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Abstract

Financial institutions are ultimately exposed to macroeconomic fluctuations in
the global economy. This paper proposes and builds a compact global model
capable of generating forecasts for a core set of macroeconomic factors (or vari-
ables) across a number of countries. The model explicitly allows for the inter-
dependencies that exist between national and international factors. Individual
region-specific vector error-correcting models are estimated, where the domestic
variables are related to corresponding foreign variables constructed exclusively
to match the international trade pattern of the country under consideration.
The individual country models are then linked in a consistent and cohesive
manner to generate forecasts for all the variables in the world economy simulta-
neously. The global model is estimated for 26 countries grouped into 11 regions
using quarterly data over 1979Q1-99Q1. The degree of regional interdependen-
cies is investigated via generalized impulse responses where the effects of shocks
to a given variable in a given country on the rest of the world are provided. The
model is then used to investigate the effects of various global risk scenarios on
a bank’s loan portfolio.

Keywords: Global interdependencies, global macroeconometric modeling,
Credit loss distribution, Risk management, Global Vector Error Correcting
Model.
JEL Classification: C32, E17, G20.



1 Introduction

Increased globalization of the world economy has important consequences for

the conduct of monetary and financial policies by central bankers and risk man-

agement by commercial bankers. In setting interest rates, more than ever before,

central bankers need to allow for the inter-relationships that exist between their

economy and the rest of the world. In a commercial banking context, the risk

analysis of a bank’s financial activities needs to take account of domestic eco-

nomic conditions as well as the economic conditions of countries that directly or

indirectly influence the loss distribution of banks’ loan portfolios. Thus both con-

stituencies would benefit from working with a global macroeconometric model

which is capable of generating forecasts for a core set of macroeconomic factors

for a set of regions and countries to which they have risk exposures, and which

explicitly allows for interconnections and interdependencies that exist between

national and international factors in a coherent and consistent manner.

This paper aims to provide such a global modeling framework by making use

of recent advances in the analysis of cointegrating systems. So far applications of

the cointegrating approach have been confined to a single country covering only

some of the key macroeconomic variables.1 While in principle it is possible to

extend the approach to modeling inter-relationships across different economies,

in practice due to data limitations such a strategy will not be feasible. In an

unrestricted VAR model covering N regions the number of unknown parameters

rises with N , and even if we focus on a few key macroeconomic indicators such

as output, inflation, interest rate, and exchange rate there will be p(kN − 1)
unknown parameters (not counting intercepts or other deterministic/exogeneous

variables) to be estimated per each equation, where p is the order of the VAR

and k is the number of the endogenous variables per region. For example, in the

case of a world economy composed of 10 regions with p = 2, and k = 5, there

will be at least as many as 98 unknown coefficients to be estimated per equation

with the available quarterly time series being of the same order of magnitude

for advanced economies and often much less in the case of other regions.

In view of these difficulties global forecasting models are often formed by

linking up of the traditional, typically large-scale, macroeconometric models

developed originally for the national economies. A prominent example of this

approach is Lawrence Klein’s Project Link adopted by United Nations. A simi-

lar approach, albeit on a smaller scale, has been followed by international agen-
1See, for example, King, Plosser, Stock, and Watson (1991), Mellander, Vredin, and

Warne (1992), Crowder, Hoffman and Rasche (1999), and Garratt, Lee, Pesaran and Shin

(2000, 2001).
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cies such as the IMF and OECD. The National Institute’s Global Econometric

Model (NiGEM) estimates/calibrates a common model structure across OECD

countries, China and a number of regional blocks. The country/region specific

models in NiGEM are still quite large, each comprised of 60-90 equations with

30 key behavioral relations.2 Global models with limited geographical coverage

have also been developed. For example, Rae and Turner (2001) develop a small

forecasting model covering the United States, the Euro area and Japan. These

contributions provide significant insights into the important inter-linkages that

exist among major world economies and have proved essential in global fore-

casting. Nevertheless, they are difficult to use for risk management purposes

and do not adequately address the important financial inter-linkages that exist

amongst the world’s major economies.

In this paper we propose a new approach to modeling the global economy

which avoids some of these limitations while at the same time providing a con-

sistent and flexible framework for use in a variety of applications such as risk

management. We first estimate individual country (or region) specific vector

error-correcting models (VECMs) where the domestic macroeconomic variables

such as Gross Domestic Product (GDP), the general price level, the level of

short-term interest rate, exchange rate, equity prices (when applicable) and

money supply, are related to corresponding foreign variables constructed to

match the international trade pattern of the country under consideration. For

purposes of estimation and inference these country-specific foreign variables can

be treated as weakly exogenous (or long-run forcing) for most economies when

N is sufficiently large and the idiosyncratic shocks are weakly correlated; a no-

table exception of course being the U.S. economy. The model for the U.S. can

be estimated by treating most of the variables as endogenous. The individual

country models are then combined in a consistent and cohesive manner to gen-

erate forecasts or impulse response functions for all the variables in the world

economy simultaneously.

We use the estimated global model as the economic engine for generating

conditional loss distributions of a credit portfolio. Business cycle fluctuations

can have a major impact on credit portfolio loss distributions. Carey (2002),

using resampling techniques, shows that mean losses of a typical portfolio during

a recession such as 1990/91 in the U.S. are about the same as losses in the

0.5% tail during an expansion. Bangia et al. (2002), using a regime switching

approach, find that capital held by banks over a one-year horizon needs to be 25-

30% higher in a recession than in an expansion. The basic idea of our approach
2For a recent detailed account see Barrell et al. (2001).
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is to make more explicit the linkage between a bank’s credit exposures and the

underlying international macroeconomic conditions.

The plan of the paper is as follows: Section 2 sets out the country/region

specific models and establishes the inter-linkages between each of the economies

and the rest of the world through trade-based weighting matrices. The different

country-specific VECM models are then combined in Section 3, where a com-

plete solution of the global VAR (GVAR) model is provided. Section 4 examines

the error-correcting properties of the global model and shows that the number

of long-run relationships in the global model can not exceed the sum of the

long-run relations of the region specific models. Dynamic and stability proper-

ties of the GVAR model are discussed in Section 5. Section 6 derives impulse

response functions for the analysis of shocks in one country on the macroeco-

nomic variables in other countries. Section 7 considers the estimation problem

of the country-specific models, with the technical details provided in Appendix.

Section 8 discusses the practical issues surrounding the construction of regional

aggregates. To ensure maximum global coverage while keeping the risk analy-

sis manageable it is often necessary to work at regional levels, and Section 8

also addresses the aggregation bias that this may entail and ways of minimizing

such a basis. An empirical illustration of the approach is set out in Section 9,

where a GVAR model in seven countries (U.S., U.K., Germany, France, Italy,

China and Japan) and four regions (Western Europe, Middle East, South East

Asia and Latin America) is estimated and analyzed. This section also reports

a number of impulse response functions demonstrating how the model could

be used in the analysis of the transmission of stock market and interest rate

shocks from one region to the rest of the world economy. In Section 10 we link a

firm’s return (and default) process to macroeconomic (systematic) variables and

then proceed to generate loss distributions conditional on the estimated GVAR

specification from Section 9, as well as analyzing the impact of economic shocks

on loss. Section 11 offers some concluding remarks. The Appendix provides a

summary of data sources used, as well as a brief account of the way the regional

series were constructed.

2 Country Specific Models

We assume there are N + 1 countries (or regions) in the global economy, in-

dexed by i = 0, 1, 2, ..., N . We adopt country 0 as the reference country. (U.S.

seems an obvious choice). For each country/region we assume that the coun-

try specific variables are related to the global economy variables measured as
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country-specific weighted averages of foreign variables plus deterministic vari-

ables such as time trends and global (weakly) exogenous variables such as oil

prices. For simplicity, here we confine our exposition to a first order dynamic

specification which relates the ki × 1 country-specific factors/variables, xit, to
x∗it, a k

∗
i ×1 vector of foreign variables specific to country i (to be defined below)

and write

xit = ai0 + ai1t+Φixi,t−1 +Λi0x∗it +Λi1x
∗
i,t−1 + εit,

t = 1, 2, ..., T ; i = 0, 1, 2, ..., N (2.1)

where Φi is a ki × ki matrix of lagged coefficients, Λi0 and Λi1 are ki × k∗i
matrix of coefficients associated with the foreign-specific variables, and εit is a

ki × 1 vector of idiosyncratic country-specific shocks. In the special case where
Λi0 = Λi1 = 0, this model reduces to standard vector autoregressive process of

order 1, VAR(1). However, in the presence of foreign-specific variables (2.1) is

an augmented VAR model which we denote by VARX*(1,1).3

We shall assume that the idiosyncratic shocks, εit, are serially uncorrelated

with a zero mean and a non-singular covariance matrix, Σii = (σii,`s), where

σii,`s = cov(εi`t, εist), or written more compactly

εit v i.i.d.(0,Σii). (2.2)

The assumption that the country-specific variance covariance matrices, Σii, i

= 0, 1, 2, ..., N , are time invariant can be relaxed, but for the analysis of quarterly

observations this time invariant assumption may not be too restrictive. However,

when the focus of the analysis is on contagion or spill-over effects resulting from

systemic risk it may be necessary to consider regime switching models where the

parameters of the regional models (in particularΣii) switch between a “normal”

and a “crisis” set of values.4 To accommodate such effects it would be necessary

to specify and estimate non-linear switching regional models from which a non-

linear global model can be derived, and this is beyond the scope of the present

paper.

We also allow the idiosyncratic shocks εit to be correlated across regions to a

limited degree. The exact nature of this dependence will be clarified later once

the linkages between the country-specific foreign variables, x∗it, and the variables

in the rest of the world economic system, namely (x0t,x1t, ...,xi−1,t,xi+1,t, ...,xNt)

are specified.
3Common global stochastic variables, such as oil prices, can also be included in the model.

These are not central to our exposition here and will be considered in Section 5.
4A comprehensive review of the literature on systemic risk can be found in De Bandt and

Hartmann (2000).
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Typically xit will include real output (yit), a general price index (pit) or its

rate of change, a real equity price index (qit), the exchange rate (eit, measured

in terms of a reference currency, say U.S. dollar), an interest rate (ρit), and real

money balances (mit). To focus ideas we set xit = (yit, pit, qit, eit, ρit,mit)0, with

ki = 6.5 We assume that these variables are observed at quarterly frequencies;

yit, pit, qit, eit, and mit are measured in natural logarithms and ρit is an interest

rate variable. Output could be measured by real gross domestic (or national)

product (GDP); the general price level by the consumer price index (CPI), the

real equity price index (when available) could be measured by broad market

indices such as theS&P500 index in the U.S., or the FTSE100 index in the

U.K., deflated by the CPI, the real money supply by M0 or M2 measures of

money supply deflated by the CPI, and finally the interest rate variable could

be either the nominal interest rate on three months Treasury Bill rate (or its

equivalent), or the (ex post) real interest rate defined as the nominal rate minus

the rate of inflation.6 For example, a typical set of endogenous variables for

country i (i 6= 0), could be:

yit = ln (GDPit/CPIit) , pit = ln(CPIit),

qit = ln(EQit/CPIit), mit = ln (Mit/CPIit) ,

eit = ln(Eit), ρit = 0.25 ∗ ln(1 +Rit/100),

 (2.3)

where7

GDPit = Nominal Gross Domestic Product of country i

during period t, in domestic currency,

CPIit = Consumer Price Index in country i at time t,

equal to 1.0 in a base year (say 1995),

Mit = Nominal Money Supply in domestic currency,

EQit = Nominal Equity Price Index,

Eit = Exchange rate of country i at time t in terms of U.S. dollars,

Rit = Nominal rate of interest per annum, in per cent.

Notice, that in the case of the base economy e0t = 0 and x0t = (y0t, p0t, q0t, ρ0t,m0t)0,
5However, in practice it may be necessary to consider other transformations of these un-

derlying variables. For example, as can be see from our empirical analysis in Section 9, we

argue in favour of using the rate of inflation (pit − pi,t−1) instead of the price level (pit) and
the “real exchange rate” (eit − pit) instead of the nominal exchange rate (eit).

6For details of the variables used in our empirical application and their sources see Section

9, and the Data Appendix.
7Note that the last transformation specified in (2.3) converts the annual rate of interest,

Rit, to quarterly interest rate, ρit, using a logarithmic scale.
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with k0 = 5. Also in the case of some of the emerging market economies and

the newly constituted economies of the Eastern Europe and Russia where the

interest rate and/or the equity price index may not be available over the whole

sample period, xit may be confined to the yit, pit, eit,mit, with ki = 4. The

foreign variables (indices), denoted by x∗it, is a k
∗
i × 1 vector8 are constructed

as weighted averages, with country/region specific weights:

x∗it = (y∗it, p∗it, q∗it, e∗it, ρ∗it,m∗it)0,

y∗it =
PN
j=0w

y
ijyjt, p∗it =

PN
j=0w

p
ijpjt,

q∗it =
PN
j=0w

q
ijqjt, e∗it =

PN
j=1w

e
ijejt,

ρ∗it =
PN
j=0w

ρ
ijρjt, m∗it =

PN
j=0w

m
ijmjt.

 (2.4)

The weights wyij , w
p
ij , w

q
ij , w

e
ij , w

ρ
ij , and w

m
ij for i, j = 0, 1, ...N ,

9 could be based

on trade shares (namely the share of country j in the total trade of country i

measured in U.S. dollars) in the case of y∗it, p
∗
it, e

∗
it and m

∗
it and capital flows in

the case of equity price indices and interest rates, q∗it and ρ∗it.
10 Notice that

wyii = w
p
ii = w

q
ii = w

ρ
ii = w

m
ii = w

e
ii = 0, for all i.

It is worth noting that the exchange rate variable, e∗it, defined for country i

is not the same as the more familiar concept of the ‘effective exchange rate’ as

defined below. To see this denote the exchange rate of country i in terms of the

currency of country j by Eijt. Then

ln(Eijt) = ln(Eit/Ejt) = eit − ejt. (2.5)

Let the trade share of country i with respect to country j be wij and write the

(log) effective exchange rate of country i as (recall that e0t = 0):11

ẽit =
NX
j=0

wij(eit − ejt) = (
NX
j=0

wij)eit −
NX
j=1

wijejt.

But noting that
PN
j=0 wij = 1, then ẽit = eit −

PN
j=1 wijejt, and hence e

∗
it =

eit− ẽit. Only in the case of the base country where e0t = 0, do the two concepts
(apart from a sign convention) coincide, namely we have e∗0t = −ẽ0t.

8 In our application, k∗i = 5 or 6. See Section 9.
9 In practice, it may also be desirable to allow for these weights to vary over time in order to

capture secular movements in the geographical patterns of trade and capital flows. However,

too frequent changes in the weights could introduce an undesirable degree of randomness into

the analysis. This is the classic index number problem to which a totally satisfactory answer

does not exist. In our empirical analysis we use fixed trade weights but base their computation

on averages of trade flows over a three year period.
10 See Glick and Rose (1999) who discuss the importance of trade links in the analysis of

contagion.
11wTij can be measured as the total trade between country i and country j divided by the

total trade of country i with all its trading partners.
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It is also worth noting that in the case of countries or regions that attempt

to maintain (approximately) a fixed effective exchange rate by pegging their

currency to a basket of currencies, there will be a close correlation between eit
and e∗it. Hence for purposes of econometric analysis it may not be advisable

to include e∗it as an exogenous variable in x
∗
it, considering that eit is already

included amongst the endogenous variables. The inclusion of eit in the model

ought to be sufficient to accommodate the possible effects of exchange rate

variations on the domestic economy. For the base economy, however, under our

set-up e∗0t will be determined by the models for the rest of the world via equation

(2.1), for i = 1, 2, .., N . Hence, for internal consistency e∗0t must be treated as

an exogenous variable in the model for the base economy. Otherwise, there will

be two sets of equations explaining e∗0t; one equation derived by combining the

exchange rate equations from the models for the regions i = 1, 2, .., N , and a

second equation obtained directly from the model of country i = 0, if e∗0t is

included in that model as endogenous.

In general, the GVAR model allows for interactions amongst the different

economies through three separate but inter-related channels:

1. Contemporaneous dependence of xit on x∗it and on its lagged values.

2. Dependence of the country-specific variables on common global exogenous

variables such as oil prices. (see Section 5).

3. Non-zero contemporaneous dependence of shocks in country i on the shocks

in country j, measured via the cross country covariances, Σij

Σij = Cov(εit, εjt) = E(εitε
0
jt), for i 6= j. (2.6)

where εit is defined by (2.1). A typical element of Σij will be denoted by

σij,`s = cov(εi`t, εjst) which is the covariance of the `th variable in country

i with the sth variable in country j.

The N +1 country-specific models, (2.1), together with the relations linking

the (weakly) exogenous variables of the country-specific models to the variables

in the rest of the global model, (2.4), provide a complete system. As emphasized

in the introduction, due to data limitations even for moderate values of N , a

full system estimation of the global model may not be feasible. To avoid this

difficulty we propose to estimate the parameters of the country-specific models

separately, treating the foreign-specific variables as weakly exogenously on the

grounds that most economies (possibly with the exception of the U.S.) are small

relative to the size of the world economy. This is the standard assumption in
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the small-open-economy macroeconomic literature, pioneered by Fleming (1962)

and Mundell (1963) and developed further by Dornbusch (1976), where it is

routinely assumed that “world” interest rate, output and prices are exogenously

given. Whether such exogeneity assumptions hold in practice depends on the

relative sizes of the countries/regions in the global model and the degree of cross-

country dependence of the idiosyncratic shocks, εit, as captured by the cross-

covariances Σij . Sufficient conditions under which foreign-specific variables can

be viewed as weakly exogenous are discussed in Section 7. Empirical evidence

on weak exogeneity of these variables is provided in Section 9.5.

3 Solution of the GVAR Model

Due to the contemporaneous dependence of the domestic variables, xit, on the

foreign variables, x∗it, the country-specific VAR models (2.1) need to be solved

simultaneously for all the domestic variables, xit, i = 0, 1, ..., N . The solution

can then be used for a variety of purposes, such as forecasting, impulse response

analysis, and risk management.

For construction of the GVAR model from the country-specific models we

first define the (ki + k∗i )× 1 vector

zit =

Ã
xit

x∗it

!
, (3.1)

and rewrite (2.1) as

Aizit = ai0 + ai1t+Bizi,t−1 + εit, (3.2)

where

Ai = (Iki ,−Λi0), Bi = (Φi,Λi1). (3.3)

The dimensions of Ai and Bi are ki × (ki + k∗i ) and Ai has a full row rank,

namely Rank(Ai) = ki.

Collect all the country-specific variables together in the k × 1 global vector
xt = (x

0
0t,x

0
1t, ....,x

0
Nt)

0 where k =
PN
i=0 ki is the total number of the endoge-

nous variables in the global model. Recall that x0t = (y0t, p0t, q0t, ρ0t,m0t)
0 and

xit = (yit, pit, qit, eit,ρit,mit)
0 for i = 1, 2, ..., N . Our analysis is invariant to

the way the endogenous variables are stacked in xit, and the ordering of the

countries in xt.

It is now easily seen that the country specific variables can all be written in

terms of xt:

zit =Wixt, i = 0, 1, 2, ..., N , (3.4)
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whereWi is a (ki+k∗i )×k matrix of fixed (known) constants defined in terms of
the country specific weights wyij , w

p
ij , w

q
ij , w

e
ij , w

ρ
ij , and w

m
ij . Wi can be viewed

as the ‘link’ matrix that allows the country-specific models to be written in

terms of the global variable vector, xt.

Using (3.4) in (3.2) we have:

AiWixt = ai0 + ai1t+BiWixt−1 + εit,

where AiWi and BiWi are both ki × k dimensional matrices. Stacking these
equations now yields:

Gxt= a0+a1t+Hxt−1+εt, (3.5)

where

a0 =


a00

a10
...

aN0

 , a1 =


a01

a11
...

aN1

 , εt=


ε0t

ε1t
...

εNt

 , (3.6)

G =


A0W0

A1W1

...

ANWN

 , H =


B0W0

B1W1

...

BNWN

 . (3.7)

It is easily seen that G is a k × k dimensional matrix and in general will be of
full rank, and hence non-singular. Then the GVAR model in all the variables

can be written as

xt =G
−1a0+G−1a1t+G−1Hxt−1 +G−1εt,

which may also be solved recursively forward to obtain the future values of xt.

See Section 5 below for further details.

It is worth illustrating the above solution technique by means of a simple

example. Consider a global model composed of three regions in three variables,

say output, prices and exchange rates (all in logs). Then

xt=


x0t

x1t

x2t

 =



y0t

p0t

y1t

p1t

e1t

y2t

p2t

e2t


, z0t =



y0t

p0t

y∗0t
p∗0t
e∗0t


, zit =



yit

pit

eit

y∗it
p∗it


, i = 1, 2.
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Using the trade shares, simply denoted by wij , to construct the foreign variables

and noting that e∗0t = w01e1t + w02e2t, then the link matrices for these three

regions are

W0 =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 w01 0 0 w02 0 0

0 0 0 w01 0 0 w02 0

0 0 0 0 w01 0 0 w02


=

Ã
I2 0 0

0 w01I3 w02I3

!
,

W1 =



0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

w10 0 0 0 0 w12 0 0

0 w10 0 0 0 0 w12 0

 =

Ã
0 I3 0 0

w10I2 0 w12I2 0

!
,

W2 =



0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

w20 0 w21 0 0 0 0 0

0 w20 0 w21 0 0 0 0

 =

Ã
0 0 0 I3

w10I2 w12I2 0 0

!
.

Notice that the country-specific weights are non-negative and satisfy the adding

up restrictions w01 + w02 = 1, w10 + w12 = 1, w20 + w21 = 1. Furthermore, in

the case where trade shares are non-zero it is easily seen that the link matrices

are of full row ranks, a property that will be of importance when we come

to consider the error-correction properties of the global model in the following

section. Finally,

A0 = (I2,−Λ00) , A1 = (I3,−Λ10) , A2 = (I3,−Λ20) ,

where Is is an identity matrix of order s. Using the aboveWi and Ai matrices

the G matrix defined by (3.7) can now be readily constructed. In this example

G is 8× 8 and must be non-singular if the global model is to be complete.12

4 Error-Correcting and Trending Properties of

the Global Model

It would be interesting to relate the error correcting and trending properties of

the country-specific models to those of the associated global model. The error
12A model is said to be complete if it is possible to uniquely solve for all its endogenous

variables.
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correction representation of (2.1) is given by

∆xit = ai0 + ai1t− (Iki −Φi)xi,t−1 + (Λi0 +Λi1)x∗i,t−1
+Λi0∆x

∗
it + εit, i = 0, 1, ...., N. (4.1)

and using (3.1)

∆xit = ai0 + ai1t− (Ai−Bi)zi,t−1 +Λi0∆x∗it + εit, (4.2)

where as before zit = (x0it,x∗0it)0, andAi andBi are already defined by (3.3). The

error-correction properties of the model for country/region i are summarized in

the ki × (ki + k∗i ) matrix
Πi =Ai−Bi. (4.3)

In particular, the rank of Πi, say ri ≤ ki, specifies the number of “long-run”
relationships that exists amongst the domestic and the country-specific foreign

variables, namely xit and x∗it. Therefore, we have

Ai−Bi = αi β
0
i, (4.4)

where αi is the ki × ri loading matrix of full column rank, and βi is the (ki +
k∗i )× ri matrix of cointegrating vectors, also of full column rank.
In the case where Πi is rank deficient and the linear trend coefficients, ai1,

are unrestricted the linear trend in the error correction model transforms into

a quadratic trends in xit, which is clearly undesirable. It would be more ap-

propriate to retain the same deterministic trend properties for the elements of

xit under different rank restrictions on Πi. As shown, for example, by Pesaran,

Shin and Smith (2000), this can be achieved by restricting the trend coefficients

so that

ai1 = (Ai −Bi)κi, (4.5)

where κi is a (ki + k∗i )× 1 vector of fixed constants. This specification imposes
ki − ri restrictions on the trend coefficients.
Consider now the global model, given by (3.5), which has the following error-

correction form

G∆xt= a0+a1t− (G−H)xt−1+εt. (4.6)

The number of long-run relationships in the global model is similarly determined

by the rank of G−H. Using (3.7) and (4.4) we first note that

G−H =


(A0 −B0)W0

(A1 −B1)W1

...

(AN −BN)WN

 =


α0β

0
0W0

α1β
0
1W1

...

αNβ
0
NWN

 ,
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which can be written equivalently as

G−H = α̃ β̃
0
,

where α̃ is the k × r block diagonal matrix of the global loading coefficients

α̃ =


α0 0 . . . 0

0 α1 0
...

...

0 0 . . . αN

 , (4.7)

β̃ =
³
W0

0β0, W0
1β1, . . . ,W0

NβN

´
, (4.8)

r =
PN
i=0 ri , and k =

PN
i=0 ki. It is clear that Rank(α̃) =

PN
i=0Rank(αi) = r.

Consider now the global k × r cointegrating matrix β̃. Each of the blocks
in β̃, namely W0

iβi, are of dimension k × ri with rank at most equal to ri.
Therefore, the rank of β̃ will be at most equal to r. Namely, the number of the

long-run relationships in the global model cannot exceed the sum of the numbers

of long-run relations that exist in the country/region specific models.13

The deterministic trend properties of the GVAR model is also related to

those of the underlying country-specific models. As with the country-specific

models, to ensure that rank restrictions on G − H do not lead to quadratic

trends in the variables of the global model the vector of trend coefficients, a1,

must satisfy the restrictions

a1 = (G−H)γ,

where γ is a k × 1 vector of fixed constants. Therefore, for the deterministic
trend properties of the variables to be the same in the global model as in the

underlying country-specific models, using (4.5), we must have

(G−H)γ =


(A0 −B0)κ0
(A1 −B1)κ1

...

(AN −BN)κN

 .

This condition is satisfied if

κi =Wiγ, for i = 0, 1, ..., N.
13 It is worth noting that this result is conditional on the choice of the link matrices, Wi,

and in principle it would be possible to obtain a different number of cointegrating relations in

the global model for different choices of the link matrices.
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These impose additional cross-country restrictions on the trend coefficients.

While in principal it should be possible to test these restrictions, their simulta-

neous imposition will be infeasible when N is large compared to the available

time series data, T .

5 Dynamic Properties, Stability Conditions and

Forecasts of the GVAR Model

In this section we shall consider the dynamic properties of a slightly generalized

version of the global model that allows for “common global variables” such as

oil prices. Such an augmented VARX* model is given by14

xit = ai0+ai1t+Φixi,t−1+Λi0x∗it+Λi1x
∗
i,t−1+Ψi0dt+Ψi1dt−1+εit, (5.1)

for t = 1, 2, ..., T, and i = 0, 1, 2, ..., N , where dt is an s× 1 vector of common
global variables assumed to be weakly exogenous to the global economy. The

global model associated with these country specific models is now given by

Gxt = a0+a1t+Hxt−1+Ψ0dt +Ψ1dt−1+εt,

where a0, a1, G, H and εt are as already defined by (3.6) and (3.7), and

Ψ0 =


Ψ00

Ψ10
...

ΨN0

 , Ψ1 =

Ψ01

Ψ11
...

ΨN1

 . (5.2)

Assuming G is non-singular we now have the following reduced-form global

model

xt = b0+b1t+zxt−1 +Υ0dt +Υ1dt−1+ut, (5.3)

for t = 1, 2, ..., T, T + 1, ..., T + n, where

bi = G−1ai, i = 0, 1, z =G−1H, (5.4)

Υ0 = G−1Ψ0, Υ1 =G−1Ψ1, and ut =G−1εt.

Suppose now that the global economy is observed over the period t =

1, 2, ..., T , and we wish to forecast xt over the future periods t = T + 1, T +

14The distinction between foreign variables, x∗it, and the global exogenous variables, dt, is
relevant for the analysis of the dynamic properties of the global model, but is not of material

consequence for estimation of the country-specific models. For the latter purpose x∗it and dt
can be combined and treated jointly as weakly exogenous.
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2, ...., T + n, where n is the forecast horizon. To simplify the exposition we as-

sume that the exogenous variables dt for t = T+1, T +2, ... are given.15 Solving

the difference equation (5.3) forward we obtain:

xT+n = znxT +
n−1X
τ=0

zτ [b0+b1(T + n− τ)] + (5.5)

n−1X
τ=0

zτ [Υ0dT+n−τ +Υ1dT+n−τ−1] +
n−1X
τ=0

zτuT+n−τ .

This solution has four distinct components. The first component, znxT , mea-
sures the effect of initial values, xT , on the future state of the system. The

second component captures the deterministic trends embodied in the underly-

ing VAR model. The third component measures the effect of the global exoge-

nous variables, dt, on the model’s endogenous variables, xt. Finally, the last

term in (5.5) represents the stochastic (unpredictable) component of xT+n. The

point forecasts of the endogenous variables conditional on the initial state of the

system and the exogenous global variables are now given by

x∗T+n = E(xT+n | xT ,∪nτ=1dT+τ ) = znxT +
n−1X
τ=0

zτ [b0+b1(T + n− τ)] +

n−1X
τ=0

zτ [Υ0dT+n−τ +Υ1dT+n−τ−1] . (5.6)

The probability distribution function of xT+n, needed for the computation of

the loss distribution of a given portfolio, can also be obtained under suitable

assumptions concerning the probability distribution function of the shocks, εt.

Under the assumption that εt is normally distributed we have

xT+n | xT ,∪nτ=1dT+τ v N(x∗T+n,Ωn), (5.7)

where x∗T+n is given by (5.6), and

Ωn =
n−1X
τ=0

zτG−1ΣG0−1z0τ , (5.8)

where Σ is the k × k variance-covariance matrix of the shocks, εt. Note that
the (i, j) block of Σ is given by Σij which is defined by (2.6). The estimation

of Σij and the other parameters will be addressed below.
15The analysis can be easily generalized to allow for the uncertainty of the exogenous global

variables. This will be done in Section 10 when we discuss the effect of shocks on the loss

distribution which is a non-linear function of the shocks. But for impulse response analysis,

due to the linearity of the underlying relationships, the impulse response functions do not

depend on the processes generating the global variables when they are strictly exogenous. The

case where global variables are weakly exogenous is more complicated notationally although

straightforward in principal.

14



The dynamic properties of the global model crucially depend on the eigen-

values of z. In the trend-stationary case where all the roots of z lie inside the
unit circle, xT+n will have a stable distribution and will satisfy the following

properties:

• The dependence of xT+n on the initial values, xT , will disappear for suf-
ficiently large values of n, the forecast horizon.

• The forecast covariance matrix, Ωn, will converge to a finite value as
n→∞.

• The point forecasts, x∗T+n, will exhibit the same linear trending property
as the one specified in the underlying country-specific VAR models.

In contrast, when one or more roots of z fall on the unit circle none of the
above properties hold.16 The unit eigenvalues correspond to the unit roots and

cointegrating properties of the various variables in the global VAR model.

• The multiplier matrixzn converges to a non-zero matrix of fixed constants
even if n is allowed to increase without bound, and the dependence of x∗T+n
on the initial values does not disappear as n→∞.

• The forecast covariance matrix, Ωn, will rise linearly with n; indicating a
steady deterioration in the precision with which values of xT+n are forecast

with the horizon, n.

• Finally, as noted in Section 4, the linear trend in the underlying VAR
model when combined with a unit root in z generates a quadratic trend
in the level of the variables.

Some of the above undesirable features can be avoided or by passed. For

example, to avoid increasing forecast error variances one could focus on forecast-

ing growth rates (using the GVAR in levels). As noted above quadratic trends

can be eliminated by restricting the trend coefficients b1. Although, imposing

these restrictions exactly would not be feasible when N is large relative to T , a

partial solution can be achieved by imposing the restrictions, (4.5), on the trend

coefficients of the country-specific models. This estimation problem is feasible

and will be discussed in Section 7.
16The case where z has a root outside the unit circle leads to explosive forecasts and is of

little interest and could indicate model mis-specification.
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6 Impulse Response Analysis

One of the important tools in the analysis of dynamic systems is the impulse

response function, which characterizes the possible response of the system at

different future periods to the effect of shocking one of the variables in the model.

For example, it may be of interest to work out the effect of a shock of a given size

to the Yen/Dollar exchange rate on the evolution of real output in Germany. In

carrying out such an analysis it is important that the correlation which exists

across the different shocks, both within each country and across the different

countries, are accounted for in an appropriate manner. In the traditional VAR

literature this is accomplished by means of the orthogonalized impulse responses

(OIR) à la Sims (1980), where impulse responses are computed with respect to a

set of orthogonalized shocks, say ξt, instead of the original shocks, εt. The link

between the two sets of shocks is given by ξt = P
−1εt, where P is a k×k lower

triangular Cholesky factor of the variance covariance matrix, Cov(εt) = Σ,

namely

PP0 = Σ. (6.1)

Therefore, by construction E(ξtξ
0
t) = Ik. The k×1 vector of the orthogonalized

impulse response function of a unit shock (equal to one standard error) to the

jth equation on xt+n is given by

ψoj(n) = znG−1Psj , n = 0, 1, 2, ..., (6.2)

where sj is a k× 1 selection vector with unity as its jth element (corresponding
to a particular shock in a particular country) and zeros elsewhere. In the case

of the global VAR model the orthogonalized impulse responses also depend on

the order of factors in each region/country and the order in which the countries

are stacked in xt. Mathematically, this non-invariance property of the orthogo-

nalized impulse responses is simply due to the non-uniqueness of the Cholesky

factor, P.

The orthogonalized impulse response function is usually used for small sys-

tems that admit a natural causal ordering for the variables in the VAR. But in

general such a natural ordering does not exist and the OIR functions are not

unique and sometime depend critically on the order in which the variables are

included in the VAR. The more recent literature emphasizes the use of “struc-

tural VAR” methodology to identify the shocks. This is achieved by imposing a

priori restrictions on the covariance matrix of the shocks and/or on long-run im-

pulse responses themselves. See, for example, Bernanke (1986), Blanchard and

Watson (1986) and Sims (1986) who considered a priori restrictions on con-

temporaneous covariance matrix of shocks, and Blanchard and Quah (1989),
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and Clarida and Gali (1994) who consider restrictions on the long-run impact

of shocks to identify the impulse responses. Although such a strategy may be

operational when the VAR contains only a few variables, its application to the

GVAR model does not seem to be feasible. In the GVAR model with N + 1

countries and ki endogenous variables per country, exact identification of the

shocks will require
PN
i=0 ki(ki − 1) restrictions. For example, in the case of

the model to be considered empirically in Section 9 we would need to motivate

300 different theory-based restrictions. It is not clear to us how this could be

achieved.

An alternative approach which is invariant to the ordering of the variables

and the countries in the global VAR would be to use (5.5) directly, shock only

one element, say the jth shock in εt, corresponding to the `th variable in the ith

country, and integrate out the effects of other shocks using an assumed or the

historically observed distribution of the errors. This approach is advanced in

Koop, Pesaran and Potter (1996), and Pesaran and Shin (1998) and yields the

generalized impulse response (GIR) function.

GIx:εi`(n,
√
σii,``, It−1) = E

¡
xt+n| εi`t = √σii,``, It−1

¢−E (xt+n| It−1) ,
(6.3)

where It = (xt,xt−1, ... ) is the information set at time t−1, and dt is assumed
to be given exogenously. On the assumption that εt has a multivariate normal

distribution and using (5.5) it is now easily seen

ψgj (n) =
1√
σii,``

znG−1Σsj , n = 0, 1, 2, ..., (6.4)

which measures the effect of one standard error shock to the jth equation (cor-

responding to the `th variable in the ith country) at time t on expected values

of x at time t+n. ψgj (n) will be identical to ψ
o
j(n) when Σ is diagonal or when

the focus of the analysis is on the impulse response function of shocking the first

element of εt.

6.1 Impulse Response Analysis of Shocks to the Exoge-
nous Variables

In this sub-section we derive generalized impulse response functions for a unit

shock to the ith exogenous variable, dit. For this purpose we need to specify a

dynamic process for the exogenous variables. Suppose dt follows a first order

autoregressive process:17

dt = µd +Φddt−1 + εdt, εdt v i.i.d. (0,Σd), (6.5)
17The analysis is easily extended to higher order processes.
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where µd is an s×1 vector of constants, Φd is s×s matrix of lagged coefficients,
εdt is an s×1 vector of shocks to the exogenous variables, and Σd is the covari-
ance matrix of these shocks which we allow to be singular. This allows for the

possibility that some of the elements of dt could be perfectly predictable (such

as linear trends, deterministic seasonal effects, etc.). As before the generalized

impulse response function of the effect of a unit shock to the ith exogenous

variable on the vector of the endogenous variables n periods ahead is defined

by:

GIx:di(n, σd,ii, It−1) = E
¡
xt+n| dit = √σd,ii, It−1

¢−E (xt+n| It−1) (6.6)

where σd,ii is the i− th diagonal element of Σd. Using (5.3) it is now easily seen
that

GIx:di(n, σd,ii, It−1) = z GIx:di(n− 1, σd,ii, It−1) +Υ0GId:di(n, σd,ii, It−1) +
Υ1GId:di(n− 1, σd,ii, It−1), (6.7)

for n = 0, 1, 2, ..., where

GId:di(n, σd,ii, It−1) = E
¡
dt+n| dit = √σd,ii, It−1

¢−E (dt+n| It−1) . (6.8)
It is now easily seen that for n < 1, GIx:di(n − 1,σd,ii,It−1) = GId:di(n − 1,
σd,ii, It−1) = 0 and

GIx:di(0, σd,ii, It−1) = Υ0GId:di(0, σd,ii, It−1).
Similarly,

GId:di(0, σd,ii, It−1) =
1√
σd,ii
Σdei,

where ei is a s×1 selection vector with its ith element unity and other elements
zero, and

GId:di(n, σd,ii, It−1) = ΦdGId:di(n− 1, σd,ii, It−1), for n = 1, 2, ...
Hence

GId:di(n, σd,ii, It−1) =
1√
σd,ii
ΦndΣdei, for n = 0, 1, ...

Substituting this result in (6.7) we have

GIx:di(n,σd,ii,It−1) = z GIx:di(n−1,σd,ii,It−1)+
1√
σd,ii

(Υ0Φd+Υ1)Φ
n−1
d Σdei,

(6.9)

for n = 1, 2, ..., where

GIx:di(0, σd,ii, It−1) =
1√
σd,ii
Υ0Σdei. (6.10)

In the simple case where d is a scalar variable (such as the oil price) 1√
σd,ii
Σdei =√

σd,ii.
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7 Estimation of the GVAR Model as Individual

Partial Systems

As was pointed out earlier a system estimation of the VAR model in (5.3) will

not be feasible even for moderate values of N . The unconstrained estimation of

(5.3) would involve estimating a large number of parameters often greater than

the number of available observations! But the modeling approach set out above

is feasible even for a relatively large number of countries/regions. This is due to

the fact that the weights wij , i, j = 0, 1, ..., N are not estimated simultaneously

with the other country-specific parameters but are computed from cross-country

data on trade and/or capital flow accounts. Also the estimation of the country-

specific parameters is carried out on a country-by-country basis, rather than

simultaneously. This is justified if N is sufficiently large and the following

conditions hold:

1. (Stability) The global model, (5.3), formed from the country specific mod-

els is dynamically stable, namely the eigenvalues of matrix z defined by

(5.4) are either on or inside the unit circle.

2. (Smallness) The weights used in the construction of foreign-specific vari-

ables, wij ≥ 0, are small, being of order 1/N such that

NX
j=0

w2ij → 0, as N →∞, for all i,

3. (Weak dependence) The cross-dependence of the idiosyncratic shocks, if

any, is sufficiently small so thatPN
j=0 σij,ls

N
→ 0, as N →∞, for all i, l, and s,

where σij,`s = cov(εi`t, εjst) is the covariance of the `th variable in country

i with the sth variable in country j.

These conditions are sufficient for Cov(x∗it, εit) → 0 as N → ∞.18 They

provide a formalization of the concept of “small-open-economy” from the per-

spective of econometric analysis. The need for conditions 1 and 2 is rather

obvious. Clearly, condition 3 is satisfied when the country-specific shocks are

purely idiosyncratic. But it is also satisfied for certain degree of dependence
18These conditions are derived for the relatively simple case where ki = 1, and are available

from the authors on request. We conjecture that the same type of results hold in the more

general case.
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across the idiosyncratic shocks. For example, the condition is met if there exists

an ordering (j), seen from the viewpoint of country i, for which σi(j),ls decay

exponentially with |i− (j)|. It is not necessary for this ordering to be known
and it need not be the same for other countries/regions. In this sense condition

3 allows for the idiosyncratic shocks to be “weakly correlated”.

In practice it would not be possible to check the validity of these conditions

directly, however. But, as shown below in sub-section 7.1, the implications of

the weak exogeneity condition can be tested indirectly. Under weak exogeneity

the parameters of the country-specific models can be estimated consistently by

the ordinary least squares (OLS) or by the reduced rank procedure directly ap-

plied to (5.1). The OLS estimation is clearly much simpler but suffers from the

shortcoming that it does not fully allow for the fact that one or more of the six

factors used in the model may have unit roots; nor does it take into account the

important possibility that the level of domestic and foreign variables may be tied

together in the long-run (the phenomenon known as cointegration in the econo-

metric literature). To deal with the unit root problem many researchers in the

past have estimated the VAR model in first-differences (using rates of changes

of the factors rather than their logarithms). But the first-differencing operation

can be inefficient when there are in fact cointegrating relations amongst the

factors and can be avoided by the reduced rank regression approach.

The reduced rank estimation procedure in the case where all the variables

in the model are treated as endogenous I(1) has been developed by Johansen

(1988, 1995).19 But in the context of the GVAR model (2.1) for estimation

purposes the foreign variables, x∗it, are treated as exogenous, and Johansen’s

approach needs to be modified to take this into account. Appropriate methods

for estimating reduced rank regressions containing weakly exogenous regressors

have been developed by Harbo, Johansen, Nielsen and Rahbek (1998), and

Pesaran, Shin and Smith (2000). Here we provide some basic background to

motivate the identification of the error correction terms and the weak exogeneity

test which is discussed below.

To estimate the country-specific models subject to reduced rank restrictions

first the error-correction equation (5.1) is re-written as

∆xit = ai0 + ai1t−Πivi,t−1 +Λi0∆x∗it +Ψi0∆dt + εit, (7.1)

where

Πi = (Ai −Bi,−Ψi0 −Ψi1) , (7.2)
19A variable is said to be I(1), integrated of order 1, if it must be differenced exactly once

before it becomes stationary, or I(0).
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and

vi,t−1 =

Ã
zi,t−1
dt−1

!
. (7.3)

To avoid the problem of introducing quadratic trends in the level of the variables

whenΠi is rank deficient as before we impose the restrictions, ai1 =Πiκi,which

reduce to (4.5) when there are no global exogenous variables in the model.20

Under these restrictions (7.1) becomes

∆xit = ci0 −Πi [vi,t−1 − κi(t− 1)] +Λi0∆x∗it +Ψi0∆dt + εit, (7.4)

where

ci0 = ai0 +Πiκi, (7.5)

Πi is a ki× (ki+ k∗+ s) matrix and provides information on the long-run level
relationships that may exist amongst the variables of the model. In the case

where all the variables, zit and dt, are I(1) and are not cointegrated, then Πi
will be equal to zero and (7.4) reduces to the first differenced model

∆xit = ai0 +Λi0∆x
∗
it +Ψi0∆dt + εit. (7.6)

It is interesting to note that this specification leads to random walk models

(augmented by oil price changes) for the global variables, zt. Using the solution

technique of Section 3, we have

G∆zt = a0+Ψ0∆dt+εt,

or

∆zt =G
−1a0+G−1Ψ0∆dt+G−1εt,

where G and Ψ0 are defined by (3.7) and (5.2), respectively. Therefore, as

anticipated by the analysis of Section 4, there will be no long-run relationship

in the global model if there are no long-run relations in the underlying regional

models.

But in general, due to long-term inter-linkages that exist between domestic

and foreign variables as well as between the domestic variables themselves, one

would expect Πi to be non-zero but rank deficient. The rank of Πi identifies

the number of long-run or cointegrating relationships. Rank deficiency arises

when Rank(Πi) = ri and ri < ki. In the more general case where Πi is non-

zero but could (possibly) be rank deficient, the error-correction form of the

country-specific model (7.4) needs to be estimated subject to the reduced rank

restriction:

Hri : Rank(Πi) = ri < ki. (7.7)
20The dimension of κi is now (ki + k∗i + s)× 1.
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Under the assumption that Rank(Πi) = ri one can write

Πi = αiβ
0
i, (7.8)

where αi is a ki × ri matrix of rank ri and βi is a (ki + k∗ + s)× ri matrix of
rank ri.

For a given choice of βi, using (7.8) in (7.4) we have

∆xit = ci0 −αiηit−1 +Λi0∆x∗it +Ψi0∆dt + εit, (7.9)

where

ηit = β0ivit −
¡
β0iκi

¢
t = β0ivit − δit, (7.10)

is an ri×1 vector of long-run or (de-trended) cointegrating relations, also known
as error-correction terms.

Identification and estimation of βi, and hence other parameters, is carried

out in two steps: first the rank ofΠi is determined, for example, using the max-

imum eigenvalue or the trace statistics. Second βi is estimated by imposition

of suitable exact or possibly over-identifying restrictions on the elements of βi.

Johansen’s eigenvalue routine identifies βi up to an ri× ri non-singular matrix.
To investigate the identification conditions in the present application partition

βi as

βi = (β
0
ix, β

0
ix∗ , β

0
id)

0,

conformable to vit = (x0it,x
∗0
it ,d

0
t)
0. Then

β0ivit = β0ixxit + β0ix∗x
∗
it + β0iddt.

To identify βi it is sufficient that βix (an ki × ri matrix), namely the part
of βi which corresponds to the endogenous variables, xit, is identified.

21 For

this purpose we need a total of r2i restrictions: ri restrictions on each of the ri
columns of βix. Notice that in the stationary case where ri = ki the identifi-

cation of the long-run relations can be achieved by setting β0ix = Iki . In cases

where ri < ki, βi can be exactly identified by setting β
0
ix = (Iri

...Qi), where

Qi is an ri × (ki − ri) matrix of fixed coefficients to be estimated freely. Other
types of identifying restrictions based on a priori economic theory can also be

entertained. But all exactly identifying restrictions yield the same estimate of

Πi, and hence for forecasting and impulse response analysis the results will be

invariant to the choice of exact identifying restrictions. In what follows we sug-

gest using the exact identifying restrictions β0ix = (Iri
...Qi), which are relatively

simple to implement.
21 In general, it is also possible to identify βi by placing restrictions on the other coefficients.
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For simulation of portfolio loss distributions (and for impulse response analy-

sis) we also need to estimate the covariance matrix of εt. Denote the reduced

rank regression estimates of εit by ε̂it, then we have

dCov(εit, εjt) = T−1 TX
t=1

ε̂itε̂
0
jt, (7.11)

dCov(εt) =


dCov(ε0t, ε0t) dCov(ε0t, ε1t) · · · dCov(ε0t,εNt)dCov(ε1t, ε0t) dCov(ε1t, ε1t) · · · dCov(ε1t,εNt)
...

...
...dCov(εNt, ε0t) dCov(εNt, ε1t) · · · dCov(εNt, εNt)

 , (7.12)

ε̂it = xit − âi0 − âi1t− Φ̂ixi,t−1 − (7.13)

Λ̂i0x
∗
it − Λ̂i1x∗i,t−1 − Ψ̂i0dt − Ψ̂i1dt−1.

where âi0, âi1, Φ̂i, Λ̂i0, Λ̂i1, Ψ̂i0, and Ψ̂i1 are the country-specific reduced-rank

estimates.

7.1 Testing Weak Exogeneity of x∗it

Given the partial nature of the above analysis, it is important that the weak ex-

ogeneity of the foreign-specific variables are put to test. Following Johansen

(1992) and Boswijk (1992) the weak exogeneity can be checked by testing

the joint significance of the estimated error correction terms, namely η̂i,t−1 =

β̂
0
ivi,t−1 − δ̂i(t − 1) defined by (7.10), in the marginal models for the foreign-
specific variables. For example, to test the weak exogeneity of the `th element

of x∗it the relevant marginal model is

∆x∗it,` = ci` +α∗i`η̂i,t−1 +
piX̀
j=1

δ0i`∆zi,t−j + ζit,`, (7.14)

The lag order, pi`, is set in the light of the empirical evidence and the available

sample size. The weak exogeneity of ∆x∗it,` can now be statistically evaluated

by testing α∗i` = 0, using standard F tests.
22

Finally, it is worth noting that even if the weak exogeneity assumption is

rejected, one could still obtain consistent estimates of the parameters of the

GVAR model in two steps. First the country-specific models can be estimated

treating all the domestic and foreign-specific variables (as well as the common

global variables if deemed necessary) as endogenous. These parameter estimates
22A similar procedure is also advocated in Harbo, Johansen, Nielsen and Rahbek (1998, p.

395).
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can then be used to obtain the parameters of the conditional models, xi|x∗i
separately, for i = 0, 1, ..., N , which can then be used to estimate the parameters

of the full GVAR model.23 This approach is, however, more data-intensive and

will not be efficient if the weak exogeneity assumption is met in the case of one

or more of the variables. A mixed estimation strategy is also clearly feasible,

namely by treating some but not all of the foreign-specific variables as weakly

exogenous.

8 Cross-Country Aggregation in Global VARMod-

eling

One of the strengths of the global vector autoregressive modeling approach lies in

its flexibility in taking account of the various inter-linkages in the global economy

in the context of a truly multi-country setting. But it can be demanding in terms

of data management, computations and data analysis when a large number of

countries (say 100 or more) are included in the model. One possible way of

making the analysis more manageable would be to apply the approach to a few

key countries (say G7) individually, and then aggregate the remaining countries

into 5-10 blocks or regions. This section considers how regional models can be

constructed from the underlying country-specific models.24

Consider a given region i (South East Asia, North Africa, or the Middle East,

for example) composed of Ni countries. Denote the vector of country-specific

variables in region i by xi`t, and the associated foreign variable vector by x∗i`t,

where i = 0, 1, 2, ..., R and ` = 1, 2, ..., Ni. We shall continue to assume that the

reference country (or region) is denoted by 0.25 The country-specific model for

country ` in region i is given by

xi`t = ai`0+ai`1t+Φi`xi`,t−1+Λi`0x∗i`t+Λi`1x
∗
i`,t−1+Ψi`0dt+Ψi`1dt−1+εi`t,

(8.1)

which is an adaptation of (2.1). The problem of aggregating the Ni countries

within region i centers on the heterogeneity of the coefficient matrices Φi`,

Λi`0, and Λi`1 associated with the country-specific variables. The cross-country

heterogeneity of the remaining parameters does not pose any special problem.

There will always be an aggregation problem so long as Φi`, Λi`0, and Λi`1
differ across the countries in the region. But in practice it is possible to reduce
23We are grateful to Soren Johansen for useful discussion regarding this approach.
24Note that this regional aggregation is a matter of convenience. It is not a logical require-

ment of the model.
25A region can be a reference country if it has a unified currency. Typically N0 = 1.
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the size of the aggregation error by using a weighted average of the variables

xi`t (and hence of x∗i`t); with the weights reflecting the relative importance of

the countries in the region. Let w0i` be the weight of country ` in the region i.

Clearly,
PNi

`=1w
0
i` = 1. Then aggregating the countries in the region using these

weights we have

xit = ai0 + ai1t+
NiX
`=1

w0i`Φi`xi`,t−1 +
NiX
`=1

w0i`Λi`0x
∗
i`t + (8.2)

NiX
`=1

w0i`Λi`1x
∗
i`,t−1 +Ψi0dt +Ψi1dt−1 + εit,

where

xit =
NiX
`=1

w0i`xi`t, ai0 =
NiX
`=1

w0i`ai`0, ai1 =
NiX
`=1

w0i`ai`1, (8.3)

Ψi0 =

NiX
`=1

w0i`Ψi`0, Ψi1 =

NiX
`=1

w0i`Ψi`1, εit =

NiX
`=1

w0i`εi`t. (8.4)

Using (8.2) a regional model as specified in (2.1) can be obtained. In terms of

the above notations we have:

xit = ai0 + ai1t+Φixi,t−1 +Λi0x∗it +Λi1x
∗
i,t−1 + (8.5)

Ψi0dt +Ψi1dt−1 +Ψi0dt +Ψi1dt−1 + ξit,

where ξit = εit + vit is now composed of the equation errors, εit, and the

aggregation error is defined by

vit =

NiX
`=1

w0i`(Φi`−Φi)xi`,t−1+
NiX
`=1

w0i`(Λi`0−Λi0)x∗i`t+
NiX
`=1

w0i`(Λi`1−Λi1)x∗i`,t−1.
(8.6)

The region-specific foreign variables, x∗it, can be constructed either using re-

gional trade weights or country-specific trade weights as in (2.4). In the case of

the latter y∗it , for example, is defined as

y∗it =
NiX
`=1

w0i`y
∗
i`t, i = 0, 1, 2, ..., R (8.7)

where

y∗i`t =
RX
j=0

NjX
k=1

wyi`,jkyjkt, ` = 1, 2, ...,Ni, i = 0, 1, 2, ..., R, (8.8)

wyi`,jk is the share of country k in region j in the total trade of country ` in

region i.

N =
RX
i=0

Ni. (8.9)
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The importance of the aggregation error depends on the extent and nature of

the differences in the coefficient matrices Φi`, Λi`0 and Λi`1 across the different

countries in the region. The aggregation error can be minimized by choosing

regions with similar economies (as far as possible) and by a sensible choice of

the weights, w0i`. Importance of countries in a region is best measured by their

output levels and for comparability it is important that they are measured in

purchasing power parity (PPP) dollars. The weights w0i` can be computed using

PPP-adjusted GDP series for a given year or based on averages computed over

several years. It may also be desirable to update the weights on a rolling basis;

say by using five-yearly lagged moving-averages.

In view of the above analysis the regional variables can be constructed from

country-specific variables using the following (logarithmic) weighted averages26

yit =

NiX
`=1

w0i`yi`t, pit =

NiX
`=1

w0i`pi`t, qit =

NiX
`=1

w0i`qi`t, (8.10)

eit =

NiX
`=1

w0i`ei`t, ρit =

NiX
`=1

w0i`ρi`t, mit =

NiX
`=1

w0i`mi`t. (8.11)

Notice that in constructing the regional variables yit, pit, eit, ... from the country-

specific variables yi`t, pi`t, ei`t, ... one simply needs to use country-specific vari-

ables measured in their domestic currencies, bearing in mind that ei`t stands

for the exchange rate of country ` in region i, measured in U.S. dollar.

9 An Empirical Application

9.1 Countries and Regions

In this section we illustrate our approach by estimating a global quarterly model

over the period 1979Q1-1999Q1 comprising of USA, Germany, France, Italy,

U.K., Japan, China and 20 other countries aggregated into 4 regions: Western

Europe, South East Asia, Middle East, and Latin America. The details of these
26The weights w0i` could be changed at fixed time intervals, say every five years, in order

to capture secular changes in the composition of the regional output. However, changing

these weights too frequently could mask the cyclical movements of the regional output being

measured.
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11 country/region classifications are given in Table 1.

Table 1

Countries/Regions in the GVAR Model

U.S.A. Germany Japan

Western Europe South East Asia Latin America

·Spain ·Korea ·Argentina
·Belgium ·Thailand ·Brazil
·Netherlands ·Indonesia ·Chile
·Switzerland ·Malaysia ·Peru
·Austria ·Philippines ·Mexico

·Singapore
Middle East China France

·Kuwait U.K. Italy

·Saudi Arabia
·Turkey

The output from these countries comprises around 70% of world GDP. They

were chosen largely because the major banks in G-7 countries have most of their

exposure in this set of countries. Noticeably absent are Scandinavian countries,

Africa and Australia-New Zealand. Future extensions of the model will look to

incorporate countries from these regions. Time series data on regions such as

Latin America or South East Asia (SEA) were constructed from each country in

the region weighted by the GDP share. For this we used purchasing power parity

(PPP)-weighted GDP figures, which is thought to be more reliable than using

weights based on U.S. dollar GDPs.27 For modeling purposes we distinguish

between the regions with developed capital markets namely U.S., Germany,

Japan, Western European countries, South East Asia and Latin America, and

the rest namely China and Middle East which over our sample period did not

have fully functioning capital markets. Finally, as noted earlier, the U.S. dollar

will be used as the numeraire exchange rate and its value in terms of the other

currencies will be determined outside the U.S. model.

9.2 The Trade Weights

The first step in the global VAR modeling exercise is to construct the foreign

country/region specific (“starred”) variables from the domestic variables using
27 Information on data sources and the construction of regional data series are provided in

the Appendix. Also see Section 8 for details of regional aggregation.
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the relations (2.4).28 For the weights we decided to rely exclusively on trade

weights based on the UN Direction of Trade Statistics. Information on capital

flows were not of sufficiently high quality and tended to be rather volatile. The

11× 11 matrix of the trade weights computed as shares of exports and imports
over the 1996-98 period is presented in Table 2.

[Insert Table 2 about here]

The trade shares of each country/region is displayed by columns. This

matrix plays a key role in linking up the models of the different regions together

and shows the degree to which one country/region depends on the remaining

countries. For example, not surprisingly the trade weights show that Latin

America is much more integrated with the U.S. economy than the rest of the

regions, while the Middle East is more integrated with the economies of Western

Europe and Germany, and the bulk of China’s trade is with the U.S., Germany,

Japan and South East Asia.

9.3 Integration Properties of the Series

The second stage in the modeling process is to select appropriate transforma-

tions of the domestic and foreign variables for inclusion in the country/region

specific cointegrating VAR models. The reduced rank regression techniques re-

viewed in Section 7 are based on the assumption that the underlying endogenous

and exogenous variables to be included in the country/region specific models are

approximately integrated of order unity. To ascertain the order of integration

of the variables in the country/region specific models in Tables 3a and 3b we

present augmented Dickey-Fuller (ADF) statistics for the levels, first differences

and the second differences of the domestic and country/region specific foreign

variables.

[Insert Tables 3a and 3b about here]

To ensure comparability all these statistics are computed over the same

period, 1980Q2 to 1999Q1, starting with an underlying univariate autoregressive

process of order 5, with a linear trend in the case of the levels (except for the

interest rates) and an intercept term only in the case of the first and second-

differences. The orders of the ADF test statistics reported in Tables 3a and 3b

are selected according to the Akaike Information Criterion (AIC).

Generally speaking, the results of these unit root tests are in line with

what is known in the literature. Interest rates (domestic and foreign) and real
28The details and the sources of the primary macro variables are provided in Appendix (A).
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equity prices (domestic and foreign) are unambiguously I(1) across all coun-

tries/regions. The same also applies to exchange rates with the notable ex-

ception of Latin America.29 In the case of Latin America the hypothesis that

exchange rate is I(2) can not be rejected. Mainly as a consequence, it is also

not possible to reject the hypothesis that the U.S.-specific foreign exchange rate

variable defined by

e∗US =
8X
j=1

wUS,jej , (9.1)

is an I(2) variable. (See the last column of Table 3b). There are two possible

ways of dealing with this problem. We could decide to model ∆e instead of e,

but this will most likely involve over-differencing and efficiency loss in the case

of the seven remaining regional models. Another, arguably more attractive,

alternative would be to include the real exchange rate (e − p) in the regional
models. The hypothesis that e− p is I(1) now prevails across all countries, and
the hypothesis that e∗ − p∗ is I(1) is not supported in the case of U.K. and
Latin America.

As far as the order of integration of the remaining three variables are con-

cerned, the evidence is less clear cut, which is partly due to uneven data quality

across the countries and the relatively short sample period under consideration.

Using the 95% significance level, a unit root in real output is not rejected in any

of the 11 regions. However, in the case of Japan and China the ADF statistics

seem to suggest that real output could be I(2)! This is clearly implausible and

again could be due to poor data quality in the case of China. The result for

Japan is, however, difficult to explain, although Japan’s national income statis-

tics are not regarded as particularly reliable. A similar argument also applies

to foreign output variables, y∗ and real money balances, m and m∗. Overall,

however, it seems appropriate for our purposes to treat all these variables ap-

proximately as I(1). Finally, for the price variables the test results suggest that

the general price level, p, is I(1) in six regions and I(2) in the remaining five

regions. A similar outcome prevails with respect to p∗, which is I(2) for six

countries and I(1) for the remaining four. (Recall that p∗ is not included in the
29A number of modifications of the ADF test have also been proposed in the literature,

for example, by Pantula, Gonzalez-Farias and Fuller (1994), Leybourne (1995), and Elliot,

Rothenberg and Stock (1996), which have been shown to have better small sample power

characteristics. To check the robustness of our conclusions to the choice of the test statistics

we also computed Elliott et al.’s ADF-GLS statistics for all the series reported in Tables 3a

and 3b. Overall, the test results support our general decisions regarding the unit properties

of the various series. The test results based on ADF and ADF-GLS statistics differ only in a

few cases and there seems to be no obvious patterns to these differences. The ADF-GLS test

results are available from the authors on request.

29



U.S. model). Since over-differencing is likely to be less serious for the empirical

analysis than wrongly including an I(2) instead of an I(1) variable, we shall be

using inflation rates, ∆p and ∆p∗, that are at most I(1), instead of the price

levels.

9.4 Country/Region Specific Models

In view of the above results, the endogenous variables of the U.S. model were

selected to be real output (yUS), the rate of inflation (∆pUS), the level of interest

rate (rUS), the real money balances (mUS), and the real equity prices (qUS),

all measured in logarithms as defined in (2.3). Within the GVAR framework

the value of the U.S. dollar is determined outside the U.S. model, and the

U.S.-specific real exchange rate variable, e∗US − p∗US, is then included as an
I(1) weakly exogenous variable in the U.S. model.30 Given the size of the U.S.

economy and its importance for global economic interactions, no other foreign-

specific exogenous variable was considered for inclusion in the U.S. model. But

to control for important global political events, the logarithm of oil prices (po)

were included as an exogenous I(1) variable in all the country/region specific

models.31

In the case of U.K., Germany, France, Italy, rest of Western Europe, Japan,

South East Asia and Latin America with advanced capital markets we chose

(yj ,∆pj , rj , ej − pj ,mj , qj) and
¡
y∗j ,∆p

∗
j , r
∗
j ,m

∗
j , q
∗
j , p

o
¢
as their endogenous and

exogenous variables, respectively. Notice that e∗j is excluded from the set of

exogenous variables on the grounds of its close relationship to ej .32 For the

remaining regions (Middle East and China) the set of included endogenous and

exogenous variables were (yj ,∆pj , rj , ej − pj ,mj) and
¡
y∗j ,∆p

∗
j , r
∗
j ,m

∗
j , q
∗
j , p

o
¢
,

respectively.

The next step in the analysis is to estimate region-specific cointegrating

VAR models and identify the rank of their cointegrating space. The order of

the underlying VAR models was taken to be 1. This choice was dictated to

us by the small number of time series observations that were available to us

relative to the number of unknown parameters in each of the regional models.

The “trace” and “maximum eigenvalue” test statistics for each of the 11 regions

together with the associated 90% and 95% critical values are summarized in
30The weights wUS,j , j = 1, 2, ..., 10 are given in the first column of Table 2.
31The ADF statistics computed over the period 1980Q2-1999Q1 for the level and first-

differences of oil prices were -2.27 and -4.74, respectively; thus providing empirical support

for treating oil prices as an I(1) variable.
32 See Section 2 for a more detailed discusion.
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Tables 4a-4c.33

[Insert Tables 4a-4c about here]

It is known that both of these statistics tend to over-reject in small samples,

with the extent of over-rejection being much more serious for the maximum

eigenvalue as compared to the trace test. Using Monte Carlo experiments it has

also been shown that the maximum eigenvalue test is generally less robust to

departures from normal errors than the trace test.34 The latter point is par-

ticularly relevant to our applications since they contain equity prices, exchange

rates and interest rates, all of which exhibit significant degrees of departures

from normality. We shall therefore base our inference on the trace statistics.

Accordingly, we found 5 cointegrating relations for the U.K., 4 for Germany

and Japan and 3 for Italy, Western Europe, South East Asia, Latin America,

Middle East and China, and 2 for France and the U.S. The result for the U.K.

is in line with the full system estimates reported in Garratt et al. (2001) for the

U.K. over the period, 1965q1-1995q4. For France the trace test when applied at

90% is very marginal and in view of the 3 or more cointegrating relations found

for other Western European countries could be an underestimate. So in what

follows we also assume that there are 3 cointegrating relations in the model

for France. For the U.S. the test results seem quite conclusive and given the

particular nature of the U.S. model we did not see any ground for doubting the

2 cointegrating relations that are suggested by the tests.

The cointegrating relations can be interpreted as long-run relations, either

amongst the domestic variables and/or between the domestic and foreign vari-

ables. Long-run money demand equation (that relates mit to ρit and yit) is an

example of the former, while the uncovered interest parity (that relates ρit to

ρ∗it) provides an example of the latter. These theoretical long-run relations sug-

gest further (over-identifying) restrictions on the cointegrating relations which

can be imposed and tested as in Garratt et al. (2001), for example. However,

this will require detailed long-run structural analysis of the individual regions

and will be beyond the scope of the present application.
33These statistics are computed using VAR(1) specifications with restricted trend coeffi-

cients. This is model IV in Pesaran, Shin and Smith (2000). Also see the discussion in Section

7. Computations are carried out using Microfit 4.1. See Pesaran and Pesaran (1997).
34 See, for example, Cheung and Lai (1993).
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9.5 Testing Weak Exogeneity of the Country-Specific For-
eign Variables

One of the key assumptions underlying our estimation approach is the weak

exogeneity of the country-specific foreign variables. But as noted earlier this

assumption can be tested by running first-difference regressions of the foreign

variables and testing the significance of the country-specific error correction

terms in these regressions. See (7.14). For example, to the test the weak exo-

geneity of, for instance, foreign output in the U.K. model, y∗uk, we need to test

the joint hypothesis that

δuk,j = 0, j = 1, 2, .., 5

in the regression

∆y∗uk,t = auk +
5X
j=1

δuk,jECM
(j)
uk,t−1 +φ0uk∆zuk,t−1 + φuk,o∆p

o
t−1 + ζuk,t,

where ECM (j)
uk,t−1, j = 1, 2, ..., 5 are the estimated error correction terms asso-

ciated with the five cointegrating relations found in the U.K. model, ∆zuk,t−1 =

(∆x0uk,t−1, ∆x
0∗
uk,t−1, ∆

³
e∗uk,t−1 − p∗uk,t−1

´
, ∆pot−1)0. The F statistics for test-

ing the weak exogeneity of all the country-specific foreign variables and the oil

price variable are summarized in Table 5.

[Insert Table 5 about here]

Out of the 62 weak exogeneity tests carried out only 3 are statistically signif-

icant at the 5% level and none at 3% or less. The 3 rejections of weak exogeneity

assumption relate to foreign output in France, real equity prices in Latin Amer-

ica and oil prices in the U.S. model. Arguably, the most convincing and plausible

of these rejections is the weak exogeneity of oil prices in the U.S. model. So we

re-estimated the U.S. model with oil prices as endogenous. This did not affect

our main conclusion about the number of cointegrating relations in the U.S.

model but confirmed the importance of possible feedback effects from the U.S.

economy into oil prices. There seems little to choose between the two versions

of the U.S. model, however. After careful considerations of the various issues

involved we decided in favor of treating oil prices as exogenous throughout the

GVAR model, considering the importance of geopolitical factors in determina-

tion of oil prices, and the desirability of retaining a flexible modeling approach

suited to the analysis of special risks from international political events such as

threat of wars and terrorism.
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9.6 Other Features of the Country-Specific Models

Due to data limitations and the relatively large number of endogenous and

exogenous variables involved, we have been forced to consider a VARX*(1,1)

specifications for the country-specific models. It is therefore important to check

the adequacy of the country-specific models in dealing with the complex dynamic

inter-relationships that exist in the world economy. To this end in Table 6 we

provide F statistics for tests of serial correlation of order 4 in the residuals of

the error correction regressions for all the 63 endogenous variables in the GVAR

model.

[Insert Table 6 about here]

Considering the relative simplicity of the underlying models it is comfort-

ing that 45 out of the 63 regressions pass the residual serial correlation test

at the 95% level. Perhaps not surprisingly most of the statistically significant

outcomes occur in the case of variables with known growth persistence char-

acteristics, namely real money balances, interest rates and inflation. But even

in these examples the degree of rejection in not uniform. For example, using

the 1% significance level there are only 7 error correction equations that do not

meet the requirement. Therefore, while there are cases of concern that need

to be examined more carefully, overall the test results seem satisfactory. It is

hoped that as more data become available, higher order VARX* models can be

estimated and their results evaluated for residual serial correlation. This may

require estimation of different order VARX* models for different countries. The

GVAR methodology can accommodate both extensions, but these will not be

pursued here.

These test results together with the weak exogeneity of the foreign vari-

ables also allow consistent estimation of the contemporaneous effects of foreign-

specific variables on domestic variables (at least for the ones where the residual

serial correlation test is not statistically significant). There are many estimates

of interest that could be considered. Here we focus on the contemporaneous

effects of the foreign variables on their domestic counterpart. For example, we

could ask: what is the effect on German output if foreign output specific to Ger-

many rises by 1%. Similarly, the effect of 1% increase in ‘world’ equity prices

can be estimated on equity prices of the individual countries/regions. The esti-

mates, best viewed as impact elasticities, from such an exercise are summarized

in Table 7.35 When statistically significant all the estimates have the expected
35This interpretation is due to the linear logarithmic nature of the country-specific models

and the fact that foreign variables are formed as weighted averages with the weights adding
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sign of being positive, except for the coefficients of ∆m∗ in South East Asia and

∆r∗ in Japan.

[Insert Table 7 about here]

The output elasticities are significant in the case of Germany, France, Italy,

Western Europe, China and Japan. Equity price elasticities are statistically sig-

nificant in the case of all countries/regions with a capital market. The patterns

of statistical significance of inflation, interest rate and real money balances are

more dispersed across countries. Perhaps not surprisingly equity markets show

the closest degree of contemporaneous inter-dependence with the other channels

playing a less prominent role by comparison.

9.7 Dynamic Properties of the Global Model

Due to the simultaneous nature of the country-specific models a more satis-

factory approach to the analysis of dynamics and interdependencies (both on

impact as well as over time) amongst the various factors would be via impulse

response functions computed from the solution to the global VAR model. As

discussed in Section 3, the global model can be obtained by combining the

country-specific models. The total number of cointegrating relations in the

global model can at most be equal to r =
P10
i=0 ri = 36.36 The long-run and

short-run dynamic properties of the global model are determined by the global

cointegrating matrix, β̃, given by (4.8), and the eigenvalues of z =G−1H, de-
fined by (5.4). Since the global model contains 63 endogenous variables and the

rank of β̃ is at most 36, it then follows that z must have at least 27 (= 63−36)
eigenvalues that fall on the unit circle.37 It is encouraging that our application

does in fact satisfy this property. The matrix z, estimated from the region-

specific models has exactly 27 eigenvalues that fall on the unit circle with the

remaining 36 eigenvalues having moduli all less than unity.38 Amongst the lat-

ter set, the 3 largest eigenvalues (in moduli) are 0.9456, 0.8661, and 0.8575;

thus ensuring a reasonably fast rate of convergence of the model to its steady

state once shocked. These results also establish that the global model forms

up to unity.
36 See Section 4 for further details.
37Notice that rank(β̃) =rank(G − H), and for a non-singular matrix G, then rank(I −

z) =rank(β̃).
38Out of these 36 eigenvalues, 28 (14 pairs) were complex, that produce the damped mildly

cyclical character of the generalized impulse response functions discussed below. The eigenval-

ues with the three largest complex part are 0.3875±0.2495i, 00.1023±0.1990i, 0.7406±0.1624i,
, where i =

√−1.
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a cointegrating system with 36 long-run relations and a stable error-correcting

representation. In particular, the effects of shocks on the long-run relations

of the global economy will eventually disappear. The decay rate is bounded

by 0.9456. However, due to the unit root properties of the global model (as

characterized by the unit eigenvalues of z), global or regional shocks will have
permanent effects on the levels of the variables such as real outputs, interest

rates or real equity prices.

The time-profiles of the effects of a variety of shocks of interest on the global

economy can now be computed by means of generalized impulse response func-

tions (GIRFs) discussed in Section 6 which identifies the shocks as intercept

shifts in the various equations using historical variance-covariance matrix of the

errors for estimation of impact effects. This approach is particularly suited

for the analysis of dynamics of the transmission of shocks across regions, since

GIRFs are invariant to the ordering of the countries/regions in the global VAR

model. (See Section 6). Also, while it is true that it may not be possible to

provide “structural” economic interpretation of these shocks as ‘demand’, ‘sup-

ply’ or ‘policy’ shocks,39 the GIRFs provide a historically consistent account of

the inter-dependencies of the idiosyncratic shocks particularly across different

regions. Given that specific-country models condition on weakly exogenous for-

eign variables, it is reasonable to expect that there should remain only a modest

degree of correlations across the shocks from different regions, and hence it is

more reasonable to believe that the GVAR helps identify regional shocks as com-

pared to shocks that can be given a satisfactory economic interpretations. For

example, the GVAR approach could provide a plausible account of the trans-

mission of shocks from the U.S. (modelled almost as a closed economy) to the

rest of the world. Accordingly, we shall consider the following shock scenarios

with emphasis on their regional transmissions:

• A one standard error negative shock ( a negative “unit” shock) to U.S.

equity prices.

• A one standard error positive shock to German output.

• A one standard error negative shock to equity markets in South East Asia.

We could examine the time profiles of the effects of these shocks either on

the endogenous variables of a particular region, or on a given variable across all

the regions.
39The number of possibilities is huge, 63! in total.
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9.7.1 A Negative Shock to U.S. Equity Prices

Figure 1 displays the impacts of shocks to U.S. equity market on equity prices

worldwide.

[Insert Figure 1 about here]

On impact, a fall in the U.S. equity prices causes prices in all equity markets

to fall as well but by smaller amounts: 3.5% in the U.K., 4.5% in Germany, 2.4%

in Japan, 2.6% in South East Asia, and 4.8% in Latin America, as compared to

a fall of 6.4% in the U.S. (See Table 8).

[Insert Table 8 about here]

However, over time the fall in equity prices across the regions start to catch

up with the U.S. and gets amplified in the case of Italy and Latin America. The

U.K. presents an interesting exception to this pattern, although these point es-

timates should be viewed with caution. They are likely to be poorly estimated

with large standard errors, particularly those that refer to long forecast hori-

zons.40 Nevertheless, the relative position and pattern of the impulse response

functions could still be quite informative. For example, they confirm the pivotal

role played by the U.S. stock market in the global economy, and suggest that in

the longer run scope for geographic diversifications across equity market might

be somewhat limited. See Figure 1.

The time profiles of the effects of the shock to the U.S. equity market on

real output across the different regions are shown in Figure 2. The second panel

of Table 8 provides the associated point estimates for a number of selected

horizons.

[Insert Figure 2 about here]

The impact effects of the fall in the U.S. equity market on real output are

negative for most regions, but rather small in magnitude. After one year real

output shows a fall of around -0.31% in the U.S., -0.25% and -0.29% in Germany

and U.K., respectively, -0.26% in Latin America, and -0.12% in South East Asia.

Japanese output only begins to be negatively affected by the adverse U.S. stock

market shock much later. The two regions without capital markets are either
40 It is possible to compute standard errors for the generalized impulse responses using

bootstrap techniques. See, for example, Garratt et al. (2001). But this would be a highly

computer intensive exercise and it is not clear to us that it will add much to our overall

conclusions.
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not affected by the shock (Middle East) or even show a rise in output (in the case

of China). Once again these point estimates should be treated with caution.41

9.7.2 A Positive Shock to German Output

The effects of a one standard error rise in output in Germany on equity prices

and real output across the different regions are summarized in Table 9 and

displayed in Figures 3 and 4.42

[Insert Table 9 and Figures 3&4 about here]

Table 9 also provides the point estimates of the effects of the shock on

inflation, interest rates and real exchange rates for selected horizons. On impact

the effect of the increase in Germany’s output is to increase German equity prices

by 2.50%, followed by 1.20% in South East Asia and 0.90% in France, with mixed

outcomes for the remaining regions. The impact effects are in fact negative on

U.S., U.K. and Japan equity prices, although these are rather small compared

to standard errors of shocks to equity prices in these economies. Over time

the effect of the positive output shock is to increase equity prices in France,

Italy and the rest of Western Europe in line with the increase in Germany’s

equity prices, although the effects on U.K. and U.S. equity prices continue to

remain negative but very small. This shows the high degree of integration of

the European economies with Germany with the notable exception of the U.K.

equity market which seems to follow the U.S. market instead.

A similar story also emerges if the effects of the shock to Germany’s output

on other countries’ output are considered. (see the second panel of Table 9).

After one year the effect of the shock on U.S. and U.K. output is almost zero

while it is still sizeable on France, Italy and the rest of Western Europe. These

differences become further pronounced at horizons beyond one year.

The effects of the shock on other variables are mixed. They are mostly small

and transient in the case of inflation and interest rates, but quite sizeable as far

as exchange rate and real money balances are concerned, at least in the case of

some of the countries, notably Germany, Italy and the rest of Western Europe.
41Table 8 also provides point estimates of the time profiles of the effects of the adverse US

stock market shock on inflation, interest rates and real exchange rates. Overall the pattern

of the impulse responses across the regions seem plausible, although space does not permit a

detailed discussion of these results here.
42A one standard error shock here converts to around 2.96% per annum increase in output.
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9.7.3 A Negative Shock to Equity Markets in South East Asia

Given the interest in the effects of the 1997 South Asian Crisis and its possible

contagion effects, we consider here the generalized impulse response functions

for a one standard error negative shock to equity prices in South East Asia

(SEA).43 The one standard error shock is equivalent to 8.2% decline in SEA’s

equity prices and on impact has small positive effects on Japan’s and U.S. equity

prices (1.30% and 0.31%, respectively) and relatively small negative effects on

equity prices in other countries. See the first panel of Table 10 and Figure 5.

[Insert Table 10 and Figure 5 about here]

But over time these effects accumulate and after two years all markets are

adversely affected with the exception of the U.S. The U.S. equity market (and to

a lesser extent the U.K. and Japanese markets) seems to have been reasonably

robust to the South Asian Crisis. It is also interesting to note that in the longer

run the Western European (except for the U.K.) equity markets seem to be

more vulnerable to the South Asian Crisis than Japan.

As to be expected the output effects of the negative shock to the SEA’s

equity markets is much more muted when compared to its effects on equity

prices. Even after one year adverse effects of the shock is only sizeable in the

case of European economies (with the exception of U.K.) with the largest effect,

perhaps not surprisingly, being on South East Asia itself. See the second panel

of Table 8 and Figure 6.

[Insert Figure 6 about here]

Once again the impulse responses suggest that Japan, U.S. and U.K. are

likely to be reasonably robust to adverse shocks from South East Asian equity

markets. At first this result seems rather surprising considering the relatively

strong trade links that exists between South East Asia, Japan and U.S. (see

Table 2). However, this result largely reflects the apparently weak links that

exists between the equity markets of these economies as can be seen from the

first panel of Table 10 and discussed above. The impulse responses of the effects

of the negative shock to SEA’s equity markets on inflation, interest rates and

exchange rates are summarized in the bottom three panels of Table 8. Other

implications of the South Asian Crisis (such as an adverse shock to exchange

rates) can also be investigated using the global VAR modeling tools developed

in this paper.
43Our framework can also be used to investigate the contagion effects within the South

East Asian region. However, this would have required a much higher degree of regional

disaggregation and could be the subject of a separate study.
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10 Conditional Loss Distributions

In this section we show how to use the GVAR to generate conditional loss

distributions. We begin with a characterization of a firm’s change in value as

a function of systematic and idiosyncratic components. We adopt a somewhat

simplified version of the more general model developed in Pesaran, Schuermann,

Treutler and Weiner (2003), hereafter PSTW. Following an approach which

is structurally similar to Arbitrage Pricing Theory (APT), a firm’s change in

value (or return), conditional on information available up to time t, It, can be
decomposed as

rji,t+1 = µjit + ξji,t+1, (10.1)

where µjit is the (forecastable) conditional mean, and ξji,t+1 is the (non-forecastable)

innovation component of the return process. Consistent with the distributional

assumptions of the GVAR model, the innovation has a conditional Gaussian

distribution44

ξji,t+1 | It ∼ N(0,ω2ξ,ji). (10.2)

Linking the firm return expression (10.1) into the GVAR model, we can spec-

ify the conditional mean process more precisely. Thus firm returns depend on

changes in the underlying macroeconomic factors, say ki region-specific macro-

economic variables, the exogenous global variables (dt, in our application oil

prices), together comprising the systematic components and the firm-specific

idiosyncratic shocks:

rji,t+1 = αji +
kiX
`=1

βji,`∆xi,t+1,` +
sX
`=1

γji,`∆dt+1,` + ηji,t+1, t = 1, 2, ..., T,

(10.3)

where rji,t+1 is the equity return from t to t + 1 for firm j (j = 1, ..., nci)

in region i. αji is a regression constant for company j in region i, ki is the

number of macroeconomic factors (drivers) in region i, βji,` is the factor loading

corresponding to the change in the `th macroeconomic variable for company j in

region i, ∆xi,t+1,` is the log difference of the `th macroeconomic factor in region

i, dt+1,` is the `th global factor, γji,` is its associated coefficient, and ηji,t+1 is
44The normality assumption could be a good approximation for quarterly returns, but it is

relatively easy to adapt the analysis to allow for fat-tailed distributions such as Standard t

with low degrees of freedom; in fact we do so in PSTW. The assumption that the conditional

variance of returns are time-invariant also seems reasonable for quarterly returns, although it

would need to be relaxed for returns measured over shorter periods, such as weeks or days.
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a firm-specific shock.45 This can be written more compactly as

rji,t+1 = αji + β0ji∆xi,t+1 + γ0ji∆dt+1 + ηji,t+1, (10.4)

where xi,t+1 and dt+1 are the ki × 1 and s× 1 vectors of macroeconomic and
global factors, which are precisely the variables in the country-specific models

defined by (2.1) or (5.1). The main advantage of using the GVAR as a driver

for a credit portfolio model is that it provides the correlation structure among

macroeconomic variables of the global economy. If the model captures all sys-

tematic risk, the idiosyncratic risk components of any two companies in the

model should be uncorrelated.

Accordingly, we assume that the firm-specific shocks, ηji,t+1, have mean

zero, a constant (time-invariant) variance, ω2η,ji, are serially uncorrelated and

are distributed independently of the macroeconomic factors. Further for the

simulation of the loss distribution, we shall assume that these shocks are also

independently distributed across firms as normal variates, namely ηji,t+1 v
IIN

¡
0,ω2η,ji

¢
.46

In any given time period, the probability of default for firm j in region i will

be correlated, through the influence of common macro effects (or systematic

risk factors) in region i, and globally, with the probability of default of other

firms in the bank’s portfolio. Most credit portfolio models share this linkage of

systematic risk factors to default and loss; they differ in specifically how they

are linked (see Figure 7).47

[Insert Figure 7 about here]

45Given the international nature of some of the firm’s operations it would also be relevant

to add country-specific foreign variables in the APT regressions. This will complicate the

exposition but can be readily accommodate within our framework. For details of such an

extension see PSTW.
46Relaxing the distributional assumption for ηji,t+1 is no more difficult than it is for ξji,t+1.

Another alternative is to sample directly from the actual APT regression residuals η̂jit, as-

suming the available sample periods across the different companies is sufficiently large. In our

application we have at most 80 data points per company and for some of the companies in the

loan portfolio we have considerably less, and resampling does not promise to provide a more

accurate picture of the true distribution of the residuals. See also the discussion in Section

10.3.
47For detailed comparisons, see Koyluoglu and Hickman (1998), Crouhy et al. (2000), Gordy

(2000) and Saunders and Allen (2002).
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10.1 The Merton Model, Default Thresholds and Credit
Ratings

Before expected loss due to default can be computed we need a procedure for

determining a default threshold, cji, with respect to which the default state can

be defined. We follow a standard approach in the literature by making use of the

Merton (1974) option-based model of firm default.48 In that model, shareholders

effectively hold a put option on the firm, while the debt-holders hold a call

option.49 If the value of the firm falls below a certain threshold, the shareholders

will put the firm to the debt-holders. We follow a typical adaptation of the

Merton model by using asset returns and their volatility instead of total value of

assets and their volatility. But since asset returns and their volatility are difficult

to observe directly, we use equity returns and their volatility as proxies.50

In the Merton model default occurs if the value of the firm j in region i at

time t falls below a given fixed threshold value, cji. The separation between

a default and a non-default state can now be characterized using the indicator

variable I (rji,t+1 < cji) such that

I (rji,t+1 < cji) = 1 if rji,t+1 < cji =⇒ Default, (10.5)

I (rji,t+1 < cji) = 0 if rji,t+1 ≥ cji =⇒ No Default.

In standard implementations of the Merton model the percentage changes in

asset value are taken to be normally distributed.51 Moreover, this class of

models places a specific interpretation on credit ratings from rating agencies,

namely as a distance to default metric. Assuming that changes in asset value are

normally distributed, the default probability can be expressed as the probability

of a standard normal variate falling below some critical value.

Conceptually it is useful to anchor the default process by fixing the default

threshold, for instance at the end of the sample period, thereby allowing the
48For a discussion of the power of Merton default prediction models see Falkenstein and

Boral (2001) who find that the Merton model generally does well in predicting default, but

should be combined with other measures such as balance sheet ratios. Duffee (1999) points

out that due to the continuous time diffusion processes underlying the Black Scholes formula,

short-term default probabilities may be underestimated. Amongst others, Jarrow and Turn-

bull have developed intensity-based models, also called “reduced form” models, where model

assumptions are imposed on the prices of the firm’s liabilities only. See Duffee (1999).
49Through put-call parity, one could also conceptualize this as shareholders holding a call

option on the firm’s assets, while the debtholders’ pay-off is isomorphic to writing a put option.
50Arguably equity returns are even preferred since they allow for non-constant liabilities

within the Merton framework.
51For example, credit portfolio management models such as CreditMetrics adjust the asset

returns to be standard normally distributed.
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loss distribution to shift in response to macroeconomic factors. Define PDjit =

Pr(rji,t+1 < cji | It) as shorthand notation for the probability of default of
company j in region i at time t. Then using (10.1) and (10.5), this default

probability can be written as

PDjit = Φ

µ
cji − µjit
ωξ,ji

¶
, (10.6)

where Φ(·) is the standard normal distribution function. There are no direct
observations on PDjit. Instead what we do have is a credit rating Rjit for a
set of large companies, namely those that were assigned a rating by one of the

rating agencies such as Moody’s or Standard & Poor.52 Importantly we have

the rating histories {Rjit}Tt=1 for all companies j = 1, 2, ..., nci, i = 0, 1, ..., N

in the credit portfolio that we shall be considering. We may use these histories,

plus histories for all other companies with a rating at the beginning of period t,

to estimate the default probability for each rating for each time period, PDRt .
53

For example, the estimated probability of default for companies rated ’BBB’ in
period t may be 22 basis points (PDBBBt = 22bp), while in period t0 it may rise

to 37bp (PDBBBt0 = 37bp). We are then able to assign that default probability

in period t for rating R to all firms with that rating in that period.

Given sufficient data for a particular region or country i (the U.S. comes

to mind), one could in principle have PDs varying over i. However, since a

particular firm j’s default is only observable once, multiple (serial) bankruptcies

notwithstanding, it makes less sense to allow PD to vary across j. Empirically,

then, we will abstract from possible variation in default rates across countries

i, so that probabilities of default vary only across credit ratings and over time.

Thus for a particular credit rating Rjit for firm j in region i at time t,

(say ‘BBB’), we assign the corresponding default probability estimate PD (Rjit)
which varies over time and across rating types but not across firms individually.

Therefore, two different firms with the same credit rating in period t will have

the same default probability estimates. Specifically

Pr(rji,t+1 < cji | It) = PD (Rjit)

and therefore

cji = µjit + ωξ,jiDT (Rjit) , (10.7)

where DT (Rjit) = Φ−1 (PD (Rjit)) is the ‘default threshold’ associated with
52R may take on values such as ’Aaa’, ’Aa’, ’Baa’,..., ’Caa’ in Moody’s terminology, or

’AAA’, ’AA’, ’BBB’,..., ’CCC’ in S&P’s terminology.
53 See PSTW for details on how to obtain default frequency, or default probability, estimates

from rating histories.
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the estimated default probability PD (Rjit) , and Φ−1(·) denotes the inverse
cumulative standard normal distribution.

Suppose now that we have time series data over the sample period t =

1, 2, ..., T, and we wish to obtain an estimate of the default threshold at T to be

used in computation of conditional loss distribution over the period T to T +1.

Averaging the relations (10.7) over t = 1 to T we obtain

cji = µ̄ji + ωξ,jiDTRji,

where

µ̄ji =
1

T

TX
t=1

µjit, and DTRji =
1

T

TX
t=1

DT (Rjit) .

A model-free estimate of µ̄ji is given by r̄ji, the average return over the sam-

ple period. As noted above, estimates of PD (Rjit) (and hence DT (Rjit)) can
be obtained using time series observations of rating histories from credit rat-

ing agencies such as Moody’s or Standard & Poor, and ωξ,ji can be estimated

(as shown below) using the GVAR model and the parameters of the APT re-

gressions. Alternatively, an unconditional (model-free) estimate of the return

variance, say ω2ji = V ar (rji,t+1), could be used. The results are unlikely to be

much affected by which of the two estimated error-variances is used. But the

model-free estimate has the advantage of being simple and could fit better with

the rating agencies’ own approach of not putting too much weight on the busi-

ness cycle factors in arriving at their credit ratings.54 Adopting the model-free

estimation approach, cji can be consistently estimated at time T by

ĉji = r̄ji + ω̂jiDTRji, (10.8)

where

ω̂2ji =

PT
t=1 (rjit − r̄ji)2

T − 1 .

Clearly, it would be possible to update this estimate in a recursive fashion as

more data becomes available, either by using an expanding or a rolling obser-

vation window.

We would say that conditional on information we have at time T, default

occurs when rji,T+1 < ĉji, or equivalently if

rji,T+1 < r̄ji + ω̂jiDTRji. (10.9)
54We use rating histories from Moody’s to estimate PDRt and hence ĉji, and “Moody’s

believes that giving only a modest weight to cyclical conditions best serves the interests of the

bulk of investors.” See Moody’s (1999, pp. 6-7).
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By treating the critical value as constant, we implicitly assume constant liability

growth. Thus we continue to make assumptions about the capital structure of

the firm, but ones that are less restrictive and more realistic.55

In the Merton default prediction model, accounting data (book value of

callable liabilities), the market value of equity and the volatility in the market

value of equity are used to derive PD (Rjit).56 We do the inverse: using an

existing measure of expected default probability, we determine the critical value

ĉji.

There are several reasons to think this approach is less than ideal. Putting

aside issues of the structural Merton model per se (e.g. the assumption that

the value of liabilities remains unaltered even if the market value of assets may

double), mappings from credit ratings to default probabilities are typically ob-

tained using corporate bond rating histories over many years. The reason is

simple: default events for investment grade firms are quite rare: less than 0.5%

per year. However, there is substantial evidence that default rates are tied to the

business cycle (Nickell, Perraudin and Varotto (2000), Bangia et al. (2002)).

The difficult task of endogenizing the default threshold is a fruitful area for

future research.

10.2 Expected Loss Due to Default

Given the value change process for firm j, defined by (10.4), and the default

threshold, ĉji, we now consider the conditions under which the firm goes bank-

rupt and is thus no longer able to repay its debt obligations. Specifically, we

need to define the expected loss to firm j at time T given information available

to the lender (e.g. a bank) at time T, which we denote by IT . Default occurs
when the firm’s value (return) falls below some threshold ĉji (e.g. when the

value of a firm’s assets falls below the value of its callable liabilities). Expected

loss at time T , ET (Lji,T+1) = E (Lji,T+1 | IT ) , is given by

ET (Lji,T+1) = Pr (rji,T+1 < ĉji | IT )ET (Xji,T+1)ET (Sji,T+1)(10.10)
+ [1− Pr (rij,T+1 < ĉji | IT )]× L̃

where ĉji is given by (10.8), Xji,T+1 is the maximum loss exposure assuming

no recoveries for company j in region i (typically the face value of the loan)
55While the standard Merton model assumes liability growth to be zero, the adapted version

can incorporate other growth rates. Still, assuming constant liability growth may be more

realistic than allowing for no fluctuation of liability values at all.
56This approach is taken by KMV to generate what they call EDF s (expected default

frequencies).
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and is known at time T , Sji,T+1 is the percentage of exposure which cannot
be recovered in the event of default, and L̃ is some future loss in the event of

non-default at T + 1 (which we set to zero for simplicity).57 Typically Sji,T+1
is not known at time of default and will be treated as a random variable over

the range [0, 1]. In the empirical application we assume that Sji,T+1 are draws
from a beta distribution with given mean and variance calibrated to (pooled)

historical data on default severity. Substituting (10.4) into (10.10) and setting

L̃ to zero we now obtain:

ET (Lji,T+1) = Pr
¡
αji + β0ji∆xi,T+1 + γ0ji∆dT+1 + ηji,T+1 < ĉji | IT

¢
Et(Xji,T+1)Et(Sji,T+1) (10.11)

To compute the conditional default probability,

πji,T = Pr
¡
αji + β0ji∆xi,T+1 + γ0ji∆dT+1 + ηji,T+1 < ĉji | IT

¢
, (10.12)

we make use of the solution to the GVAR model given by (5.3) and (5.4), and

note that

∆xi,T+1 = Si
£
b0+b1 (T + 1)− (Ik−z)xT +Υ0∆dT+1 + (Υ0 +Υ1)dT+G−1εT+1

¤
,

where Si is a ki×k selection matrix such that xit = SixT . In the case where the
macroeconomic variables are stacked by countries, as in xT = (x00T ,x

0
1T , ....,x

0
NT )

0,

then Si =
¡
0k0 , ..,0ki−1 , Iki ,0ki+1 , ..,0kN

¢
. To take account of the uncertainty

associated with the global exogenous variables, dT+1, we adopt the autoregres-

sive specification defined by (6.5) and note that

∆dT+1 = µd − (Is−Φd)dT + εd,T+1. (10.13)

Hence

∆xi,T+1 = Si

"
b0 +Υ0µd+b1 (T + 1)− (Is−z)xT + (Υ0Φd +Υ1)dT

+Υ0εd,T+1+G−1εT+1

#
,

(10.14)

where εd,T+1 v i.i.d. (0,Σd), and by assumption is distributed independently
of the macroeconomic shocks, εT+1, and the firm’s idiosyncratic shock, ηji,T+1.

Using this result in (10.12) and after some simplifications we have

πji,T = Pr
¡
ξji,T+1 < ĉji − µji,T | IT

¢
, (10.15)

57One would expect loss severity to be higher in recessions than expansions. Bankruptcies

are pro-cyclical, flooding the market with distressed assets which drive down their price (or

increasing severity). However, for simplicity we are assuming that exposure and severity are

independently distributed.
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where

ξji,T+1 = ηji,T+1 + θ0jiεT+1 + θ0ji,dεd,T+1, (10.16)

θ0ji = β0jiSiG
−1, θ0ji,d = γ0ji + β0jiSiΥ0, (10.17)

and

µji,T = αji + γ0jiµd + β0jiSi (b0+b1 +Υ0µd) (10.18)

+β0jiSi [b1T − (Ik−z)xT ] +
£
β0jiSi (Υ0Φd +Υ1)− γ0ji (Is−Φd)

¤
dT .

Therefore, there are three types of shocks that affect firm’s probability of default:

its own shock, ηji,T+1, macroeconomic shocks, εT+1, and the global exogenous

shock, εd,T+1 (in our model the oil price shock). Note that although the firm

in question operates in country/region i, its probability of default could be

affected by macroeconomic shocks worldwide. Under the assumption that all

these shocks are jointly normally distributed and the parameter values are given,

we have the following expression for the probability of default over T to T + 1

formed at T 58

πji,T = Φ

 ĉji − µji,Tq
V ar

¡
ξji,T+1 | IT

¢
 , (10.19)

where

V ar
¡
ξji,T+1 | IT

¢ ≡ ω2ξ,ji = ω2η,ji + θ0jiΣθji+θ
0
ji,dΣdθji,d. (10.20)

Both of these restrictions (given parameter values and joint normality) can be

relaxed. Parameter uncertainty can be taken into account by integrating out

the unknown parameters using their posterior or predictive likelihoods, as in

Garratt et al. (2002). In the presence of non-normal shocks one could also

employ non-parametric stochastic simulation techniques by re-sampling from

the residuals of the GVAR model to estimate πji,T . These and other related

developments are beyond the scope of the present application, which is primarily

intended as an illustration of the use of the GVAR modeling approach in credit

risk analysis.

The expected loss due to default of a loan (credit) portfolio can now be com-

puted by aggregation of the expected losses across the different loans. Denoting

the loss of a loan portfolio over the period T to T + 1 by LT+1 we have

ET (LT+1) =
NX
i=0

nciX
j=1

πji,TET (Xji,T+1)ET (Sji,T+1), (10.21)

58 Joint normality is sufficient but not necessary for ξji,t+1 to be approximately normally

distributed. This is due to the fact that ξji,t+1 is a linear function of a large number of weakly

correlated shocks (63 in our particular application).
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where nci is the number of obligors (could be zero) in the bank’s loan portfolio

resident in country/region i.

10.3 Simulation of the Loss Distribution

The expected loss as well as the loss distribution can also be computed by

stochastic simulation using draws from the joint distribution of the shocks,

²T+1 = (η
0
T+1, ε

0
T+1, ε

0
d,T+1)

0, where ηT+1 is the vector of firm-specific shocks.

As noted earlier these draws could either be carried out parametrically from nor-

mal or t-distributed random variables, or if sufficient data points are available

can be implemented non-parametrically using re-sampling techniques. Under

the parametric specification the variance covariance matrix of ²T+1 is given by

Cov (²T+1) =


Σ 0 0

0 Σd 0

0 0 Θ

 , (10.22)

where Θ is a diagonal matrix with elements ω2ji, j = 1, 2, ..., nci, i = 0, 1, ..., N.

Denote the rth draw of this vector by ²(r)T+1, and compute the firm-specific

return, r(r)ij,T+1, noting that

r
(r)
ij,T+1 = µji,T + ξ

(r)
ji,T+1, (10.23)

where µji,T is given by (10.18) and

ξ
(r)
ji,T+1 = η

(r)
ji,T+1 + θ0jiε

(r)
T+1 + θ0ji,dε

(r)
d,T+1. (10.24)

Then simulate the loss in period T+1 using (known) loan face values, say FVji,T ,

as exposures, and draws from a beta distribution for severities (as described

above):

L
(r)
T+1 =

NX
i=0

nciX
j=1

I
³
r
(r)
ij,T+1 < ĉji

´
FVji,TS(r)ji,T+1. (10.25)

The simulated expected loss due to default is given by (using R replications)

L̄R,T+1 =
1

R

RX
r=1

L
(r)
T+1. (10.26)

When ²(r)T+1 are drawn from a multivariate normal distribution with a covariance

matrix given by (10.22), then

L̄R,T+1
p→ ET (LT+1) , as R→∞.

The simulated loss distribution is given by ordered values of L(r)T+1, for r =

1, 2, ..., R. For a desired percentile, for example the 99%, and a given number of

replications, say R = 10, 000, credit value at risk is given as the 100th highest

loss.
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10.4 Expected Loss Given Shocks

In credit risk analysis we may also be interested in evaluating quantitatively

the relative importance of changes in different macroeconomic factors on the

loss distribution. To this end the loss distribution conditional on a given shock

can be compared to a baseline distribution without such a shock. As with all

counterfactual experiments it is important that the effects of the shock on other

macroeconomic factors are clearly specified. One possibility would be to assume

that the other factors are displaced according to their historical covariances with

the variable being shocked. This is in line with the GIRF analysis discussed

above. In this set-up if factor ` in country i is shocked by one standard error

(i.e. √σii,``) in the period from T to T + 1, the vector of the macroeconomic

factors would be displaced by

1√
σii,``

G−1Σs`,

where as before s` is a k × 1 selection vector with its element corresponding
to the `th variable in country i being unity and zeros elsewhere. Such a shock

has no effect on the global exogenous variables and the firm-specific shocks. In

the absence of any macroeconomic shocks, namely when εT+1 = 0, firm-specific

returns are given by

r0ij,T+1 = µji,T + ηji,T+1 + θ0ji,dεd,T+1,

and with a one standard error shock to xi,T+1,` we have (see (10.22) and (10.23))

r`ij,T+1 = µji,T + ηji,T+1 +
1√
σii,``

θ0jiΣs` + θ0ji,dεd,T+1.

The loss distributions associated with these two scenarios can now be simulated

using these returns in (10.25).

The above counterfactual, while of some interest, will underestimate the

expected loss under both shock scenarios since it abstracts from volatility of

the macroeconomic factors and assumes that the return variance stays constant

under the shock. To allow for the volatility of macroeconomic factors in the

analysis consider the case where θ0jiεT+1 and εi,T+1,` = s0`εT+1 are jointly

normally distributed. It is then easily seen that

θ0jiεT+1
¯̄
εi,T+1,` =

√
σii,`` ∼ IIN

µ
1√
σii,``

θ0jiΣs`, ω
2
ji,`

¶
,

where59

ω2ji,` = θ0jiΣθji − θ0jiΣs` (s0`Σs`)−1 s0`Σθji. (10.27)
59Note that s0`Σs` = σii,``.
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Also, recalling that εT+1, εd,T+1, and ηT+1 are independently distributed it is

then easily seen that

ξij,T+1
¯̄
εi,T+1,` =

√
σii,`` ∼ IIN

µ
1√
σii,``

θ0jiΣs`,ω
2
ξ,ji,`

¶
(10.28)

where

ω2ξ,ji,` = ω2η,ji + ω2ji,`+θ
0
ji,dΣdθji,d, (10.29)

and ω2ji,` is already defined by (10.27).

Therefore, to allow for volatility of the shocks (macroeconomic as well as

idiosyncratic shocks), the simulation of the loss distribution needs to be carried

out using the draws

r
l,(r)
ij,T+1 = µji,T +

1√
σii,``

θ0jiΣs` + ωξ,ji,` Z(r) (10.30)

where Z(r) ∼ IIN (0, 1). The baseline loss distribution in this case can also be
simulated directly using the draws

r
(r)
ij,T+1 = µji,T + ωξ,jiZ(r). (10.31)

Default occurs if the rth simulated return, baseline (r(r)ij,T+1) or shock-conditional

(rl,(r)ij,T+1), falls below the threshold ĉji:

Baseline: r
(r)
ij,T+1 < ĉji =⇒ Default, (10.32)

Shock-Conditional: r
l,(r)
ij,T+1 < ĉji =⇒ Default.

Using these results in (10.25) the loss distribution can be simulated for any

desired level of accuracy by selecting R, the number of replications, to be suffi-

ciently large.

Finally, it might also be of interest to compare the base line default proba-

bility, πji,T , given by (10.19) with the default probability that results under the

shock to xi,T+1,`, which we denote by πji,`,T . We have

πji,T = Φ

µ
ĉji − µji,T

ωξ,ji

¶
,

and

πji,`,T = Φ

Ã
ĉji − µji,T − 1√

σii,``
θ0jiΣs`

ωξ,ji,`

!
. (10.33)

where ωξ,ji and ωξ,ji,` are defined by (10.20) and (10.29), respectively.
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10.5 Results

10.5.1 The Sample Portfolio

We analyze the effects of economic shocks on a hypothetical sample of large-

corporate loan portfolio comprised of 119 companies, dispersed over 10 regions,

with a current face value of $1bn.60 Table 11 provides the individual company

details, with a summary by regions given in Table 12. The column to the right

indicates the inception of the equity series available for APT-type regression

analysis. We wanted to mimic (broadly) the portfolio of a large, internationally

active bank. Arbitrarily picking Germany as the bank’s domicile country, the

portfolio is relatively more exposed to German firms than would be the case if

exposure were allocated purely on a GDP share (in our “world” of 26 countries).

For the remaining regions, exposure was more in line with GDP share. Within

a region, loan exposure is randomly assigned. The expected severity for loans

to U.S. companies is the lowest at 20%, based upon studies by Citibank, Fitch

Investor Service and Moody’s Investor Service.61 All other severities are based

on assumptions, reflecting the idea that severities are higher in less developed

countries. Table 11 gives the portfolio composition, regional weights, individual

exposures and expected (µβ) and unexpected (σβ) severities.
62

60We restricted ourselves to major, publicly traded firms which had a credit rating from

either Moody’s or S&P. Thus, for example, Chinese companies are not included for lack of a

credit rating. Further details are provided in PSTW.
61As cited in Saunders and Allen (2002).
62Mean severity is assumed to be slightly lower in Germany (as compared to France or U.K.,

for example), since Germany is taken to be the bank’s domicile country and hence the bank

may have some local advantages in the recovery of distressed assets. Unexpected severity

refers to standard deviation of severity distribution assumed here to be Beta distributed.
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Table 12

The Composition of the Sample Portfolio for Regions

Equity Series1 Credit Rating2 Portfolio Severity3

Region # Obligors Quarterly Range Per cent Mean S.D.

(µβ) (σβ)

U.S. 14 79Q1 - 99Q1 AAA to BBB- 20 20% 10%

U.K. 9 79Q1 - 99Q1 AA to BBB+ 6 35% 15%

Germany 18 79Q1 - 99Q1 AAA to BBB- 21 30% 15%

France 8 79Q1 - 99Q1 AA to BBB 8 35% 15%

Italy 6 79Q1 - 99Q1 A to BBB- 8 35% 15%

W. Europe 12 79Q1 - 99Q1 AAA to BBB+ 8 35% 15%

Middle East 4 90Q3 - 99Q1 B- 2 60% 20%

S.E. Asia 23 89Q3 - 99Q1 A to B 10 50% 20%

Japan 13 79Q1 - 99Q1 AAA to B+ 10 35% 15%

L. America 12 89Q3 - 99Q1 A to B- 5 65% 20%

Total 119 - - 100 - -

1. Equity prices of companies in emerging markets are not available over the full

sample period used for the estimation horizon of the GVAR.

2. The sample contains a mix of Moody’s and S&P ratings, although S&P rating

nomenclature is used for convenience.

3. Severity is drawn from a beta distribution with mean µβ and standard deviation σβ.

10.6 Conditional Loss Distributions

The systematic risk in our model is captured empirically through the APT

regressions where firm returns are regressed on changes in all domestic vari-

ables and oil prices. Around 80% of those regressions were significant (using

the F-test) at the 5% level, with real equity prices being the most important

(statistically) regressor, followed by the oil price and the real exchange rate

variables.63

We then generated loss distributions for two different horizons: one-quarter

and four-quarters ahead. A one year horizon is typical for credit risk manage-

ment and thus of particular interest. For each horizon we examined the impact

of several shock scenarios including those presented in Section 9. They are64

63More formal model selection criteria are explored in PSTW, where we include foreign

(starred) variables.
64 2.33 σ corresponds, in the Gaussian case, to the 99% Value-at-Risk, a typical range in
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• a —2.33 σ shock to U.S. equity, corresponding to a quarterly drop of 14.28%

• a +2.33 σ shock to real German output corresponding to a quarterly rise
of 2.17%

• a —2.33 σ shock to SEA equity corresponding to a quarterly drop of 24.77%

In addition we present a symmetric positive shock to SEA equity prices —

but the impact on losses will not be symmetric.

We generated 50,000 simulations for each case.65 For the one-quarter ahead

forecast and shock scenarios, we computed expected loss results, both theoretical

(using (10.21)) and simulated (10.26). The two sets of estimates turn out to be

very close indeed so we only report the simulated ones. The simulated expected

loss results together with the unexpected counterparts (S.D.) are summarized

in Table 13.

Table 13

Simulated Mean and Standard Deviation of Losses for One-Quarter

and Four-Quarters Ahead (in Basis Points Exposure)

Shock Scenarios One-Quarter Ahead Four-Quarter Ahead

Mean S.D. Mean S.D.

-2.33σU.S. Equity 4.37 12.57 8.71 17.33

-2.33σ SEA Equity 3.24 11.15 7.53 16.47

Baseline 2.45 9.52 6.43 15.05

+2.33σGerman Output 2.38 9.37 6.40 14.98

+2.33σ SEA Equity 2.14 8.77 5.87 14.22

The U.S. equity price shock seems rather severe at first: expected loss is nearly

double than what is expected under the baseline (no shock) scenario while un-

expected loss (i.e. the loss standard deviation) is about one-third higher. By

the time one moves to the tail (99% and beyond) of the loss distribution (Figure

8), the absolute differences are less pronounced.

[Insert Figure 8 about here]

For the baseline, there is a 1% chance of losing about 49.7bp of the face

value of the portfolio after one quarter, while conditional on the -2.33σU.S. real

risk management.
65To ensure convergence, we also performed simulations up to 200,000 runs; the results were

indistinguishable.
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equity price shock the loss is closer to 53.8bp. The two loss scenarios diverge

further out in the tail such that at the 99.7% level, with a loss of about 55.7bp

for the baseline and 68.0bp for the U.S. equity price shock scenario, only to

converge again past the 99.8% level (and re-diverge past about 99.9%).66 This

nonlinearity is a direct consequence of the nonlinearity of the credit risk model

which can only be uncovered in the loss distribution through simulation. The

positive German output shock has little bearing on the loss distribution, either

in terms of expected and unexpected loss, or even the shape of the loss distrib-

ution itself. In fact, the positive shock to S.E. Asian real equity prices is more

beneficial. Thus from the perspective of a German risk manager, the perspective

we are trying to mimic, given this portfolio, positive shocks to German output

are less cause for excitement than positive shocks to S.E. Asian equity prices.

Symmetric shocks do not translate to symmetric loss outcomes. The loss

curve in Figure 8 for the negative S.E. Asian equity shock lies further above the

baseline than the positive equity shock curve lies below it. This also is a result

of the nonlinear credit loss model.

The four quarter loss distribution was generated one quarter at a time se-

quentially with defaulted firms in each replication being eliminated from the

portfolio for the second quarter simulations, and so on. Therefore, the default

process and the resulting loss distribution are path-dependent. Mean and stan-

dard deviation of the annual simulated loss distributions are presented in the

second panel of Table 13. The loss distributions for the baseline and the four

shock scenarios are displayed in Figure 9.

[Insert Figure 9 about here]

The expected loss for the U.S. equity shock scenario is now about one-third

higher than the baseline at the four quarter horizon, and the pattern of the

loss curves are broadly in line with the curves for the one-quarter losses, except

that the loss distributions for the favorable shocks are now relatively closer to

the baseline distribution. The four-quarter is also somewhat smoother then the

one-quarter loss distribution, lacking the "elbow" in the 99.7 to 99.8% range.

What might be the impact on losses of a severe shock, say to U.S. equity

prices? From their peak in 2000 to a recent low (in early October, 2002), the

S&P500 has dropped about 49%. That also corresponds to the largest quarterly

drop in the index since 1928 (which occurred during February to April of 1932).

Such a large drop corresponds to 8.02σ, and the impact on the loss distribution
66As simulations for far tail events are increasingly less reliable the further out into the tail

one goes, the numbers should be interpreted with some care.
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of our portfolio can be seen in Figure 10, where we present the one-quarter

ahead loss distribution of this stress scenario and the baseline; we also include

the previous, less severe, U.S. equity shock plus an intermediate shock of −5σ
for comparison.

[Insert Figure 10 about here]

Indeed, such a shock would result in rather large losses. We would expect

to lose 151.4bp (or 1.5%) of total loan exposure, and there is a 1% chance that

3.55% of the portfolio would be wiped out. Note that total U.S. exposure in the

loan book is 20%. The non-linear impact of shocks on losses is quite pronounced:

the −8.02σ shock is only 60% higher than the −5σ, in units of σ, of course, but
the unexpected loss after one quarter is more than double (73.0bp vs. 23.6bp)

and the 99% loss 312 time as much (3.55% vs. 1.02%).
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11 Concluding Remarks

In this paper, we develop an operational framework for global macroeconomic

modeling. Our approach aggregates regional cointegrated systems into a unified

global system. We demonstrate the feasibility of this approach by linking up

eleven separate vector error-correcting regional models estimated using quar-

terly observations over the period 1979Q1-1999Q1. Each of the regional models

contain foreign variables that are weighted averages of the domestic variables

for other regions, constructed to match the international trade pattern of the

country under consideration. The individual country models are then combined

in a consistent and cohesive manner to generate forecasts for all the variables

in the world economy simultaneously.

This resultant model is shown also to be error-correcting with dampened

cyclical properties. We outline conditions of weak exogeneity of the foreign

variables, a key assumption of the model. We then test these conditions, where

we include the global variable (price of oil) in the exogeneity regressions as well.

Of the 63 exogeneity tests carried out, only 3 are statistically significant at the

5% level and none at the 3% level. Finally, using generalized impulse response

analysis, we examine the propagation of shocks across factors and regions.

The focus of the model is very much on constructing a compact and co-

herent representation of factor and regional interdependencies, while tackling

the problem of limited data in large-scale models such as these. Our model

allows for interaction amongst the different economies through three separate

but interrelated channels:

1. Direct dependence of the relevant macro-factors on their region-specific

foreign counterparts and their lagged values;

2. Dependence of the region-specific variables on common global weakly

exogenous variables such as oil prices and possibly other variables controlling

for major global political events;

3. Certain degree of dependence of idiosyncratic shocks across regions as

captured via the cross-region covariances.

Thus, for instance, we are able to account for inter-linkages between equity

market movements in South East Asia and output in Germany. The use of our

regional weighting scheme allows for efficient use of all available data.

The original motivation for developing this model was the need for a macro-

based risk management tool for commercial, and perhaps even central, banks.

By engaging in commercial lending to companies whose fortunes fluctuate with

aggregate demand, a bank is ultimately exposed to macroeconomic fluctuations.

This can be mitigated through international diversification. However, precisely
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because economic fluctuations are correlated across factors and countries, it fos-

ters the need for a compact global macroeconometric model which explicitly al-

lows for such interdependencies. To demonstrate the value in constructing such

a model as a basis for portfolio risk management, we use a simplified version of a

Merton-style credit risk model, developed fully in Pesaran, Schuermann, Treut-

ler and Weiner (2003), which has explicit links to the macroeconomic factors

in the GVAR model, thereby allowing us to generate scenario-based loss distri-

butions for a credit portfolio. Using a portfolio of loans to 119 firms in ten of

the eleven regions (China was left out due to poorly developed equity markets),

we generated loss distributions for one and four quarters ahead, both under a

baseline forecast as well as under a set of shock scenarios. The simulated losses

are shown to converge quickly to their analytical counterparts. We show that

symmetric shocks do not result in symmetric loss outcomes due to the nonlin-

earity of the credit model. Our results may be thought of as demonstrating the

value of hedging credit risk with market risk, an idea that is quickly gaining

traction amongst practitioners today.

Because of the focus on modeling interlinkages, the model can readily be used

to shed light on the analysis of a variety of transmission mechanisms, contagion

effects, and testing of long-run theories (for instance, purchasing power parity) in

a global as well as other settings. Several other applications of our methodology

come to mind:

• “New economic geography”: a literature which sets the stage for explic-
itly incorporating geography into the models of economic activity through

either domestic or international trade (see Krugman, 1993, for an intro-

duction to the topic, and Fujita, Krugman and Venables, 1999, for a more

formal treatment)

• Regional and urban economics: models of inter-regional linkages, either
through city-suburb economic ties (Voith, 1998) or linkages between cities

as in the “systems of cities” literature (Henderson, 1988)

• Labor mobility: consider a longer horizon, lower frequency issue of labor
mobility responding to regional economic shocks; for instance, auto work-

ers migrating from Michigan to Texas in response to oil-price shocks in

the early 1980s (Blanchard and Katz, 1992).

This list is by no means exhaustive and is designed to stimulate interest, and

research, of applying the GVAR framework to problems of modeling economic

inter-linkages.
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A Data Appendix

A.1 Variables and Data Sources

The primary variables (disaggregated by country/region when applicable) used

in this study are:

Y : Gross Domestic Product (GDP)

P : General Price Index

Q : Equity Price Index

E : Exchange Rate

R : Interest Rate

M : Money Supply

PO : Oil Price

A.2 Output (GDP)

The source for all 27 countries is the International Monetary Fund’s Interna-

tional Financial Statistics (IFS) GDP (1990) series. France, Germany, Italy,

Japan, Mexico, the Netherlands, Spain, Switzerland, UK and USA are all from

series BR, and the remaining countries are from series BP.

Where quarterly data were not available (ie, for Brazil, China, Indonesia,

Kuwait, Malaysia, Saudi Arabia, Singapore, Thailand and Turkey), quarterly

series were interpolated linearly from the annual series. For Singapore, Malaysia

and Thailand, interpolated series were used only during the periods 1979-1992,

1979-1996 and 1979-1995, respectively. Quarterly output series were available

for the subsequent periods.

For the period before German reunification, in 1990Q4, West German growth

rates were used. The growth rate from 1988Q3 to 1990Q3 was used to compute

a ‘unified’ output series for 1990Q4.

The data for Kuwait and Peru were rebased to 1990 using CPI for those

countries.

The data for Argentina and Singapore were seasonally adjusted.

A.3 General Price Indices

The data source for all countries except China was the IFS Consumer Price

Index Series ‘64’. A full sample was available for all countries except Brazil,

where 1979 data was unavailable, and a backcast using the average growth rate

of prices for 1980 was employed.

57



A.4 Equity Price Indices

There were no data for China or Saudi Arabia. For Austria we used Morgan

Stanley Capital International (MSCI) series.

For Belgium, Indonesia, Italy, Malaysia, Singapore, Spain, Switzerland, Thai-

land, and Turkey we used Datastream, using quarterly averages from daily ob-

servations. However, we used quarterly average of weekly datapoints, as op-

posed to daily observations, for Argentina. The data for Malaysia was market

cap weighted.

We used IFS data for Brazil, Chile, France, Germany, Japan, Korea, Mexico,

The Netherlands, Peru, Philippines, UK and USA. Indices for share prices (IFS

code “62”) generally related to common shares of companies traded on national

or foreign stock exchanges. Monthly indices were obtained as simple arithmetic

averages of the daily or weekly observations (“ZF”).

These nominal equity price indices were deflated by the non-seasonally ad-

justed general price indices. The resultant real series were then adjusted for(possible)

seasonal variations.

A.5 Exchange Rates

IFS series ‘rf’ was used for all countries.

A.6 Interest Rates

Interest Rate data was taken from IFS Series ‘60B’, the money market rate,

with the following exceptions: for Argentina, Chile, China, Saudi Arabia and

Turkey we used the IFS deposit rate; for Peru we used the IFS discount rate;

for the Philippines we used the IFS Treasury rate.

A.7 Money Supply

The Money Supply data source for all countries was the sum of IFS series 34

(money) and series 35 (quasi-money). All series were seasonally adjusted. The

data for Argentina, Brazil, Peru and Turkey required a decimal place adjustment

to make the Money:GDP ratio reasonable.

For Belgium, we used quarterly data for all quasi-money; for money we

used annual data converted to quarterly through interpolation up to 1990, and

quarterly data from 1990Q4 to 1999Q1.

We used annual data converted to quarterly through interpolation for the

Philippines; for the Philippines this was necessary for the period 1984-1986 only
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since quarterly data were available thereafter. There were no quarterly data for

Saudi Arabia for 1983, and therefore annual data were used for that year.

A.8 Oil Price Index

For oil prices we used monthly averages of Brent Crude series from Datastream.

B Construction of Regional Data Series: Do-

mestic and Foreign

Time series observations at the regional level were constructed as weighted av-

erages of corresponding country-specific series as set out in equations (A.1) and

(A.2) below. Specifically, the regional variables are constructed from country-

specific variables using the following (logarithmic) weighted averages67

yit =

NiX
`=1

w0i`yi`t, pit =

NiX
`=1

w0i`pi`t, qit =

NiX
`=1

w0i`qi`t, (A.1)

eit =

NiX
`=1

w0i`ei`t, ρit =

NiX
`=1

w0i`ρi`t, mit =

NiX
`=1

w0i`mi`t. (A.2)

Notice that in constructing the regional variables yit, pit, eit, ... from the country-

specific variables yi`t, pi`t, ei`t, ... one simply needs to use country-specific vari-

ables measured in their domestic currencies. Notice that ei`t stands for the

exchange rate of country ` in region i, in terms of US dollars.

For weights we used the GDP shares of each country in the region, computed

as that country’s PPP-adjusted GDP divided by the total PPP/USD GDP of

the region. In order to avoid the use of time-varying weights, we choose a

relatively recent time period for which PPP data is available, namely 1996.

Not all time series were available for all countries over the entire sample

period. As a result the composition of the regional series is allowed to change as

data on specific countries become available. For example, if data is not available

for a given country over the first few periods in the sample, a zero weight is

attached to this country with the weights of the remaining countries in the

region adjusted to ensure that the sum of the weights add up to unity. Once

data becomes available for the country in question, the weights are redistributed

and the new information is ‘folded into’ the dataset.
67The weights w0i` could be changed at fixed time intervals, say every 5 years, in order

to capture secular changes in the composition of the regional output. However, changing

these weights too frequently could mask the cyclical movements of the regional output being

measured.
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Foreign variables are constructed uniquely for each region. For example,

foreign money supply m∗ for Western Europe is different from m∗ for Latin

America. We use the trade shares to appropriately weight the influence of

foreign regions on a specified region’s economy. Using an inter-regional trade

matrix, we first compute the trade shares for each region with a given country

(eg. the percent of Argentina’s trade originating from the Western Europe),

and then aggregate across countries based on the trade weights of the countries

within the region.

The weights used to aggregate, across countries, the foreign variables need

to be constructed with care. Since each starred variable is a weighted average

of regional starred variables, if a given region’s x variable is not available, then

the weighted average must be adjusted to reflect the fact that the foreign vari-

able is not comprised of all the x variables. This can easily be accomplished.

For example, suppose that we are computing the German q∗and that x% of

Germany’s trade is with Turkey. However, Turkey’s equity index is not avail-

able. When we take a weighted average of Germany’s trading partners’ equity

indices, we will be effectively only weighting (1-x)%, since the Turkish index is

unavailable. We can then divide our result by (1-x)% to yield the appropriate

q∗ for Germany. Finally, for regions with more than one member country, there

exists ‘intra-regional’ trade (ie. trade between countries in the same region)

that will not appear in the ‘foreign’ (starred) variables. As such, the weights

may sum to less than one.
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