103 ha)  490 260 430  530 230 360 230  610 230 430 360 
Z0 (108 cu.m)  41 35 37  44 31 32 22  49 30.7 37 32 
 
RL (108 $)  0.13 5.00 3.98  0.59 3.52 4.12 5.37  0.56 2.90 4.20 4.65 

CS (108 $)  25.18 16.07 21.91  13.94 7.88 11.03 8.60  9.14 4.50 7.00 6.24 
PS (108 $)  3.27 5.91 3.89  4.34 3.92 4.07 6.66  5.19 3.26 4.17 6.38 
Total Welfare  28.45 21.98 25.80  18.28 11.80 15.10 15.26  14.33 7.76 11.17 12.62 
 
Rh (106 $)  0.271 28.72 9.05  1.09 21.93 11.13 22.38  0.912 19.16 9.55 12.57 
Rt (106 $)  0.244 4.50 9.03  1.07 5.17 11.10 22.33  0.89 2.92 9.53 12.54 
 
Yh (106 $)  0.354 0.358 0.357  0.281 0.454 0.349 0.431  0.292 0.426 0.348 0.364 
Yt (106 $)  0.354 0.277 0.357  0.281 0.393 0.349 0.431  0.292 0.370 0.348 0.364 
 
qh (m/sq.m.)  0.835 0.863 0.859  0.824 0.891 0.880 0.953  0.802 0.892 0.855 0.880 
qt (m/sq.m.)  0.835 0.608 0.855  1.038 0.916 1.080 1.105  0.801 0.689 0.855 0.880 
  
Ih ($/sq.m.)  0.023 0.022 0.022  0.023 0.020 0.021 0.017  0.024 0.020 0.022 0.021 
It ($/sq.m.)  0.023 0.027 0.022  0.023 0.026 0.021 0.017  0.024 0.026 0.022 0.021 
 
eh (m/sq.m.)  0.770 0.790 0.786  0.760 0.802 0.799 0.831  0.744 0.803 0.783 0.799 
et (m/sq.m.)  0.770 0.572 0.783  0.760 0.644 0.799 0.831  0.744 0.646 0.783 0.799 
  
Kh ($/m.)  199.23 0 199.06  199.33 0 198.75 197.39  199.46 0 199.06 198.75 
  
λh ($/cu.m.)  0.1590 0.1363 0.1438  0.1703 0.1211 0.1249 0.0871  0.1893 0.1200 0.1438 0.1249 
λt ($/cu.m.)  0.1593 0.3855 0.1441  0.1705 0.3039 0.1252 0.0875  0.1895 0.3011 0.1441 0.1252 
 
 
Notes: *=optimal; C=competitive; I=input monopsony; O=output monopoly; h=head; t=tail. 
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