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On the Efficacy of Constraints on the Linear Combination Forecast Model
Salvatore J. TERREGROSSA

   Combination forecasting has been demonstrated to be a successful technique for enhanced forecast
accuracy of economic and financial variables. An established method to generate the component forecast-
weights is the ordinary-least-squares (OLS) regression technique. Actual values of a variable are regressed
on within-sample values of forecasts generated by alternative forecast sources. The estimated regression
coefficients then serve as weights for out-of-sample combination forecasts. The present study addresses the
controversy regarding the efficacy of placing restrictions on the combining model when generating weights
for out-of-sample forecasts. Combinations are formed of component earnings-growth forecasts generated
separately by financial analysts and a statistical model. Both restricted and then unrestricted OLS are used
in turn to generate the component-forecast weights. The findings suggest that combinations formed with
weights generated by OLS with the constant suppressed and the sum-of-the-coefficients constrained to
equal one lead to enhanced forecast accuracy and generally perform best. This study differs from a previous
related study appearing in Applied Financial Economicsi in at least three main ways:

1) Combination-forecasts are formed using actual regression-coefficients as forecast weights; 2) Forecast
weights are generated using unrestricted OLS, as well as restricted OLS; 3) All combination-forecasts are
strictly ex-ante simulated.
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I) INTRODUCTION

Combining individual forecasts (generated separately by alternative forecast sources)

into a composite forecast has proven to be an effective tool for increased forecast

accuracy of a given forecast variable. ii  Algebraically, a combination forecast may be

expressed as the summation i to n of WiFi. The Wis are the forecast weights and the

Fis are the component forecasts generated by n alternative sources. An established,

widely used method to generate the component forecast-weights is the ordinary-least-

squares (OLS) regression technique.iii  Actual (realised) values of a particular variable

are regressed on within-sample values of forecasts of that variable, generated by

alternative forecast sources. The estimated regression coefficients then serve as

weights for out-of-sample combination forecasts. iv

The present study is concerned with the controversy regarding the efficacy of placing

restrictions on the regressions of the combination model when generating weights for

out-of-sample forecasts: As a starting point, Granger and Ramanthan (1984)

demonstrate that the method of unconstrained-least-squares results in unbiased

estimators and minimum sum-of-squared errors for the data employed to fit the

regression. Clemen (1986), however, argues that the objective is not to minimize the

squared errors within the in-sample fitting data but to enhance the accuracy of the out-

of-sample forecasts. Using restricted OLS Clemen demonstrates that constraining the

linear combination leads to more efficient estimates of the regression coefficients,

resulting in greater accuracy of the out-of-sample forecasts. Clemen's message is that

the appropriate technique may be to constrain the sum-of-the coefficients to equal

one, suppress the constant, or both, depending on the characteristics of the underlying

forecast.

Further, it may be argued that if the process of constraining the linear combination

leads to somewhat biased estimators, it may be worthwhile to trade off some incurred

bias for more efficient estimators to enhance the accuracy of the out-of-sample

forecasts: An estimator with lower dispersion about the mean (more efficient) and

some bias will more closely approximate the true parameter than will an unbiased

estimator with a larger dispersion about the mean. 

Against this backdrop of reasoning, two subsequent, independent studies attempt to

ascertain whether placing restrictions on the combining model leads to greater

forecast accuracy. Guerard (1987) and Lobo (1991) each experiment with four

alternative methods of combining annual earnings forecasts generated by security
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analysts and time-series models. Each of these two studies alternately employs

restricted OLS (first with and then without a constant) and unrestricted OLS (with and

without a constant) to generate component-forecast weights. Contrary to Clemen's

argument, both studies find that the method of unrestricted OLS outperforms the

restricted model in leading to superior forecasts, with one difference: Guerard finds

that the method of OLS with a constant term and with no coefficient restrictions

performs best. Lobo reports the unrestricted model with the constant suppressed does

best in leading to superior forecasts.

To further investigate the efficacy of constraining the regressions of the linear

combination model when estimating forecast weights, the present study forms

combinations of average annual earnings-growth forecasts generated separately by

financial analysts and a statistical model. v

Employing a similar methodology as in a previous studyvi, the present study differs

from most other combination earnings-forecast studies in that an expected-return

model is used, instead of a time-series model, to generate a statistical forecast-

component. Specifically, an implicit earnings-growth forecast is extracted from the

Capital Asset Pricing Model (CAPM), a risk-adjusted expected-return model.vii    

A major reason for this approach is that risk-adjusted expected-return models have

been shown to generate more accurate forecasts of earnings variables than a well-

known representative modeller of the of the time-series behaviour of reported annual

earnings, the submartingale.viii The implication, as explained in a previous studyix, is

that a risk-adjusted expected-return model may embody more independent

information regarding the movements of an earnings forecast variable (and thus more

useful for combination forecasting) than a time-series model. 

 The present study combines CAPM-generated forecasts of average annual earnings-

growth with financial analysts' consensus forecasts of average annual earnings-

growth, provided by International Brokers Estimate System Inc (IBES). All

combination forecasts are strictly exante-simulated in that only information available

prior to a forecast horizon is used in the construction of all forecasts. Congruous with

the previous studies of Guerard (1987) and Lobo (1991), the present study calculates

the combination-forecast weights using OLS and applies in turn each of four

variations regarding the regression restrictions:



4

1) OLS with a constant term and the coefficients unrestricted; 2) OLS with the

constant term suppressed and the coefficients unrestricted; 3) OLS with a constant

term and the sum-of-the-coefficients constrained to equal one; 4) OLS with the

constant term suppressed and the sum-of-the-coefficients constrained to equal

one.

Each set of weights is then alternately used to form simulated ex-ante out-of-sample

combination-forecasts of average annual earnings-growth for each firm in a given

sample.x

Contrary to both Guerard (1987) and Lobo (1991), the present study's findings

suggest that combinations formed with weights generated by OLS with the constant

suppressed and the sum-of-the-coefficients constrained to equal one generally

perform best, in leading to enhanced forecast accuracy over the financial analysts’

consensus forecasts. 

II) OBJECTIVES:

As reported in a  previous studyxi, financial analysts' consensus forecasts (IBES) of

average annual growth of earnings-per-share (EPS) are generally found to be

significantly more accurate than forecasts generated by a risk-adjusted expected-

return model (CAPM). A comparison of forecast errors leads to the rejection of the

null hypothesis, that the financial anaysts' consensus forecasts are no more accurate

than the CAPM generated forecasts. (See table 1A in the present study.) 

With this finding in hand, the present study moves forward with three main

objectives: First, to determine if forecast accuracy can be enhanced by forming

combinations of financial analysts' consensus forecasts and CAPM-generated

forecasts of average annual growth of EPS, using as weights actual regression

coefficients from unrestricted ordinary-least-squares (OLS). Thus the first null

hypothesis to be tested, H1: Combination forecasts using as weights estimated

regression coefficients from unrestricted OLS, are no more accurate than the financial

analysts' consensus forecasts. 

The second objective is to determine if forecast accuracy can be enhanced by forming

combination forecasts, using as weights actual regression coefficients from

constrained OLS. Thus the second null hypothesis to be tested, H2: Combinations

formed with estimated regression coefficients from restricted OLS as weights, are no

more accurate than the financial analysts' consensus forecasts.
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The third objective is to determine if combination forecasts, using as weights actual

regression coefficients from constrained OLS, lead to greater forecast accuracy than

combinations using as weights actual regression coefficients from unrestricted OLS.

Thus the third null hypothesis to be tested, H3: Combinations formed with  estimated

regression coefficients from restricted OLS as weights, are no more accurate than

combinations formed with estimated regression coefficients from unrestricted OLS as

weights.

III) METHODOLOGY

An implicit forecast of the five-year average annual growth rate of earnings-per-share

(EPS) for each firm in a sample is obtained from the CAPM, using a technique

introduced by Rozeff (1983) and modified in a later studyxii. As a starting point, a

firm's one-period expected return is taken as the sum of the expected end-of-period

dividend and change of price, divided by the beginning-of-period price, as formulated

in equations 1 and 2: 

E(Ri)   =   Pi1 + Di1 - Pi0
Pi0

      
E(Ri)   =   Di1

Pi0
   +   Pi1  -  Pi0

Pi0
EQ 1

where
E(Ri) = expected one-period return of stock i;
Pi1 = expected end-of-period price per share;
Di1 = expected dividend per share during the period;
Pi0 = current price per share;
Di0 = current dividend per share

Hence,

Di1
Pi0

   +   Pi1-Pi0  
Pi0

    =    Di0(1+gid)
Pi0

   +   gip EQ 2
Where, 

gid = growth rate of dividends;
gip = growth rate of price.

Assuming  gid  = gip = gie ,    where gie = growth rate of earnings:
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Then,

E(Ri)   =
Di0(1+gie)

Pi0
   + gie EQ 3

Each firm's expected return E(Ri) is then separately estimated by the CAPM.xiii The
CAPM determined value of E(Ri) is then inserted into equation 3, which can then be
solved to obtain the CAPM implicit forecast of five-year average annual earnings
growth, giexiv : 

gie   =
E(Ri) - Di0

Pi0

1 + Di0
Pi0

EQ 4

Next, in equation 4, one modification is made in the model. A measure representing
the firm’s dividend-paying-ability is substituted for actual dividends. This measure is
equal to the product of the historical average pay-out ratio of 0.45 (over the years of
the data set) and the annual average of historical firm earnings for the five years
immediately passed, NEi0, (to smooth out any cyclical fluctuations).xv

 The so respecified CAPM forecasting model takes the form of:

gie   =
E(Ri) -

NEi0(.45)
Pi0

1 + NEi0(.45)
Pi0

EQ 5

Thus, as indicated in equation 5, by estimating expected return, E(Ri), from the
CAPM, calculating normalised earnings, NEi0, from historical data, setting the
dividend pay-out ratio at .45, and observing current price, Pi0, a forecast of the firm i
five-year average annual growth of earnings-per-share is extracted from the modified
CAPM forecasting model. xvi

III) COMBINATION FORECASTS
Combinations of financial analysts’ consensus forecasts (IBES) and implicit CAPM
forecasts of five-year average annual earnings growth (for each firm in a given
sample) can be expressed as:

Fc = W1(IBES) + W2(CAPM).
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Combination weights (W1,W2) are generated using cross-sectional regressions, thus
incorporating information from all firms in a given sample. Actual values are
regressed on predicted values of the five-year average annual growth rate of earnings-
per-share (EPS), for all firm in a given sample,  in the following manner:

ait    =   α  +  β (t -5gi 1t  )  +  γ (t -5gi 2t )  +  µt EQ 6

where,

ait = actual five-year average annual growth rate of  EPS   

                           of firm i  over the 60 months preceding time t ;

t-5gi1t = consensus forecast of the five-year average annual

                           EPS growth-rate of firm i, made by financial analysts

                           (Model A) in period t-5, taken from the IBES data-

                           source;

t-5gi2t = forecast of the five-year average annual EPS  

                           growth- rate of firm i, generated from the 

                           CAPM-based forecasting method (Model B),

                           using  only information available at time t-5 and using 

                           the model's  estimation procedure and forecasting 

                           method each period;

µt = error term;

α = constant term.

As detailed above, the regression model is estimated four ways:                          

With unconstrained OLS, first with and then without a constant; and with constrained

OLS, with and without a constant.

Each of the four sets of estimated regression coefficients is then alternately used as

weights for out-of-sample combination forecasts of five-year average annual EPS

growth for each firm in a cross-sectional sample for a given time period.
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IV) DIAGNOSTIC ANALYSIS AND CORRECTIVE PROCEDURES

Nonnormality is not an issue in the OLS regressions of the present study, due to the

large, random samples and the Central Limit Theorem.

Serial correlation is not a concern, as the regressions are cross-sectional.

However, evidence of heteroskedasticity is found, using White's (1980) test. As noted

in a previous studyxvii, it may be that firms with higher growth rates of earnings may

have different variances of forecast error than firms with smaller growth rates of

earnings. Therefore, errors in predicting growth rates may be associated with one of

the right-hand variables. The White (1980) procedure corrects for heteroskedasticity

caused by variance related to right-hand variables. White's (1980) procedure

generates a heteroskedasticity-consistent estimate of the least-squares covariance

matrix, regardless of the form of heteroskedasticity. Thus, the White (1980)

procedure is employed in the present study to generate a heteroskedasticity-consistent

covariance matrix to construct the required significance tests.

V) SAMPLES AND TEST PROCEDURES
A) Samples:

The first in-sample coefficient-estimation period is the five-year period from January
1982 to January 1987. Using only information available prior to January 1982, an
estimation is made of the parameters of the CAPM-based forecasting model.  For
each firm in the sample, employing the CAPM-based forecasting model, a simulated
ex-ante forecast of the average annual earnings-per-share (EPS) growth rate over the
January 1982 - January 1987 period is then made. The actual average annual EPS
growth rates over this period are then regressed against financial analysts' (IBES)
consensus forecasts and CAPM-generated forecasts, to generate four sets of weights
for the out-of-sample combination forecasts for each firm in a sample (as detailed in a
previous section of this study).
The first out-of-sample forecast horizon is the adjacent five-year period from January
1983 to January 1988. For each firm in the sample, employing the CAPM-based
forecasting model, a simulated ex-ante forecast of the average annual EPS growth rate
over the January 1983 - January 1988 period is then made. For each firm in the
sample, combinations of CAPM-generated forecasts and financial analysts' (IBES)
consensus forecasts for this period are then formed, using the four different sets of
weights for the combination forecasts. The four sets of estimated regression
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coefficients generated from the January 1982 - January 1987 in-sample coefficient-
estimation period are also used to manufacture out-of-sample combination forecasts
for the five-year period from January 1984 to January 1989; and also for the five-year
period from January 1985 to January 1990.
The experiment is replicated twice more: The second coefficient-estimation period is
from January 1983 to January 1988, generating four sets of weights for out-of-sample
combination forecasts for the adjacent five-year period from January 1984 to January
1989; and also for the five-year period from January 1985 to January 1990. 
The third coefficient-estimation period is from January 1984 to January 1989, leading
to out-of-sample combination forecasts for the adjacent five-year period from January
1985 to January 1990  (the last year of the available data set). 
The combination forecasts in this study may be considered out-of-sample in the sense
that some portion of a combination forecast horizon is outside of the in-sample
estimation period. 
In terms of practical use: for a given firm an analyst/forecaster could compare, for
example, the actual five-year average annual earnings growth for the January 1982-
January 1987 period with a simulated exante combination-forecast of the average
annual earnings growth for the January 1985-January 1990 period (made at the
beginning of the January 1987-January 1990 period, being the present time for the
analyst/forecaster). From any difference between the two values, the
analyst/forecaster could conceivably infer a corresponding change in the prospects of
the firm for the upcoming January 1987-January 1990 period, and adjust the firm's
present valuation accordingly.

To be included in a given sample a firm must have the necessary data available to: 

i) generate a CAPM-based forecast, both in-sample and out-of-sample; 

ii) construct in-sample regression-coefficient estimation;

iii) generate out-of-sample combination forecasts; 

iv) allow the construction of, and the comparison of forecast errors. xviii

B. Deriving E(Ri) from the CAPM:
The Capital Asset Pricing Model states that, in equilibrium, an individual security's
expected return is a linear function of it covariance of return with the market
portfolio. This relationship is depicted in ex-ante form by the equation:

E (Ri )  = Rf  + Bi [E (Rm )  - Rf ] EQ 7
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A firm's expected return, E(Ri), is calculated via the CAPM by the conventional two-
stage technique. First, regression analysis is used to estimate a firm's beta, Bi . Actual,
monthly security returns, Ri,t, (thirty-day geometric mean) are regressed against
actual, monthly market returns, Rm,t, (thirty-day geometric mean) over the 60-month
period prior to an earnings growth rate forecast horizon. This regression in equation
form is:

  Ri,t   = Bi (Rm,t)  EQ 8

The monthly market return, Rm,t , is a value-weighted measure of the returns of all
stocks on the CRSP tape. All returns (firm and market) include both dividends and
price changes. Once a firm's beta (Bi) is estimated, this value is inserted into equation
8 to solve for the firm's expected rate of return, E(Ri) . In equation 8 the risk-free rate,
Rf, is taken as the yield-to-maturity on a five-year U.S. government security,
prevailing at the beginning of a forecast horizon. The data source is Moody's
Municipal and Government Manual. The mean market return, E(Rm), is estimated as
the average of the monthly market returns over the 60-month period prior to a
forecast horizon. This measure is a value-weighted index of all stocks on the CRSP
tape.  

C. Test Procedures:
Let

 ai = actual five-year average annual growth rate of earnings- 

                        per-share (EPS) for firm i ;
                        

and
gij = forecasted five-year average annual growth rate of EPS  

                         for firm i by method j.

In each test period a vector of forecast errors,

ai  -  gij    =   eij EQ 9

is calculated for each method j. eij is the absolute value of the difference between the
forecasted and realised growth rates. The mean absolute forecast error (MABE),
defined as the sample average of ai  -  gij , is then computed. This measure best
reflects the overall forecasting performance since it takes into account the average
error size. For hypothesis tests of different forecasting methods, the procedure of
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match-pairs case for each firm is utilised. The members of each pair are the  absolute
forecast errors (eij) from two forecasting methods. Each pair can be reduced to a
single observation by taking the difference in the absolute forecast errors. The
Wilcoxon sign rank test is used as a non-parametric test of the mean difference
between the absolute forecast errors of two forecasting methods. 

VI) EMPIRICAL RESULTS 
As first reported in a previous studyxix, in all three test periods the financial analysts'
consensus forecasts of five-year average EPS growth rates are found to be superior to
the forecasts generated by the CAPM forecasting model. (See Tables 1A and 2A.)
This result perhaps may be anticipated since the analysts' forecast generating
mechanism certainly takes into account more subjective information about a
company's prospects than the statistical forecasting model employed in the present
study. 
However, the present study does find that combining the analysts' consensus forecasts
with the CAPM-generated forecasts generally leads to enhanced forecast accuracy
(over the financial analysts' consensus forecasts) when using as weights the OLS
coefficients that are constrained to sum-to-one: The mean absolute forecast error
(MABE) of each of the constrained combination models is lower than the
corresponding MABE of the the financial analysts' (IBES) forecasting mechanism, in
eleven out of the twelve cases in the six out-of-sample test periods. (See tables 1A,
1B, and 1C.) And the mean difference in absolute forecast error between the financial
analysts' forecasting mechanism (IBES) and each corresponding constrained
combination model is significantly positive in these eleven out of twelve cases. xx (See
tables 2A, 2B, and 2C.) Note that within this subset of combining models (OLS
coefficients constrained to sum-to-one), the combining model with the constant
suppressed generates the superior forecasts in five out of the six out-of-sample test
periods. (See tables 1A, 1B, and 1C.) 

On the basis of these findings, then, one may reasonably reject the null hypothesis
(H2) that the combination forecasts of this study formed with restricted OLS
regression coefficients as weights, are no more accurate than financial analysts'
consensus forecasts. 
The results of the present study also indicate that when employing forecast-weights
generated from the the first coefficient-estimation period (1982-87), the unrestricted
combining model with the constant supressed is generally successful in enhancing
out-of-sample forecast accuracy (over the financial analysts' consensus forecasts) in
all three possible cases: In comparison with the financial analysts' consensus
forecasts, this combining model has lower corresponding MABEs; and significantly
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positive mean differences in absolute forecast error. (See tables 1A and 2A.)
However, the unrestricted combining model from the the first coefficient-estimation
period, with the constant included, is generally not successful in enhancing out-of-
sample forecast accuracy, in first two out of the three possible cases. (See tables 1A
and 2A.) Further, when employing forecast-weights generated from the second and
third coefficient-estimation periods, the unrestricted combining model (both with and
without a constant) is also not generally successful in enhancing forecast accuracy, in
all possible cases. (See tables 1B, 1C; and tables 2B, 2C .)
Thus, on the basis of these findings, one perhaps cannot reasonably reject the null
hypothesis (H1) that the combination forecasts of this study formed with unrestricted
OLS regression coefficients as weights, are generally no more accurate than the
financial analysts' consensus forecasts.
Finally, the  results of the present study also indicate that the unrestricted combining
model is generally inferior to the restricted model for all six out-of-sample test
periods. Here, the relevant comparisons are Model 1 (the combination model with
weights generated by unconstrained OLS with a constant included) versus Model 3
(the combination model with weights generated by constrained OLS with a constant
included); and Model 2 (the combination model with weights generated by
unconstrained OLS with the constant suppressed) versus Model 4 (the combination
model with weights generated by constrained OLS with the constant suppressed).
Model 3 generally outperforms Model 1: Model 3 has lower corresponding MABEs
than Model 1 in all six cases. And the mean difference in absolute forecast error
between Model 1 and Model 3 is significantly positive in all six cases. (See tables 1A,
1B, 1C; and tables 2A, 2B, 2C.)  Model 4 also generally outperforms Model 2: Model
4 has lower corresponding MABEs than Model 2 in all cases. However, the mean
difference in absolute forecast error between Model 2 and Model 4 is significantly
positive in only the latter three out of six cases. (See tables 1A, 1B, 1C; and tables
2A, 2B, 2C.) Thus overall, in comparison with their unconstrained combining-model
counterparts, the constrained combining-models have the lower MABE in twelve out
of twelve cases; and a significantly positive mean difference in absolute forecast error
in nine out of twelve cases. 
Thus it follows that one may reasonably reject the null hypothesis (H3) that the
combination forecasts of this study formed with restricted OLS regression
coefficients as weights, are generally no more accurate than the combination forecasts
formed with unrestricted OLS regression coefficients.
The results of the OLS regressions may help to explain the success of the constrained
combination model over the unconstrained model. (See table 3A, table 3B and table
3C.)  A comparison of the estimated coefficients of each of the unconstrained OLS
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and constrained OLS regressions for each estimation period, leads to the following
observations:
First, for the initial coefficient-estimation period (1982-1987) the estimated
coefficients for the analysts' consensus forecasts (IBES) are all significantly positive
in each of the four regressions, ranging in magnitude from 0.6679 to 0.8522. The
values of the CAPM coefficients are also positive in all four regressions, ranging in
magnitude from 0.1424 to 0.1713. However, only in the constrained regression with
the constant suppressed is the CAPM coefficient significantly positive. It is also
observed that none of the constants are significant in this test period. Of perhaps
greatest relevance and importance are the results concerning the standard errors.
When comparing the standard errors for the unconstrained and constrained
regressions with a constant, it is observed that the constrained regression results in
lower standard errors for both the IBES and CAPM coefficients. When comparing the
standard errors for the unconstrained and constrained regressions with the constant
suppressed, it is observed that the standard errors for the IBES coefficients are about
the same. However, the standard error for the CAPM coefficient is much lower in the
constrained regression. The regression with the lowest overall pair of IBES and
CAPM coefficient standard errors is the constrained regression with the constant
suppressed. Thus the constrained coefficients are generally more efficient, which may
account for the greater forecast accuracy of the constrained combination models over
their unconstrained-counterparts for this time period. (See table 3A.)
For the second coefficient-estimation period (1983-1988) it is observed that the
constants are all significantly positive and close in magnitude. The coefficients for the
analysts' consensus forecasts (IBES) in the two unconstrained models are
significantly positive (ranging in magnitude from 0.6413 to 0.8676), have about the
same standard errors and are generally close in value, compared to their counterparts
in the two constrained models, which are also significantly positive. The matter is
different however regarding the estimated coefficients of the CAPM forecasts. Here it
is observed that in the two unconstrained models the CAPM coefficients have a
negative sign and are not statistically significant. The CAPM coefficients for the
counterparts in the two constrained models are significantly positive, ranging in
magnitude from 0.1368 to 0.3283. Again, of perhaps greatest importance and
relevance is the fact that the CAPM coefficients in the two constrained models have
much lower standard errors than their counterparts in the two unconstrained cases.
Thus these constrained CAPM coefficients are more efficient, which may again
account for the greater forecast accuracy of the constrained combination models over
their unconstrained-counterparts in this second time period. The regression with the
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lowest overall pair of IBES and CAPM coefficient standard errors again is the
constrained regression with the constant suppressed. (See table 3B.)
For the third coefficient-estimation period (1984-1989) it is observed that the
constants are all close in magnitude, but not significant.. The coefficients for the
analysts' forecasts (IBES) in the two unconstrained models are generally close in
value (ranging in magnitude from 0.8298 to 0.9494), significantly positive, and have
about the same standard errors, compared to their counterparts in the two constrained
models, which are again also significantly positive. The matter again is different
however regarding the estimated coefficients of the CAPM forecasts. Here it is
observed that in the two unconstrained models the coefficients are significantly
negative. For their counterparts in the two constrained models the coefficients are
positive (ranging in magnitude from 0.0531 to 0.1686) but not significant.. But again,
of perhaps greatest relevance is the fact that the CAPM coefficients in the two
constrained models have much lower standard errors than their counterparts in the
two unconstrained cases. Thus these constrained CAPM coefficients are more
efficient, which may again account for the greater forecast accuracy of the
constrained combination models over their unconstrained-counterparts in the third
time period. Again, the regression with the lowest overall pair of IBES and CAPM
standard errors is the constrained regression with the constant suppressed. (See table
3C.)

VI) SUMMARY AND CONCLUSIONS

The findings of the present study seem to lend support to the premise that restricted

OLS leads to more efficient estimates of the in-sample regression coefficients of the

combining model, resulting in greater accuracy of the out-of-sample forecasts. 

Using only information that would be available to a forecaster prior to an out-of-

sample forecast horizon, simulated ex-ante combinations are formed of financial

analysts' consensus forecasts and CAPM-generated forecasts of five-year average

annual earnings growth. Forecast weights generated by unrestricted OLS (with and

without a constant) and restricted OLS (with and without a constant) are alternately

applied, in turn. Thus for each firm in a given sample, four combination forecasts 

are formed.

In the present study the technique of OLS with the coefficients constrained to sum-to-

one and with the constant suppressed generated the most efficient in-sample

regression coefficients, which in turn generally led to superior out-of-sample

combination forecasts.
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It is perhaps worth noting that a set of in-sample, restricted regression coefficients,

generated from one five-year estimation period (January 1982-January 1987) were

successfully used to generate superior combination-forecasts for three successive,

adjacent out-of-sample forecast horizons (January 1983-January 1988; January 1984-

January 1989; January 1985-January 1990). And another set of in-sample, restricted

regression coefficients, generated from another five-year estimation period (January

1983-January 1988) were also successfully used to generate superior combination-

forecasts for two successive, adjacent out-of-sample forecast horizons (January 1984-

January 1989); January 1985-January 1990). Thus, a temporal stability of the

combination forecast weights is demonstrated; which in turn lends support to the

justification of the use of the OLS technique to generate combination forecast weights

in the present study.xxi

In any particular combination-forecasting experiment, the optimal combination-

method perhaps depends on the particular design of the underlying model. For

example, Guerard (1987) and Lobo (1991) each employ a times-series model to

generate statistical alternative forecasts. The current study instead uses a risk-adjusted

expected-return model (the CAPM) to generate statistical forecasts. Guerard (1987)

uses cross-sectional data from the year previous to a forecast horizon to generate

combination forecast weights. Lobo (1991) uses cross-sectional data from the

previous two years. The current study uses cross-sectional data covering the five-year

period prior to an out-of-sample forecast horizon. 

Perhaps the ultimate indicator (in an ex-ante sense) of the optimal combination-

method in any particular combination-forecasting attempt is whether or not, and to

what extent constrained OLS leads to more efficient estimates of the in-sample

regression coefficients of the combining model.xxii 
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 Table 1A
Mean Absolute Forecast Error (MABE) Summary Table 

(In Percentages)
 (Note: all out-of-sample combination forecasts formed with forecast-weights

generated from the 1982-1987 coefficient estimation period.)

Forecast horizon:             1983-88               1984-89             1985-90

Model A (IBES) 10.2015 10.9918 13.0300

Model B (CAPM) 13.4298 14.2684 17.4012

Model 1                           10.3647 11.0038  12.9282 

Model 2                             9.9311          10.7829              12.8758

Model 3                             9.9405          10.7954              12.8764

Model 4                             9.9204          10.7622              12.8736

Notes:
Model A represents the financial analysts' forecasting mechanism (IBES).
Model B is the CAPM-based statistical forecasting model.
Model 1 is the combination model with weights generated by unconstrained OLS with
a constant.
Model 2 is the combination model with weights generated by unconstrained OLS with
the constant suppressed.
Model 3 is the combination model with weights generated by constrained OLS with a
constant.
Model 4 is the combination model with weights generated by constrained OLS with
the constant suppressed.
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Table 1B
Mean Absolute Forecast Error (MABE) Summary Table 

(In Percentages)
 (Note: all out-of-sample combination forecasts formed with forecast-weights

generated from the 1983-1988 coefficient estimation period.)

Forecast horizon:              1984-89             1985-90

Model A (IBES) 10.9918 13.0300

Model B (CAPM) 14.2684 17.4012

Model 1                           11.5455  13.6478 

Model 2                           11.2859          13.4120

Model 3                           11.0010          12.9212

Model 4                           10.7541          12.8710

Notes:
Model A represents the financial analysts' forecasting mechanism (IBES).
Model B is the CAPM-based statistical forecasting model.
Model 1 is the combination model with weights generated by unconstrained OLS with
a constant.
Model 2 is the combination model with weights generated by unconstrained OLS with
the constant suppressed.
Model 3 is the combination model with weights generated by constrained OLS with a
constant.
Model 4 is the combination model with weights generated by constrained OLS with
the constant suppressed.
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Table 1C
Mean Absolute Forecast Error (MABE) Summary Table 

(In Percentages)
 (Note: all out-of-sample combination forecasts formed with forecast-weights

generated from the 1984-1989 coefficient estimation period.)

Forecast horizon:  1985-90

Model A (IBES) 13.0300

Model B (CAPM) 17.4012

Model 1                           13.6652 

Model 2                           13.4267

Model 3                           12.9205

Model 4                           12.9248

Notes:
Model A represents the analysts' forecasting mechanism (IBES).
Model B is the CAPM-based statistical forecasting model.
Model 1 is the combination model with weights generated by unconstrained OLS with
a constant.
Model 2 is the combination model with weights generated by unconstrained OLS with
the constant suppressed.
Model 3 is the combination model with weights generated by constrained OLS with a
constant.
Model 4 is the combination model with weights generated by constrained OLS with
the constant suppressed.
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Table 2A
Mean Difference in Absolute Forecast Error (ABE) Summary Table

(In Percentages) 
(Note: all out-of-sample combination forecasts formed with forecast-weights

generated from the 1982-1987 coefficient estimation period.) 

Forecast horizon: 1983-88 1984-89 1985-90

E[ABE( Model A ) - ABE( Model B )] -4.3712 -3.2283 -3.2766

E[ABE(Model A) - ABE(Model 1)] -0.1632* -0.0121* 0.1018

E[ABE(Model A) - ABE(Model 2 )] 0.2705 0.1300 0.1543
E[ABE(Model A) - ABE(Model 3 )] 0.2610 0.1965 0.1536
E[ABE(Model A) - ABE(Model 4 )] 0.2812 0.2297 0.1565

E[ABE(Model 1) - ABE(Model 3 )] 0.4243 0.2084 0.0518
E[ABE(Model 2) - ABE(Model 4 )] 0.0107* 0.0208* 0.0023*
_________________
Notes:
Model A represents the analysts' forecasting mechanism (IBES).
Model B is the CAPM-based statistical forecasting model.
Model 1 is the combination model with weights generated by unconstrained OLS with
a constant.
Model 2 is the combination model with weights generated by unconstrained OLS with
the constant suppressed.
Model 3 is the combination model with weights generated by constrained OLS with a
constant.
Model 4 is the combination model with weights generated by constrained OLS with
the constant suppressed.
All values significant at the 5% level or better (except where otherwise indicated).
* denotes not statistically significant.

Table 2B
Mean Difference in Absolute Forecast Error (ABE) Summary Table
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(In Percentages)
(Note: all out-of-sample combination forecasts formed with forecast-weights

generated from the 1983-1988 coefficient estimation period.) 

Forecast horizon: 1984-89 1985-90

E[ABE( Model A ) - ABE( Model B )] -3.2766 -4.3712

E[ABE(Model A) - ABE(Model 1)] -0.5537 -0.6177

E[ABE(Model A) - ABE(Model 2 )] -0.2942 -0.3820

E[ABE(Model A) - ABE(Model 3 )] -0.0092* 0.1089

E[ABE(Model A) - ABE(Model 4 )] 0.2377 0.1590

E[ABE(Model 1) - ABE(Model 3 )] 0.5446 0.7266

E[ABE(Model 2) - ABE(Model 4 )] 0.5318 0.5411

_________________ 
Notes:
Model A represents the analysts' forecasting mechanism (IBES).
Model B is the CAPM-based statistical forecasting model.
Model 1 is the combination model with weights generated by unconstrained OLS with
a constant.
Model 2 is the combination model with weights generated by unconstrained OLS with
the constant suppressed.
Model 3 is the combination model with weights generated by constrained OLS with a
constant.
Model 4 is the combination model with weights generated by constrained OLS with
the constant suppressed.
All values significant at the 5% level or better (except where otherwise indicated).
* denotes not statistically significant.
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Table 2C
Mean Difference in Absolute Forecast Error (ABE) Summary Table

(In Percentages)
(Note: all out-of-sample combination forecasts formed with forecast-weights

generated from the 1984-1989 coefficient estimation period.) 

Forecast horizon: 1985-90

E[ABE( Model A ) - ABE( Model B )] -4.3712

E[ABE(Model A) - ABE(Model 1)] -0.6351

E[ABE(Model A) - ABE(Model 2 )] -0.3966

E[ABE(Model A) - ABE(Model 3 )] 0.1096

E[ABE(Model A) - ABE(Model 4 )] 0.1053

E[ABE(Model 1) - ABE(Model 3 )] 0.7448

E[ABE(Model 2) - ABE(Model 4 )] 0.5019

_________________
Notes:
Model A represents the analysts' forecasting mechanism (IBES).
Model B is the CAPM-based statistical forecasting model.
Model 1 is the combination model with weights generated by unconstrained OLS with
a constant.
Model 2 is the combination model with weights generated by unconstrained OLS with
the constant suppressed.
Model 3 is the combination model with weights generated by constrained OLS with a
constant.
Model 4 is the combination model with weights generated by constrained OLS with
the constant suppressed.
All values significant at the 5% level or better. 
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Table 3A

Ordinary Least Squares (OLS) with White's Corrective Procedure

Horizon: January 1982-87 Sample Size: 461 firms
α β γ

________ _______ ________
(Unconstrained OLS)

estimated coefficients    2.8962 0.6679 0.1424

(t - statistic)                    (1.3976)             (3.9418)        (1.0087)     

standard error                          2.0723               0.1694          0.1411

(Unconstrained OLS with the constant supressed)

estimated coefficients NC   0.8454 0.1387

(t - statistic)                                             (13.4611)       (0.9645)     

standard error                                                    0.0628          0.1438

-------------------------------------------------------------------------------------------------------

(Constrained OLS)

estimated coefficients    0.6615 0.8287 0.1713

(t - statistic)                    (0.3696)             (6.6555)        (1.3753)     

standard error                          1.7897               0.1245          0.1245

(Constrained OLS with the constant supressed)

estimated coefficients NC   0.8522 0.1478

(t - statistic)                                             (11.9497)       (2..0718)     

standard error                                                    0.0713          0.0713

tt25-tt15-tit   )()(    a µγβα +++= gg
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Table 3B

Ordinary Least Squares (OLS) with White's Corrective Procedure

Horizon: January 1983-88 Sample Size: 459 firms
α β γ

________ _______ ________
(Unconstrained OLS)

estimated coefficients    3.8284 0.6413 −3.4312

(t - statistic)                    (2.9184)             (6.7665)      (-1.6103)     

standard error                          1.3118               0.0948          2.1308

(Unconstrained OLS with the constant suppressed)

estimated coefficients NC   0.8676 −2.9115

(t - statistic)                                             (13.2334)      (-1.4215)     

standard error                                                    0.0656          2.0481

-------------------------------------------------------------------------------------------------------

(Constrained OLS)

estimated coefficients    3.2242 0.6717 0.3283

(t - statistic)                    (2.5742)             (7.2487)        (3.5426)     

standard error                          1.2525               0.0927          0.0927

(Constrained OLS with the constant suppressed)

estimated coefficients NC   0.8632 0.1368

(t - statistic)                                             (13.9049)       (2.2030)     

standard error                                                    0.0621          0.0621

tt25-tt15-tit   )()(    a µγβα +++= gg
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Table 3C

Ordinary Least Squares (OLS) with White's Corrective Procedure

Horizon: January 1984-89 Sample Size: 464 firms
α β γ

________ _______ ________
(Unconstrained OLS)

estimated coefficients    1.8322 0.8298 −0.4913

(t - statistic)                    (0.7095)             (4.7618)      (-0.2559)     

standard error                          2.5822               0.1743          1.9194

(Unconstrained OLS with the constant suppressed)

estimated coefficients NC   0.9494 −0.4689

(t - statistic)                                             (14.9484)      (-0.2442)     

standard error                                                    0.0635          1.9201

-------------------------------------------------------------------------------------------------------

(Constrained OLS)

estimated coefficients    1.7599 0.8314 0.1686

(t - statistic)                    (0.6765)             (4.7614)        (0.9653)     

standard error                          2.6016               0.1746          0.1746

(Constrained OLS with the constant suppressed)

estimated coefficients NC   0.9469 0.0531

(t - statistic)                                             (14.8639)       (0.8328)     

standard error                                                    0.0637          0.0637

tt25-tt15-tit   )()(    a µγβα +++= gg
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Footnotes:
i  See  Terregrossa  (1999).
ii  Early work in this area focused on combination forecasts of macroeconomic

variables. See, for example, Newbold and Granger (1974), Cooper and Nelson (1975),

Granger and Newbold (1975), Makridakis and Winkler (1983), Bischoff (1989), and

Fair and Shiller (1990). For examples of combination forecasts of financial variables

(eg., firm earnings) see Malkiel and Cragg (1980), Fried and Givoly (1982), Ashton

and Ashton (1985), Conroy and Harris (1987), Newbold, Zumwalt, and Kannan

(1987), Guerard (1987) Lobo (1991), Lobo (1992), and Terregrossa (1999).)
iii  See, for example, Nelson (1972), Cooper and Nelson (1975), Clemen (1986),

Guerard (1987), Lobo (1991), and Terregrossa (1999).
iv  The OLS technique is appropriate when there is believed to be temporal stability of

the weights underlying the combination forecast. If this is not the case then other

weighting schemes may be more appropriate, such as the Granger-Newbold (1975)

method which gives more weight to forecasts which have performed better in the

recent past and which allows for a non-stationary relationship between respective

forecast performances. See Bischoff (1989) for a thorough discussion of this issue.
v In a related paper (Terregrossa (1999)) all employed forecast weights were rounded

approximations, based on estimated coefficients from constrained OLS; actual

regression coefficients were not utilised as forecast weights. In the present study

actual regression coefficients generated from in-sample regressions are employed as

forecast weights for out-of-sample combination forecasts. Forecast weights are

generated from both unconstrained and constrained OLS, to allow more direct and

meaningful comparison with previous studies in this area.
vi See  Terregrossa  (1999).
vii The  Capital Asset Pricing Model (CAPM) was jointly developed by Markowitz

(1959), Sharpe (1964) and Lintner (1965).
viii See Rozeff (1983).
ix See  Terregrossa  (1999).
x The justification of the appropriateness of the use of OLS to generate forecast

weights presented in Terregrossa (1999) is also applicable in the present study.
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xi See  Terregrossa  (1999).
xii See  Terregrossa  (1999).
xiii See section V, part B which explains the CAPM estimation technique.
xiv The growth rate extracted from the CAPM forecasting model is considered to be

the five-year average growth rate of EPS, because a five-year risk-free rate (Rf), taken

as the yield-to-maturity on a five-year U.S. government security; is employed in the

CAPM when estimating E(Ri), (following precedent set by Rozeff [1983], and later

applied by Terregrossa [1999]).
xv This type of precise measure of dividend-paying-ability was successfully applied

by Sorensen and Williamson (1985) in identifying under-and over-valued stocks; and

also successfully applied by Terregrossa (1999) and Terregrossa (2001) in

establishing an independent information content in CAPM generated forecasts.
xvi Specifying the model in this manner has various benefits, as pointed out in

Terregrossa (1999). Among them, setting the pay-out ratio at a constant level (0.45 in

the present study) mathematically ensures the equality of the growth rates of

dividends-, price-, and earnings-per share. This allows the extraction of a single

earnings growth rate from the model, without having to make any restrictive

assumptions about a firm's actual pay-out policy. Modelling dividend-paying-ability

in this manner also allows the inclusion of non-dividend-paying as well as dividend-

paying firms in our samples.  This results in a greater generalisation of the findings.
xvii See Terregrossa  (2001), in which a diagnostic analysis was applied to the

restricted OLS regressions, employed to demonstrate an independent information

content in the CAPM-based EPS growth forecasts. In the present study the diagnostic

analysis is applied to the unrestricted, as well as the restricted OLS regressions.
xviii For a detailed list and explanation of the criteria each firm must satisfy to be

included in a given sample, see Terregrossa (1999). The same criteria is exactly

applicable in the present study.
xix See Terregrossa (1999).
xx Although the improvements in the forecasting errors are slight, small differences in

compound growth rates may translate into large changes in the absolute level of future

expected earnings. Current stock-value is a function of the absolute size of future

expected-earnings.
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xxi This finding of a temporal stability of the in-sample, restricted OLS regression

coefficients employed as out-of-sample combination forecast weights in the present

study, supports and strenghtens a similar finding in a previous study (see Terregrossa

[1999]).
xxii  Unfortunately, no direct comparison of OLS regression results can be made with

the Guerard (1987) and Lobo (1991) studies, since the regression results of those

studies are not explicitly reported.


