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Abstract

Nowcasting regards the inference on the present realization of random variables, on the
basis of information available until a recent past. This paper proposes a modelling strategy
aimed at a best use of the data for nowcasting based on panel data with severe deficiencies,
namely short times series and many missing data. The basic idea consists of introducing a
clustering approach into the usual panel data model specification. A case study in the field

of R&D variables illustrates the proposed modelling strategy.
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1 Introduction

Macro-economic time series are typically available with some lags, different by variables and by
countries. In particular, R&D variables are published with a delay often larger than for other
macro-economic series such as GNP, unemployment or budget deficit. Moreover, designing eco-
nomic policy should be based on the present state of the economy rather than on the state of the
economy corresponding to the publication of macro-economic data. This raises the necessity of
evaluating the present values of some series, as R&D data, on the basis of available, and delayed,
data. Borrowing from the meteorological literature this problem is called "nowcasting” rather
than ”short-term prediction” in order to emphasize the fact that when nowcasting, the time of
availability of the data is not the same for all variables, in particular for the possible predictors,
and to emphasize that the horizon of prediction is ”to-day” rather than ”to-morrow”. This paper
puts forward a modelling strategy for nowcasting values from a panel of national macro-economic
time series taking into account severe shortcomings in the data base, namely very short time series
and many missing values. Marcelino, Stock and Watson (2001) considers a rather close problem of
forecasting from panel data with severe deficiencies. The difference, with respect to our problems,
are twofold: Marcelino, Stock and Watson (2001) are concerned with forecast rather than nowcast
and work, among others, with monthly data rather than yearly data. Their objective is different
as they want to compare the performances of several modelling strategies rather than to look for
a ”best” use of the available data in a specific case.

In classical panel data analysis one pools all the country data together and specifies a unique
model holding for all the countries but allowing for some heterogeneity between the countries.
This is typically done either by keeping a country specific intercept in the model (fixed effects)
or by incorporating this heterogeneity in the innovation term (random effects). By so-doing one
avoids estimating models country by country that, in the case of small samples, suffer from the
problem of imprecise parameter estimates.

In this paper we propose an alternative method for pooling the countries together into one
model by incorporating into a unique model clusters of countries specific to each coefficient to
be estimated. This leads to a model that is both parsimonious and flexible in terms of adjusting
to country specificities. This approach also allows that countries with deficient data may draw
advantage from data of coefficient-similar countries. From a mean-squared error point of view,
this approach may be interpreted as a trade-off between creating a bias, due to non exactly true
restrictions, and reducing a variance by lowering the number of parameters and increasing the
amount of data oriented toward a particular parameter. That is, we look for a flexible pooling
approach that balances unwarranted restrictions of equality against unnecessary loss of degrees

of freedom. Islam, Fiebig and Meade (2002) considers also a forecast model for deficient panel



data in the field of telecommunication demand. They propose a different pooling procedures that
may accommodate an environment with still shorter and also unequally short time series, with
no within series missing data and with an economic argument suggesting a between constancy of
parameters.

A major emphasis is put on making the modelling strategy explicit in order to foster a clear
interpretation of the empirical results, and on developping models, the results of which are com-
parable between countries and easily updatable as new data becomes available. This is done by
distinguishing clearly those steps that are essentially computational and other steps that require
careful examination of the intermediary results.

The paper is organised as follows. The next Section considers, within the framework of the
mean-squared forecast error, the problem of specifying a conditional model for nowcasting pur-
poses. The third section gives a detailed description of the modelling strategy. Emphasis is put
on motivating each step of the strategy. The fourth section presents a case study to R&D expen-
ditures. The work underlying this paper is motivated by a problem in the field of public R&D
expenditures for the European Community countries. An application based on data from Eurostat
exemplifies the suggested strategy. The last section provides some concluding remarks and some

recommendations for the future use of the model.

2 Evaluating the Mean-Squared Forecast Error

A basic argument for building a forecast, or nowcast, from a conditional model rather than from
a marginal model may be the conviction that the conditional model generating y|Z enjoys better
statistical properties (e.g. of structural stability) than the marginal y data generating process
(DGP) and eventually allows to better accumulate the empirical knowledge on the parameters
characterizing the y-DGP.

As an illustration, for the linear model, this boils down to compare two predictors for g, 1,
namely §'y;_, (where y = (Yn,¥n—1,--,Yn—p+1)’, @ vector of available realizations) under
a linear autoregressive specification of order p, or B’2n+1 (where Z,11 stands for a predicted
realization of z,,11) under a conventional linear model specification. Note that the vector z,1 may
involve past or present realizations but we specifically focus the attention on conditional models
that involve contemporaneous exogenous variables. In nowcasting problems, 2,41 may contain
variables available with equal or lesser lags than the variable to be nowcasted. If (y;,z;) € R?
were i.i.d., the predictors in the autoregressive case and the OLS-based prediction case are both
equal to y. Therefore, the actual issue with forecasting, or nowcasting, regards essentially the non

i.i.d. case.



Let us now formalize these ideas and demonstrate that an adequate modelling strategy urges

parsimonious models. Consider a standard linear model
y=ZpB+e (1)

where

—

. y is an n-dimensional vector of n observations on a variable to be forecasted or nowcasted.
2. Z is a data matrix of dimension n X K of n observations on K predicting variables.
3. B is a K-dimensional parameter vector.

4. e is an n-dimensional residual vector with E(e) = 0 and V(e) = V(y|Z) = a?‘zln.
The notation 0'62‘  refers to the fact that the conditional variance depends on the selection of
the explanatory variables, and possibly on the values of the explanatory variables as would

be the case with heteroskedasticity.

We are interested in building an inference on y¢, a value of y assumed to be generated by the same
model as above (f for "future” relatively to the most recent available realisation of the variable

y), namely
yr =Bz + e ()

with Couv(er,e) =0, E(ef) =0, V(ey) = 0'62‘2. For this purpose, one may consider the bi-linear

predictor
gy =B'% 3)

where 8 = (Z'Z)~'Z'y and Z; is some prediction for the value of zy.
When the value of z; is known, or corresponds to a controlled variable, one would specify

2y = zy and the mean-squared forecast error (MSFE) is known to be equal to
E (7 —yp)?lzs, Z] = 025 L+ 25(Z2'Z2) 2] . (4)

In the case where there is a constant in the model:

, A 1
Z:[i Zz] 7'7 = _ 2= (5)
Zhi 747, P,

where i'i = n, i'Z, is a (K — 1)-dimensional vector and Z}Z, is a squared matrix of order (K — 1),

it is also known that

N 1 _ _ B
E[(0r —ys)lz5, 2] = 024 [1 + o+ (22 - 5) (Z3NZo) ™ (22y — 2) (6)



where N = I,, —i(i'i)~'i' = I,— 24i’ and z5 = n~' Z}i is the column vector of the sample averages,
which shows that the MSFE increases as zay goes further from 2 (details in the Appendix). For
this case of known zy, Danilov and Magnus (2002) performs a detailed analysis of the MSFE when
the regressors are determined through pretesting procedures.

Suppose now that z; is not anymore controlled but estimated through 2, liable to a prediction

error Zy — zy. In such a case, we need more hypotheses. Let us consider the following ones:
H1: ¢;llelZ, 2y
H2: 2z, = f(2).
Under these two hypotheses the MSFE may be evaluated in two steps as follows:
E [(B'ff — Bz —€p)’l2y, Z] =0l [L+ 202" 2)" oy + [B' (2 — 29))°] (7)

Integrating out the unknown value of z¢, we obtain

B[(B'2 = B2 = e212] = 02, {(1+ 2(2'2) 7" 2¢) + B [Bzs — 2) (s = 2)'|Z1 B} (8)
or

E[@r—vp)’12] = od,{(1+23(2'2)" %)

+8' [V(2412) + (B(2f12) — 25) (B(2¢|Z) — 2¢)'] B} . 9)

Consider now two sets of competing predictors. We want to know under which conditions one
set of predictors will provide a smaller MSFE than the other one. For the sake of presentation, we
concentrate the attention on the analysis of the situation leading to the MSFE in (9), i.e. bilinear
predictor based on an OLS of the training sample, independent sampling (H1) and predicted
values of the z variables based on the training sample (H2). From (9), it is seen that three aspects
compete for a "best” forecast. Firstly the conditional variance afl 4> Which would tend to favour
a larger set of predictors, secondly, the sampling error when estimating the coefficients from the
training sample, i.e. 2}(Z’Z)’12f and thirdly the sampling error when forecasting the predictors
themselves, captured by the term ' [V (24| 2) + (E(27]Z) — 24) (E(2¢]2Z) — 24)'] B.

The first aspect may be illustrated by considering whether to add, or not, a further predictor.

Let us partition Zs in (25) into [Zs1 Za2s]. When y, Z5 are jointly normal, we have
V(Y| Za1) — V(Y| Zor, Za2) = Cov(y, Zoz| Zo1)'V (Zaz| Za1) ™ Cov(Zaz, y| Zo1) (10)

This difference is always non-negative definite and suggests that a larger decrease in the residual
variance is obtained when the covariance between y and Zs», conditionally on Zs; is large, and
the conditional variance of Zsy given Zs; is small. Evaluating a similar difference for the other

two terms, and for the combined impact of them, as described in (9) is quite cumbersome.



Furthermore, the choice of the regressors should also take into account the quality of the data
actually available for a potential regressor. To illustrate this aspect, suppose that a predictor Z
is not available for a potential of N observations but only n of those data are available. A simple
case is the following: denote the actually available part of Z by Z; and write Zg = SZ where S is

an n X N random selection matrix. Let us assume a rather natural missingness condition, namely
H3: Sz, Z.

Under this condition the term V' (z¢|Z) becomes
V(24152) = E[V(212)|SZ] + V [E(24|2)|S Z] - (11)

(Indeed: Sz, Z = 2y LS|Z = 2y LS, Z|Z = 2 L.SZ|Z, for details see e.g. Florens et al., 1990,
Section 2.2.) Furthermore, the predictor Z; is not anymore a function of Z but a function of
Zy and the estimation will be based on Sy, SZ rather than on y and Z, eventually deteriorating
the MSE of [} unless some imputation device is used for some missing data, a possibility that
creates further complexity in the evaluation of the MSFE. Therefore, V (2¢|SZ) is unaffected by
the missingness, i.e. V(z¢|SZ) = V(zs) in the independent case when z; 1L Z holds along with
H3, but in the dependent case V(z;|SZ) > V(zy|Z) on SZ-average.

We conclude that the evaluation of MSFE (B’ %) is substantially more complicated than MSFE
(B' z) and, that the inclusion of an additional regressor in the model has mixed effects on MSFE
(3'2) if only because of the forecasting error of the additional 2. In case of missing data this
additional predictor may behave poorly because of its missingness pattern and more dramatically,
the missingness pattern of the additional predictor may spillover on the performance of the old
predictors by impeding the use of data available for y and Z; but not for Z,. It should be clear
that the previous arguments call for extremely parsimonious models, an important message of

practical interest for this paper.

3 Modelling Strategy

3.1 Basic Issues

The context of nowcasting R&D variables from poor panel data calls for specific desirable proper-
ties fo the modelling strategy, namely a proper account of the data quality, an easy updatability

and an appropriate dynamic specification.

A proper account of the data quality

In order to face the particular data deficiencies, we suggest to combine two strategic options.

Firstly, we keep the number of exogenous variables minimal. Indeed, nowcasts conditional on



uncontrolled explanatory variables require nowcasting those explanatory variables. Most of the
time the missingness pattern for possible predicting (or, explanatory) variables is different among
variables and from country to country. Therefore, increasing the number of predicting variables
implies a drastic decrease in the number of complete observations and eventually leads nowcasting
to become widely stepwise, in the sense of making nowcasts on the variable of interest dependent
on nowcasting more predicting variables. Secondly, we use somewhat subtle panel data techniques.
The basic idea is the following: Separate regressions for each country leads to extremely unreliable
estimation because the number of degrees of freedom is never large and because some countries
suffer at the same time from many missing data and large residual variances. The standard
models for pooling panel data (see e.g. Baltagi, 1995) typically involve equality constraints among
parameters corresponding to different countries: those constraints, once not carefully controlled,

may deteriorate, rather than improve, the statistical quality of the final results.

An easy updatability

The updating of the nowcasts should be made fast and easy because, as frequently happens in
nowcasting problems, data are flowing continously with variable lags. When new data become
available it should accordingly be straightforward to incorporate this new information into the
model and to update the nowcasts.

As a matter of fact, the actual difficulty in model updating concerns the judgemental aspects
of the model specification: the purely computational steps are indeed much alleviated by the re-
cent, developments of statistical and econometric packages. Therefore, easy updatability crucially
depends on making the process of model building explicit, on clearly separating the steps of judg-
ment from those of computations and on keeping the need for judgemental ingredients minimal.

These requirements ground the model building process to be exposited.

An appropriate dynamic specification

From an empirical point of view, most macro-economic series under analysis are not stationary;
series in first differences are typically closer to stationarity than absolute levels, a well known
issue in the litterature on co-integration, see e.g. Hamilton(1994). From a structural-economic
point of view, the R&D data are not likely to be mutually independent (even conditionally on
explanatory variables). In particular, because the feasibility of actual decisions crucially depends
on (the level of) previous decisions. For instance, governments often tend to justify budgetary
decisions in terms of rate of growth, even if the final balance of the budget is operated in absolute
levels. It is accordingly unpalatable to stick to a purely i.i.d. framework: a minimum of dynamics

should be striven for, taking nevertheless into account the very short time span of the series.



Furthermore, the countries under analysis are characterized by widely different sizes (e.g. USA
and Belgium). Thus the variables of interest are to be expected of different orders of magnitude.
Taking into account these different aspects, we develop a model where the variables are taken
in first log differences (& percentage differences), so as to ensure comparability of different sizes
of the countries, to provide a workable amount of dynamics and to avoid artificially low residual
variances (as compared with models in level). Notice also that differencing renders the models’
forecasts robust to shifts in the coefficients (see e.g. Hendry and Clements, 2001, p. 9) and allows

to use ordinary least squares estimation procedure.

To conclude, the main issue is a "best use” of the available data. It has to be accepted that
poor data are unlikely to produce rich models. Too sophisticated a model typically ”overfits” the
sample and usually deteriorates the quality of the forecasts/nowcasts performance because it is not
robust with respect to structural changes whereas, at the same time, it gives an unduly optimistic

feeling through artificially low residual variances.

3.2 Dealing with missing data and ruptures

Let us consider two important data deficiencies. Firstly, the data can be missing for some periods
and secondly there maybe abrupt changes in the time series due to structural economic changes

or to redefinitions of macro-economic variables, just to give two examples.

Imputation of within-sample missing values.

In general, time series in levels on macro-economic or on policy time series are rather smooth.
This feature suggests a simple method for the imputation of the missing values, based on a near-
est neighbour method: draw a line between the two nearest points covering the missing value(s)

and interpolate.

This method uses the time dimension of the data to provide a simple and obvious solution to
the missing value problem. Indeed, the treatment of missing values by means of this mechanical
and atheoretical rule is motivated by the nature of the data. For policy variables and macroeco-
nomic time series, the occurence of missing values can be reasonably regarded as independent of
the realized value of the aggregates. This contrasts with the unit non response of microeconomic
data (individuals, households, firms, ... ), where the probability of scoring a missing value may be

sensitive to different realized values.

It should be stressed that this method does not apply to extrapolation, i.e. imputation of
missing values outside of the time span of the available data. Extrapolation with this method,

meaning in this context backcasting, could be inadequate because it unwarrantedly supposes that



the time trend goes back into the past. For data missing at the extremes of the sample, we make
no imputation. We perform no backcasting of the data missing at the beginning of the sample.
For data missing at the end of the sample, we use our model of nowcasting for the variables of
interest, in this case the R&D variable, and another method, explained below, for the predictors.
Thus, after performing this imputation procedure, we are left, for each variable and country, with

data missing at the ends of the sample only.

Control of the ruptures.

In general, the forecasting performance of a predictive model crucially depend on an adequate
account of the eventual ruptures in the series under analysis. Given the short time span of the
series, and the substantial presence of missing data, we look for sturdy and simple procedures for

detecting (significant) ruptures in the series.

For each individual time series we proceed as follows:
1. Adjust, by OLS, a simple quadratic trend model:
Y =a1+ast+as t?+ ¢ (12)
and define the corresponding residuals:
e =1y — Gy — Qo t — ag 2. (13)

Note that the quadratic trend is added to gain some protection against possibly explosive

or damping series.

2. Control whether the first differences in the sequence of the residual terms suggest some

ruptures. More specifically, define
€t — €1 = d;e (14)

where d; is the vector transforming the vector of LS residuals, e, into the first difference of

its t-th component.

A simple diagnosis of rupture is then obtained by considering whether |e; — e;_1] is signifi-

cantly different from its expected value, namely 0. For this purpose we evaluate
Vi) = s°M
’UAt - V(et — et_l) = 82 d;Mdt (15)

where M is the symmetric idempotent matrix that projects onto the complement of the

space generated by the explanatory variables.



3. Construct a rupture indicator in the form of a binary diagnosis as follows
Tt = Lo, e,y |>2 Vir}- (16)

When dealing with the series transformed into first log-differences, we shall consider that the first
difference corresponding to a significant rupture (r; = 1) of the series in arithmetic terms is likely

to be outlying.

3.3 Selection of the variables and country-wise estimation

For each variable to be nowcasted, we examine country by country the correlation structure with
all reasonable candidates of prediction variables and try to detect common patterns shared by all
or most countries. More specifically we first look, within each country, at the absolute value of
the correlation coefficient to decide whether it is likely to be a ”good” regressor. Next we compare
between all countries the signs and the absolute values of the correlation coefficients to check for
common parameters. Note that each correlation is computed on the basis of the available pairs of
observations, eventually accepting a different number of observations for the different correlations.

Then, we select a set of explanatory variables for each variable to be nowcasted.

In a next step we continue to treat each variable to be nowcasted separately and estimate
country by country regressions based on different choices of the explanatory variables selected in
the previous step. We then look for specifications the coefficients of which are as stable and/or

significant among countries as possible.

3.4 Pooling and clustering

The regressions in the previous step are typically based on a small number of observations. As
we will see in the application for some countries the number of observations may be as small as
5. Nowcasting on so small samples would eventually be unreliable. It is accordingly important to
try to spill over the information available for one country to another country. Crude pooling, i.e.
a unique model with identical parameters for all countries, would be bound to dramatic specifi-
cation errors. Thus an intermediate solution consists of a group-wise pooling for each regression

coefficient seperately.

We start with the following model:
Yit = Pri+BoiTou+ Bai T3+ ...+ Bri Tkt + €it (17)

wherei =1,...,nand ¢t = 1,...,T;. This is a linear model that has common exogenous variables

with country specific parameters and can be estimated by Ordinary Least Squares (OLS). For each



regression coefficients of the selected specification, B; %k = 0,..., K, we cluster the countries
into G groups. The clusters may be defined either by means of the quantiles of the empirical
distribution of the estimates or by dividing the range of the estimates. More formally the model

can be written as follows.

Yit = Brgi(i) T B2gati) T2t + B3,g50i) T3t + -+ + B gx (i) TK.it + €it (18)
g1(1) e {1,...,G1} : group of country 7 for 3,
g2(i) € {1,...,G2} : group of country i for 3,
gr(i) €{1,...,Gg} : group of country 7 for Sk

This results in a model that is still flexible (Hf:1 Gy, potentially different countries) but has at
most (Zszl G.) parameters whereas a crude pooling (all countries identical) would involve (K)
coefficients, standard panel (country specific intercepts and identical slopes) n+ K — 1 coefficients,
and models different for each country n K coefficients. In the case study we will specify G < 4. By
so-doing we specify 4 different values for each coefficient. Thus, with K coefficients and n countries
we obtain an overall model with 4 K coefficients. Note however that those 4 K coefficients provide
the possibility of recognising 4% different types of countries, a very flexible specification indeed.
In some cases, the homogoneity of the estimates may lead to less than 4 groups.

Equation (18) provides a unique model across countries that may be written in the usual form
(1) (details given in Appendix I). Thus, under an i.i.d. specification for the residuals, all the
coefficients S g, (;) may be estimated by OLS at once.

3.5 How to nowcast?

Given that the models are built in log-differences:
Alny; = Burgi) + B2.g.0) Al Zoit + B3,g,0) ANz i + ...+ Br g (i) AlnTr i + €t

some care has to be taken for transferring nowcasts to the arithmetic scale of the variables. Be-
cause of the scarcity of the data, no account for the nonlinearity of the exp-log transformation
will be taken. Let us denote by )A/i,TiJrh, the nowcasted value of endogenous variable for the i-th
country, h periods ahead from the sample available up to time T;. After some simple algeabraic
manipulations, we obtain the following nowcasters (for the sake of exposition we only consider one

explanatory variable):

10



Nowcast at time T; + 1

Ui T+l = Yi1; €Xp (51,91(1') + ﬂQ,gg(i) Aln ﬂ?z‘,T;H))

R Y B2,95(0)

e e (19)
ZiT,
Nowcast at time T; + h
UiTi+n = €xp (%1(1') + By E[AIn xi,TﬁhIITi]) x Blyi.1i4n-1|Tr;]

N ~ - B92(i) .

= ela® {E Mﬁﬂ}} X Elyi, 1 +n-1T7] (20)
i, T+h—1

where Zr is the information set up to time 7. As already pointed out for the nowcasts we need
to estimate E[AIn X; 74n|Z7].
The nowcasts of the explanatory variables are done by using the best of the following four

models

Tt = mté&

Ty = Mmtrtte

T = ntnt+ntite
Tt = Y1 +72Ti-1 T €

where best means the model that minimizes

ler| +|er—1| + |e -2
R2 ’

(21)

i.e. a model is deemed to be ”good” if the sum of the last three residuals (in absolute values) is

small and if the fit is good.

3.6 Model validation

The poor quality of the available data also raises substantial problems for validating a proposed
methodology. Indeed most hypotheses involved in the model building are not amenable to formal

testing. The validity of the proposed models rests largely on a careful examination of two aspects.

First, the models should have an acceptable economic interpretation. More specifically, the
model should be partly, but not completely, structural; i.e. partly because a pure reduced form

approach is likely to be unstable in time, due to structural changes, and among countries; but

11



not completely structural because a purely structural approach would require much a richer data
base. Thus a compromise is required. Furthermore, economic meaningfulness reinforces a better
comparability among countries. In the case study, a particular attention is paid to exogeneity

considerations.

Second, the nowcasting performance should be good, or at least acceptable, for every country.
A particular attention should be paid to the following issues:
i) Evaluate the adopted clustering of parameters by controlling the structures of the residuals
country-by-country and comparing these structures between an unreduced model and the final
clustered model.
ii) Control in the final model whether the flexible constraints approach produces reasonably precise
estimations (in particular the standard errors and the ¢-statistics).
iii) Control the fit of the final model with a particular attention to the right end of the sample.
iv) Control the nowcasting quality of the exogneous variables, in particular, the quality of the fit
at the right end of the sample and the overall fit.

From a pragmatic point of view, the poor data quality suggests that only visual checkings

rather than formal tests are workable but that those checks should be made carefully.

4 A Case Study

4.1 Introduction

This section presents a case study that motivated the development of the modelling strategy just
sketched. The general framework of interest is the nowcast of macro-economic variables related to
the field of R&D (Research and Development) for 18 countries (14 of the European Community,
along with Iceland, Japan, Norway and USA) and is the object of Mouchart and Rombouts (2003).
The presentation in this section concerns only the case of the so-called ” Total Government Budget
Appropriations or Outlays for R&D 7 listed as GBAORD in the Eurostat data system. This
Section makes the proposed modelling strategy more explicit for a particular case and illustrates

numerically the main steps.

4.2 Correlations structures

We start by surveying the economic literature bearing on R&D (Mouchart and Rombouts, 2003).
From this examination, we first consider the macro-economic implications of the micro-economic
analysis of R&D and innovation variables. Several issues are of particular concern. Firstly, at the
aggregate level, we determine which variables are plausibly exogenous: in a simultaneous equation

approach, we look for a reduced form equation rather than a purely (multi-equation) structural

12



form model. Indeed, an economically meaningful explanatory variable is more likely to be asso-
ciated with a structurally stable effect than a variable selected on the basis of a purely random
sampling effect of statistical association, as would be obtained, for example, from a stepwise regres-
sion algorithm in a data-mining environment. Secondly, we try to evaluate which of the exogenous
variables are likely to characterize the economies of most countries under analysis. In view of the
conclusions of Section 2 above, we also pay a particular attention to data availability: the effect
of a poorly available variable can only be measured with poor statistical precision and eventually
deteriorates the nowcasting performance, as compared with a model where such variables would
be deleted.

From the economic literature, we draw a list of five variables that may be reasonably considered
as exogenous, namely growth in real GDP (denoted GDP for simplicity), general government net
balance as a % of GDP (eb060 ), growth in General government consolidated gross debt as a %
of GDP (dleb070 ), growth in total employment-Fulltime (dlemp) and growth in the employment
indicator (dlemp64). Real means that the data are first divided by the country specific deflator.
We select a very small number, namely one or two, for nowcasting purposes. This selection is
based on Table 1 of correlations between the variable to be nowcasted, namely GBAORD, and
each of the potentially reasonable regressors. Table 1 also gives (in parentheses) the sample
sizes corresponding to each correlation: a quick glance at those numbers gives a first idea of the
magnitude of the missing data issue.

Table 2, below, summarises the results of Table 1 in terms of the between country stability of

absolute values and of signs.

4.3 Country by country regressions

From Table 2, we propose in Table 3 different regressions to further explore the data at hand, on
a country by country basis. This selection takes also into account the data availability.

We now have to examine the estimations corresponding to Table 3, namely seven regressions
for each of the eighteen countries. These results are given extensively in Mouchart and Rombouts

(2003) and, because of space limitations, are summarized as follows.

1. In general there is not a severe missing data problem with the GBAORD variable. The
problem lies with the availability of explanatory variables except GDP growth.

2. Often, GDP is a good predictor but its quality is unstable over the different countries.
3. The other explanatory variables are either bad or unstable.

4. Some countries, Greece for example, seem to have no potential candidates as regressors.
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Table 1: GBAORD Correlations

Country GDP eb060 dleb070 dlemp dlemp64
Belgium -0.038 (20) | 0.478 (11) | -0.211 (10) -0.305 (19) 0.038 (10)
Germany 0.248 (9) 0.189 (9) -0.029 (9) 0.451 (9) 0.644 (8)
Denmark 0.338 (17) | 0.173 (8) -0.811 (6) 0.184 (17) 0.818 (7)
Spain 0.402 (19) | 0.658 (4) -0.757 (9) 0.333 (19) 0.799 (9)
Greece 0.259 (20) | 0.324 (11) | -0.131 (10) 0.040 (16) 0.025 (10)
France 0.202 (20) | 0.720 (11) | -0.759 (10) 0.513 (17) 0.746 (10)
Finland -0.014 (20) | -0.001 (11) | 0.105 (10) 0.135 (20) -0.069 (10)
Italy 0.246 (18) | 0.375 (9) -0.525 (8) 0.361 (18) 0.592 (5)
Ireland 0.328 (10) | 0.207 (10) | -0.263 (10) 0.204 (10) -0.098 (10)
Netherlands | 0.569 (19) | 0.361 (10) | -0.695 (9) 0.789 (12) 0.591 (9)
Portugal 0.284 (12) | 0.084 (11) | -0.695 (10) 0.302 (12) 0.333 (10)
Sweden -0.048 (17) | 0.012 (5) 0.589 (3) 0.100 (10) 0.028 (7)
UK -0.398 (20) | 0.100 (11) | 0.036 (10) 0.121 (6) 0.274 (10)
Iceland 0.451 (9) 0.094 (9) -0.168 (9) NA NA
Norway -0.144 (18) | -0.376 (8) | -0.874 (4) NA NA
Austria 0.236 (15) | -0.021 (11) | 0.151 (10) 0.379 (12) 0.495 (6)
US 0.408 (18) | -0.228 (18) | 0.354 (18) NA NA
Japan 0.185 (12) | -0.420 (12) | 0.310 (12) NA NA
NA means Not Available.
Table 2: Interpretation of GBAORD correlations

variables stability of absolute values stability of signs

GDP ok except BE, FI, SE, NO ok except UK, NO

eb060 ok except FI, PT, IS, AT ok except NO, US, JP

dleb070 ok except DE, UK, FI ok except SE, US, JP

dlemp ok except GR ok except BE

dlemp64 ok except B, GR, FI, IE, SE ok

ok in the stability of absolute values means not bad. ok for the stability of signs
means either that all correlations have the same sign or that values for those countries

different from the most frequent signs are small.
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Table 3: GBAORD: Potential regressions

Model | GDP | eb060 | dleb070 | dlemp | dlemp64
1 X

2 X X

3 X X

4 X X

) X X X

6 X X

7 X X X

5. Some countries, for example Norway and Iceland, have barely any results available due to

the missingness of the data.

6. US and Japan have a lot of missing values for the explanatory variables. For comparable

models they have similar coefficients.

Given these conclusions, we decide to push further model 1 (GBAORD nowcasted by GDP growth).
It should be mentioned that when nowcasting other R&D variables this step of the modelling
strategy was rather intricate in view of the missing data pattern of other regressors. Even for
the GBAORD model, we also have explored other models, namely models 2 and 4 but these

explorations systematically convinced us to focus the attention on model 1.

4.4 Pooled regressions

We now explore three ”pooled” models with GDP growth as the only explanatory variable in order

to investigate whether somehow we can find clusters of coefficients. The three models are:

Model 1: GBAOR_DZt = ﬂl,i + 62,1' G-D-Pzt + €t (22)
Model 2: GBAORD;; = ﬂ1 + ﬂ2’i GDPy; + € (23)
Model 3: GBAORD;; = p1i+B8GDPy+ey i=1,...,18;t=1,...,T; (24)

The estimation results for Equation (22), (23) and (24) can be found in Appendix 2 in Tables 8
to 10.

We have to examine carefully the estimations of the 74 (=36+19+19) parameters produced
by these three models based on a sample size of n = 282. A overall look suggests the following

remarks: (i) Both the constants (31,;) and the slopes (82,;) are not likely to be close together
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among countries. On this ground, model 2 and model 3 embody unjustified restrictions (51,; = fh
in model 2 and f2; = 2 in model 3). (ii) The sign and t-statistics of the estimation of 81 ; (in
models 1 and 2) and the estimation of S5 ; (in models 1 and 3) suggest that these three models
are not far from each other, after making due allowance for unjustified restrictions. (iii) In spite
of a substantial degree of coherence between the estimations, none of these models should be
considered as a satisfactory final model. In particular, the estimated standard errors are mostly
large, except in four to six cases in each model. The overall fit, measured by the R?’s do not
display drastic differences among the models but the adjusted R”’s stress the role of the degrees
of freedom.

As a consequence, we now look for a pooling model more flexible that Model 2 or 3 but
consuming less degrees of freedom than Model 1. As shown in (18), the basic idea is to look for
a country clustering separate for each parameter. From the results of Model 1, Table 4, displays
these two clusterings obtained as follows. We distribute the coefficients of the slopes and constants
into four groups according to their value. For the sake of illustration, we first evaluted the three
quartiles and therafter made some marginal adjustments in order to obtain more homogenous

groups. Mouchart and Rombouts (2003) consider other clusterings.

Table 4: GBAORD: Regroupment of countries

Group 1 11 111 v
Constant | IT, FR, DE | UK, US,IS | ES, BE,IE | FI, NO, PT
NL DK, SE, AT GR, JP
Slope NO, SE, BE | UK, JP, DE | AT, NL, GR | DK, ES, IT

FI IE, US PT, FR IS

4.5 Validation of the Final Model

The estimation results corresponding to the regroupments of Table 4 can be found in Appendix
2, Table 11. The coefficients for Dy and X; are not significant and D, is close to zero. In the
final model we will leave out this dummy. We nevertheless do not eliminate X; in view of the
nowcasting purpose of the model. In general, it is not advisable to follow the rather frequent use
of deleting variables the coefficients of which are not formally significant at a given level. Such a
practice would tend to produce undesirable clustering of countries.

We obtain the final model, the results of which are summarized in Table 5. Notice that the
overall fit of Table 5 is close that of the unconstrained model 1 (Table 9 in the Appendix) but
the adjusted R? has been improved by the clustering procedure. Working in first log-differences
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eventually produces regular overall fits. Graphs 1 to 3 show that the implied fit per country in level
is pretty good. In other words, the clustering modelling strategy succeeds in mimicking rather
well the past behaviour of the country GBAORD series. Furthermore, Mouchart and Rombouts
(2003) also compares, country-wise, the results of the unconstrained model 1 with the residuals
of the clustered model and show that the pattern of residuals is barely affected by the constraints

incorporated in the clustered models.

Table 5: GBAORD final regression

Variable | Coefficient | stand. dev. | t-stat P-value
D1 -.0243 .0105 -2.299 [.022]
D3 .0269 9561E-02 | 2.814 [.005]
D4 .0556 .0133 4.176 [.000]
X1 -.2395 3219 -.744 [.457]
X2 4738 .2446 1.936 [.054]
X3 1.4615 .3405 4.291 [.000]
X4 2.9906 .3470 8.616 [.000]

X; = D;XGDP where D; is a dummy defined in Table 4. The Durbin-
Watson test statistic is 1.98, R2 = .255 and R2 = .239. n = 282

Thus the final model, with only 7 parameters instead of 19 or 38 as in models 1,2 or 3, compares
favorably, in terms of the quality of fit and of the use of degrees of freedom, thanks to its flexibility.
Indeed, Table 6 regroups the countries with identical coefficients and shows that the 7 coefficients

of the final model distribute the 18 countries into 13 different types.

Table 6: GBAORD: Regroupment of similar countries

D1 D2 D3 D4
X1 SE BE | FI, NO
X2 | DE | UK,US |IE, JP
X3 | NL,FR | AT GR PT
X4 | IT IS, DK | ES

Equations (22) and (23) are models containing 19 coeflicients leaving the possibility for 18
different types of countries. The model in (24) contains 36 coefficients also leaving the possibility
for 18 different types of countries. The clustered model we propose contains only 7 parameters

but still 16 different types of countries are possible, 13 of which are effectively used.
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4.6 Nowcasts

Table 7 presents the nowcasts in nominal terms. It calls for several comments: (i) These nowcasts
are first built from data in real terms, using Equations (19) and (20), and thereafter transformed
into nominal terms, using the country specific price deflator always available until the current
period (i.e. nowcasting is never necessary for the price deflator). Thus actual nowcasts depends
not only on the rate of growth of the GDP but also on the price deflator. (ii) Italicized entries refer
to data available at the time of nowcasting whereas unitalicized items refer to actually nowcast
values. (iii) At the time of nowcasting, the predictor GDP is available until 2002 for all countries.
Therefore, nowcasting the predictor is unnecessary. For other variables than GBAORD, Mouchart
and Rombouts (2003) report cases where nowcasting the predictor is necessary, at least, for some
countries. (iv) Even though the data on the predictor are available until 2002, the availability of
GBAORD varies substantially among countries. This feature impedes to supervise the modelling
strategy. Indeed, the fact that for several countries GBAORD should be nowcasted as early as
in 1999 makes problematic to construct the model with data available until 1997, nowcast for
1998 and compare with the realization on 1998 because such a trial would have faced a dramatic

decrease of the usable data.

Table 7: GBAORD nowcasts

Country 1999 2000 2001 2002

BE 1582.1 1423.2 1492.3 1560.3
DE 16322.3 | 16253.0 | 161079 | 16010.6
DK 1216.4 1275.8 1322.7 1366.2
ES 3828.1 3685.7 | 4192.2 5210.2
GR 365.9 423.3 499.9 591.3

FR 12891.8 | 13842.1 | 14073.4 | 14257.0
FI 1275.2 1290.6 1392.3 1486.3
IT 6079.4 | 7656,73 | 8082.5 8408.6
1E 255.7 288.4 320.8 350.1

NL 2982.2 3049.6 3074.6 3120.5
PT 643.8 681.7 715.0 735.9

SE 1724.8 1802.0 1673.0 1097.7
UK 9873.7 | 10680.9 | 10834.2 11339.8
IS 112.9 101.8 148.2 163.9

NO 1090,03 | 1365.1 1474.7 1561.7
AT 1286.4 1366.3 1467.0 1572.2
US 71335.6 | 85829.7 | 90948.5 | 98818.8
JP 26020.5 | 33016.6 | 32799.8 | 32816.6

Ttalicized data correspond to years with actually available data.
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5

Concluding Remarks

Let us conclude this paper by evaluating the achieved contributions. We comment on the design

of the modelling strategy, on the general meaning of the final results and on the interpretation of

the empirical results for the case under study.

1. An explicit modelling strategy

This report presents a modelling strategy totally made explicit, with two objectives: Firstly, to

help reproducing and updating the model construction and secondly to clearly display which steps

are essentially computational whereas other steps require careful examination of the intermediary

results. If we label computational steps by (C) and steps of thinking and reflexion by (R), the

modelling strategy may be summarized as follows:

(R1)

(C8)

List all potential explanatory or exogenous variables taking into account the structure of
the missing values when necessary, impute in-sample missing values for these variables and

check also for ruptures.

Compute the simple correlation between the variable to be nowcasted and each variable of

the first step, repeat this computation for each country.

Examine the results of (C2), look for structural stabilities and deduce models of possible

interest.

For each of the models retained in (R3), estimate regressions with country specific parame-

ters.
Examine the results of (C4) and select a model of final interest.

For each parameter of the model selected in (R5) cluster the country specific estimates in
4 groups. The regroupment of countries is therefore coefficient specific. Estimate the final
model where all the countries are treated within a unique final equation where the coefficients

are now group specific.

Validate the final equation by (i) comparing the structure of the residuals between the
purely heterogenous model and the final clustered model, (ii) examine the final equation
characteristics: the estimates, the standard errors, the t-statistics and summary statistics

such as R? and R2. If unsatisfactory, return to (R1).

Nowcast the exogenous and then the endogenous variables.
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2. Understanding the final results

Two features help to understand why the final results are satisfactory in spite of the many short-
comings in the available data base. Firstly, the underlying model is built in terms of rate of growth
(more precisely: first differences of the log values) whereas the nowcast is expressed in nominal
values of the variables of interest. Thus the final nowcast is implicitly based on an efficient dy-
namic approach. Secondly, the country specific data are modelled through a flexible, and efficient,
panel approach, by clustering the countries into 4 groups, differently for each parameter, instead
of introducing country specific parameters, as in standard fixed effects models. By so-doing we
obtain a final model that is both very economical in terms of degrees of freedom and very flexible
in terms of adjusting to country specificities. This approach also allows that countries with defi-
cient data may draw advantage from data of coefficient-similar countries. Hendry and Clements
(2002) consider the pooling of forecasts obtained from several models (see also Clemen, 1989) and
analyze why even simple averages often work as well as more elaborate rules and why a combined
forecast provide surprising improvements over a forecast based on a unique model. They notice
that ”pooling can also be viewed as an application of Stein-James shrinkage estimation” which
may in turn be interpreted as randomly restricted estimation. A clustered panel data model is also
a way of randomly restricting the coefficients in terms of within cluster equality. It should be of
interest to further analyze, and better understand the connections between forecast combination

and clustered panel data models.

3. Empirical results

For GBAORD, the fit of the final model is satisfactory and eventually suggest that a ”best use”
has been made of the available data. Mouchart and Rombouts (2003) have shown that, in general,
modelling and nowcasting of variables related to expenditures are more satisfactory than for vari-
ables related to personnel; private and public variables provide results of similar quality. Finally,
variables of the total level give the best results. A first explication of these findings lies in the
structure of the available data. Thus for total variables, times series are longer and there are no
missing values for the corresponding explanatory variable.

However, comparing the structure of the residuals between the purely heterogenous pooling
and the clustered regression may be unsatisfactory for some countries. Interpreting this occurence
should take into account two aspects. Firstly, in most cases, those countries with unsatisfactory
comparisons are also countries with a substantial amount of missing data and it may be reasonable
to consider that countries with more missing data are likely to be also countries with data of
lesser quality. Secondly, for every country, and every variable to be nowcasted, the number of
observations is low; therefore the sampling fluctuations of the country specific regressions are

substantial. More specifically, the clustered regression may also be viewed as a set of country
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specific regressions, i.e. a restriction of the purely heterogenous model; under this approach we
actually compare the results of a regression with a small sample size (between 4 or 5 and 20 or
21 observations) and a regression with larger number of observations (between approximately 150
and 300 observations). It is accordingly reasonable to consider that a substantial difference in the
structure of the residuals reflect the higher sample fluctuations of the country specific models.
Comparing the results between countries suggest to further analyze how far the quality of the
empirical results is, or not, associated with the quality of the national data and/or with the degree

of economic development and of the integration within the european economic system.
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Appendix 1: Technical details

Details on (6)

Let

, A 1
Z:[i ZQ] 7'7 = 2y = (25)
Zhi 77, .

where i'i = n, i'Zy is a (k — 1)-dimensional vector and Z}Z, is a squared matrix of order (k — 1)

and evaluate explicitly

A, A
(77 = 11 12 (26)
A21 A22
with
Ay = 40T i 2y (252, — Zi(i') Vi Ze) T Zhin!
= n '+ 5" (ZINZ) 5 (27)
Ay = (ZINZ))™" (28)
A = —n W2 (ZINZ) ' = -5/ (ZUNZy) ™" = Al (29)

where N = I,, —i(i'i) '’ = I, — Lii’ and 2 = n~' Z}i is the column vector of the sample averages.
Equation (6) rests on the following manipulation
! —1 1
(12 )#2)
Zaf
= 0 4+ 5 (Z4yNZ)" s+ 2y (ZyNZo) ™ 205 — 22" (Z4NZs)™" 22y
= 07 4 (205 — 2) (Z5NZo) (20 — ). (30)

Details on (18)

In order to write (18) in the form of (1), we first stack the data by countries, and develop the K

exogenous variables into K blocks of Gk variables:

Ya)
Y(2) <
y=| " yay : Ti x 1 y:Y Tix1 (31)
: i=1
Y(n)
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Appendix 2: Further numerical results

Table 8: GBAORD pooled regression 2

Variable Coefficient stand. dev. t-stat P-value
GDP .959322 251572 3.81331 [.000]
D1 .2478E-02 .018632 133005 [.894]
D2 -.024085 .026137 -.921485 [-358]
D3 .026543 .019011 1.39623 [.164]
D4 .054682 .019026 2.87416 [.004]
D5 .046709 .018668 2.50205 [.013]
D6 -.012524 .018622 -.672547 [.502]
D7 .030748 .018965 1.62127 [.106]
D8 .8814E-02 .018454 AT7666 [.633]
D9 .5320E-02 .030696 173336 [.863]
D10 -.8742E-02 .019462 -.449219 [.654]
D11 .071069 .024616 2.88709 [.004]
D12 -.023370 .018940 -1.23392 [.218]
D13 -.032776 .019003 -1.72478 [.086]
D14 .097755 .026511 3.68731 [.000]
D15 .010338 .020915 .494286 [.622]
D16 .013610 .022433 .606693 [.545]
D17 -.013533 .020358 -.664757 [.507]
D18 .030186 .022956 1.31498 [.190]

The Durbin-Watson test statistic is 2.0062, R? = .195 and R? = .140
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Table 9: GBAORD pooled regression 1

Variable Coefficient stand. dev. t-stat P-value
D1 .0315 .0332 .946 [.345]
D2 -.0156 .0429 -.364 [.716]
D3 .3286E-02 .0308 106 [.915]
D4 .0154 .0322 AT8 [.633]
D5 .0436 .0221 1.976 [.049]
D6 -.0228 .0350 -.652 [.514]
D7 .0565 .0222 2.541 [.012]
D8 -.0656 .0354 -1.853 [.065]
D9 .0396 .0575 .688 [.492]

D10 -.0140 .0384 -.364 [.716]
D11 .0629 .0390 1.613 [.108]
D12 .6040E-02 .0254 .237 [.812]
D13 -.7T970E-02 .0345 -.230 [.818]
D14 -.4360E-03 .0328 -.013 [.989]
D15 .0628 .0396 1.582 [.115]
D16 .9505E-02 .0506 187 [.851]
D17 -.7385E-02 .0340 -.216 [.829]
D18 .0439 .0321 1.366 [.173]
X1 -.3552 1.2943 -.274 [.784]
X2 .4200 2.2528 .186 [.852]
X3 2.0744 1.2187 1.702 [.090]
X4 2.4194 1.0209 2.369 [.019]
X5 1.1582 .8866 1.306 [.193]
X6 1.4308 1.3944 1.026 [.306]
X7 -.0259 .5458 -.047 [.962]
X8 4.7632 1.5859 3.003 [.003]
X9 4385 .7889 .555 [.579]
X10 1.1572 1.2862 .899 [.369]
X11 1.2232 1.0405 1.175 [.241]
X12 -.5250 9301 -.564 [.573]
X13 .0270 1.1313 .023 [.981]
X14 5.1291 9174 5.590 [.000]
X15 -.7191 1.1221 -.640 [.522]
X16 1.1207 1.8176 .616 [.538]
X17 .7612 .9322 .816 [.415]
X18 .2826 1.1786 .239 [.811]

The Durbin-Watson test statistic is 2.0062, R?2 = .308 and R? =
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Table 10: GBAORD pooled regression 3

Variable Coefficient stand. dev. t-stat P-value

C 0175 TT01E-02  2.276 [.024]
X1 1115 7124 156 [.876]
X2 -1.0024 1.3423 -.746 [.456]
X3 1.6113 7368 2.186 [.030]
X4 2.3638 5783 4.087 [.000]
X5 1.7980 7288 2.466 [.014]
X6 0258 7308 035 [.972]
X7 5890 4364 1.349 [.178]
X8 1.4987 8225 1.822 [.070]
X9 7118 3533 2.014 [.045]
X10 2183 6298 346 [.729]
X11 2.2153 6220 3.561 [.000]
X12 -.8297 6737 -1.231 [.219]
X13 -.6986 .6001 -1.164 [.245]
X14 4.7994 7070 6.787 [.000]
X15 4118 5603 734 [.463]
X16 8574 7835 1.094 [.275]
X17 1827 5253 347 [.728]
X18 1.0037 8153 1.230 [.219]

The Durbin-Watson test statistic is 1.89, R?> = .257 and R? = .206

Table 11: GBAORD pooled regression 4

Variable Coefficient stand. dev. t-stat P-value

D1 -.0251 .0109 -2.295 [.022]
D2 -2735E-02 .9295E-02  -.294 [.769]
D3 .0259 .0101 2.549 [.011]
D4 0547 0136 4.001 [.000]
X1 -.2101 3376 -.622 [.534]
X2 5113 2762 1.850 [.065]
X3 1.4956 3603 4.151 [.000]
X4 3.0376 3825 7.940 [.000]

The Durbin-Watson test statistic is 1.98, R?> = .255 and R? = .236
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