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Affiliation: Facultad de C.C. Juŕidicas y Sociales, Universidad Rey Juan

Carlos.
Address: Universidad Rey Juan Carlos, Facultad de C.C. Juŕidicas y
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Abstract

In this paper we propose a whole class of estimators (clockwise repeated
median estimators or CRM) for the simple regression model that are immune
to manipulation by the agents generating the data. Although strategic con-
siderations affecting the stability of the estimated parameters in regression
models have already been studied (the Lucas critique), few efforts have been
made to design estimators that are incentive compatible. We find that some
well-known robust estimators proposed in the literature like the resistant line
method are included in our family. Finally, we also undertake a Monte Carlo
study to compare the distribution of some estimators that are robust to data
manipulation with the OLS estimators under different scenarios.

Keywords: strategy-proofness, single-peaked preferences, robust regres-
sion, data contamination.

JEL classification numbers: D78, C13.
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1 Introduction

The search for robustness of linear regression estimators has been tradition-
ally motivated by the existence of contaminated samples or the potential
presence of outliers. In this paper we interpret sample contamination in
terms of sample manipulation. Therefore we consider the problem of esti-
mating a linear regression in which the values of the dependent variable are
provided by strategic agents endowed with private non-observable informa-
tion whilst the values for the regressors are verifiable public information. We
shall assume that every agent that is behind each ”observation” in the sam-
ple is better off the closer the prediction obtained with the regression is from
the dependent variable’s true value.
Therefore, the agents underlying the data might have an incentive to re-

port a false (unverifiable) information about the dependent variable in order
to obtain a better prediction for themselves at the cost of biasing the regres-
sion and imposing other costs on the remaining agents. Hence, the agents
behind the observations have an incentive to analyze the regression method
used by the econometrician and try to find scope for obtaining a better result
by exploiting their private information when their objective is not being a
true outlier.
Notice that whenever it is possible to use a non-linear regression method,

that allows for a potentially different estimator for each agent, the truthful
revelation issue is no longer a problem. The prediction for each observation
can actually be the declared value of the dependent variable and every agent
behind each observation would be as better as possible, so that there will be
no need to lie whatsoever. Moreover, we could also use any jack-knife esti-
mator in the literature that considers the subsample obtained by excluding
just one observation to generate the prediction for each agent (the excluded
one). Since the information reported by any agent will therefore not be used
to produce her own prediction (only to generate the others’ predictions),
the estimation method does not give incentives to lie either. Our incentive
compatibility problem begins when predictions must follow from a single lin-
ear regression line (a single estimator for all the agents that has a somehow
”public good” nature).
There exist different contexts where the reliability of the data is objection-

able because the data could come from surveys composed by agents interested
in not being perceived as real outliers if the estimation results could be used
in the future to change the economic situation of the agents that generate
the sample, for example. Think, for example, of the case of estimating the
productivity of a set of divisions of a bureaucracy that in principle share
the same average technological characteristics but there is a random shock
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that could either increase a division’s true productivity (good luck) or drop
it below the average (bad luck). If the dependent variable observation of
each division is private information, a division that had, say, bad luck could
fear being treated as a low productivity outlier and thus could be penalized
in the future. For example, the division may have a reduced future budget,
or could face a higher risk of closure. Therefore, if OLS regression is used,
the division could be tempted to declare an even smaller output in order to
bias the regression in such a way that the prediction for herself is closer to
her true response variable value. The false information reported by the divi-
sion therefore contaminates the sample. The division could be interested in
bringing the regression line closer to her true productivity because a future
possible inspection would find out that the division’s true value is not too
big when compared to the predicted productivity using the regression line as
a reference1. Therefore, exaggeration of both bad luck and good luck can be
profitable in many contexts and the data reported by the agents will not be
the true sample. Nevertheless, the compatibility of individual incentives and
the social planner estimation can be achieved by designing estimators which
are linear regression robust estimates immune to strategic manipulation.
In Section 2, the theoretical model is introduced and the definitions about

the kind of strategic contamination we are interested in avoiding are estab-
lished. We find a family of estimators for the simple regression model called
clockwise repeated median estimators (CRM) that happen to be resistant to
some kind of strategic data contamination. In particular, the family encom-
passes some robust estimation methods like the resistant line one (Tukey,
1970/71) or variations on other well-known methods. We also prove that
OLS and other estimators are not immune to strategic contamination.
Section 3 deals with some Monte Carlo experiments that simulate the

behavior of the OLS and the CRM estimates under two different scenarios.
First, we compare the distributions obtained with OLS regression applied
to contaminated data with the estimates obtained with some of our CRM
estimators applied to the clean true sample. Then, we proceed to check the
efficiency loss that occur when using some of our estimators with respect to
OLS when applied to the true sample. We conclude (Section 4 ) that if the
problem of strategic contamination is severe enough (for example, when the
true observations in the sample cannot be easily verified), CRM estimators
can provide better estimates than other methods that are not robust to data
manipulation like OLS estimators. A relatively small loss of consistency can
be compensated with the accuracy of non-contaminated data.

1Notice that the true value of the response variable for each division is fixed and cannot
change, although the planner or the econometrician cannot directly observe it.
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2 The model

Let us assume the following simple regression data generating process:

yi = β0 + β1xi + ei for i = 1, ..., n. (1)

where n ≥ 3 is the number of observations or sample size. We denote
the set of names of the observations as N = {1, ..., n} . Variable xi is the
explanatory variable (real), yi is the response or dependent variable and ei
is an error term or random shock that is i.i.d. and normally distributed
with zero mean and variance σ2, i.e.: ei ∼ N(0,σ).2 Traditionally econome-
tricians make the implicit assumption that the sample generated by (1) is
fully observable and therefore the problem consists in estimating the vector
of unknown parameters β0 = (β0,β1) from the data matrices:

X =


1 x1
...
...

1 xi
...
...

1 xn

 and Y =


y1
...
yi
...
yn

 (2)

By using an appropriate regression estimator bβ0 = (bβ0, bβ1) = T (X,Y )
that is a function T of the sample (X,Y ), we obtain the regression coefficientsbβ0 and bβ1. Given these estimated regression coefficients, we can obtain the
predicted or estimated values of the response variable byi for each observation
xi using the function: byi = bβ0 + bβ1xi. (3)

The residual bei is defined as the difference between the true response
variable for the ith observation and the predicted one, i.e., bei = yi − byi. Re-
gression analysis deals with the problem of designing regression estimators
that are well-behaved mainly in the sense of providing good fits, i.e., esti-

mators bβ0 = T (X,Y ) such that for every possible admissible sample (X,Y )
generate small residuals or ”reasonably good fits”. The most commonly used
regression estimator is, of course, the ordinary least squares estimator (OLS)
that minimize the sum of the squared residuals for every sample. Never-
theless, in some cases we are interested in estimators that provide not only
reasonably good fits but also satisfy other desirable criteria.

2Our results do not actually depend on the distribution of the disturbance. We assume
the most typical econometric model to keep things simple.
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For example, if there is a risk of the sample being ”contaminated”, i.e.,
it is possible that some of the observations do not really come from the data
generating process in (1), usual estimators like OLS are very sensitive to the
value of the observations and the introduction of this kind of ”outliers” can
heavily affect the regression results. When the reason for the presence of
outliers is random typing or information managing errors, robust estimators
that are not so sensitive to data contamination are proposed to cope with the
problem (see Rousseeuw et al. (1987) for an excellent survey on the topic).
In this paper we deal with a different kind of data contamination created
by strategic behavior: imagine that the observations yi are a measure of
individual attitudes towards some key issue that are revealed from some
agents potentially involved in the results, whereas values of xi come from a
verifiable source immune to contamination. Let us illustrate our problem by
means of some examples.
Consider first the problem of a monopolist national trade union in any

industrial sector like steel, for example, that has to decide which hourly wage
to set in the market. The trade union has to collect information about the
actual pre-wage bill expected profitability of each of the individual firms’
unions in the sector (yi) together with the number of hours worked in each
firm (xi), aggregate the information and produce a single sectorial wage per

hour (bβ1) and a fixed individual benefit (independent of the number of hours
worked in each firm, bβ0). The problem is that although the number of hours
worked in each firm is public reliable information, the pre-wage bill expected
profit each firm has is a private information owned by the managers and
workers inside each individual firm, since the information will only become
available after the decision about the common wage is taken.
Imagine that the central union wants to minimize the sum of the squared

residuals and therefore uses OLS to decide the common wage bβ1 and fixed
benefit bβ0. The workers in those firms that are less profitable, efficient or
those that had bad luck will typically show a negative residual bei = yi− byi =
yi −

³bβ0 + bβ1xi´ < 0, and the final wage bill for the firm will exceed the

individual pre-wage bill profit of the firm, that will have to fire some workers
or increase the risk of closing it down. In order to lower the wage bill in
accordance with the financial possibilities of the firm, the workers can report
a pre-wage bill profit even smaller and lower the common wage down to the
actual average productivity of labor within the firm by pushing the regression
line closer to their true observation (xi, yi). Identically, the workers in those
firms that are more profitable, efficient or lucky will have positive and big
residuals, so that there is still scope to increase the hourly common wage and
fixed benefit closer to real average productivity of labor in the firm without
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fearing being sacked or increasing the risk of closure, so the workers in these
firms will have an incentive to exaggerate their own profitability in order to
achieve higher wages. The central union that uses OLS when deciding the
common wage to set in the sector cannot expect the workers’ representatives
within the individual firms to behave truthfully.
A possibility to induce truthful revelation would be to use the jack-knife

estimator to calculate the residual for each firm i ∈ N (OLS with the sub-
sample in which the ith observation is deleted), but doing this will allow for
n potentially different wages and benefits in the market, which will cause
a costly distortion in the market that cannot be sustained within a market
economy where the unavoidable re-allocation of inputs will trigger a single
wage. The need to fix a unique common wage for all firms has therefore a
”public good” nature that prevents the union (or the planner) to use a non-
linear regression. We assume therefore that there are important transaction
costs that constrain the designer to use a single linear regression to generate
the residuals.
Other example can be the design of a simple linear tax schedule on income

levels in order to implement a simple pay-as-you-earn tax collecting system.
The final tax the tax-payers will pay is independent of the fraction of their
monthly income that will be diverted to the Treasure, but the tax-payers’
preferences for liquidity and risk aversion define their preferences on the
monthly average tax and the most-preferred average tax (yi) is likely to be
positively related with individual income (xi) under a progressive tax scheme.
The need for a simple and comprehensive linear tax schedule excludes jack-
knife-type estimators.
A different example could be a questionnaire among workers in the same

factory that earn extra income from farming, for example, about the total
individual income they earn (yi). Let xi be a measure of some relevant char-
acteristic like their ages. We could assume that equation (1) is generating
the true observations, but since the response variable yi is private informa-
tion of each individual, the statistician has to rely on both the honesty of
the workers and good questionnaire design. Nevertheless, imagine that the
workers fear that the data could be analyzed to detect outliers and sold to
the Tax Inspection agency and they could be penalized in the future or they
could fear to be discriminated as lazy workers. Individuals have an incentive
to not being considered as true outliers if they had a good year or a bad one
and to hide themselves among the majority if they think that the data will
be aggregated by using estimators too sensitive to individual observations
like OLS.
Finally, consider the problem of estimating the average productivity of

a set of divisions within a bureaucracy or a big corporation when there is
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no reliable measure of the output other than asking the divisions to report
their own levels of activity. Variable yi might be the unverifiable measure of
the output of division i and xi the amount of the variable input used (say,
the budget available to division i or the number of workers). Again, there is
an incentive not to be suspect of being a true outlier. Outliers are typically
observations with too large residuals, so division i would have an incentive
to lie and report an output level such that the predicted one is as close as
possible to his own true yi (in other words, to minimize the residual bei) if OLS
is supposed to be used as the regression estimator to generate the predictions.
Since every division has an incentive to minimize his own residual regardless
of the higher residuals imposed on others, the revealed y0is would be typically
contaminated by the strategic behavior of the agents behind the data and
the regression coefficients will lose their ”good fit” properties (a bias could be
introduced and, depending on the importance of the problem, the regression
could be meaningless). In Section 3 we perform a Monte Carlo study of OLS
estimators when the sample is contaminated by strategic agents.
What can we do in the case of strategic contamination of the data? If the

problem is severe enough, we still can design the estimators to be immune to
likely forms of manipulation, at a cost in terms of other properties that will
be lost (less consistency or asymptotic bias, difficulty of calculation, etc.).
We propose a property of strategic non-manipulability of the data well-known
in the social choice and incentives literature that amounts to imposing that
reporting the true value of the response variable for each i is a dominant
strategy for the agent behind observation i given the estimator used. No
agent behind any observation will have any incentive to lie in order to re-
duce the obtained residual for every true sample. This requirement amounts
to strategy-proofness when translated to the regression context. Strategy-
proofness is a well-known incentive compatibility property (see, for example,
Gibbard (1973)). Let us be more explicit about this property. We denote
as agent i ∈ {1, ..., n} the rational agent behind observation i. If E denotes
the real line, given any true value yi ∈ E, each agent i will have a com-
plete and continuous preference relation Ryii on E (the predictions space).
Let P yii be the asymmetric part of Ryii , ∀i ∈ {1, ..., n} . In what follows, we
must distinguish between the unobservable true response variables for each
i and the revealed, declared or reported ones. Let us denote as eyi the re-
sponse variable actually reported to the researcher by the agent behind the
ith observation. Estimators must be defined on the agents’ reported response
variable, not on the true values, so potential strategic contamination of the
sample obliges us to define an estimator as a function of the reported rather

than the true values: bβ0 = (bβ0, bβ1) = T (X, eY ). We also assume a particular
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case of manipulation: agents are interested in not being suspect of being po-
tential true outliers. We represent this fact by defining a particular form to
the preferences of the agent behind each observation on the predicted value
with respect to the true one.3

Definition 1 Agent i with true response value yi has single-peaked pref-
erences Ryii when the following holds: (i). yiP

yi
i v ∀v ∈ E, v 6= yi. (ii).

∀v, v > 0, v > v → (yi + v)P
yi
i (yi + v) and (yi − v)P yii (yi − v).

Single-peaked preferences were first introduced by Black (1958) and their
strategic properties have been extensively analyzed (see Barberà et al. (1994),
for example). Let us denote as <yi the domain of every single-peaked pref-
erence for agent i ∈ {1, ..., n} with true value yi ∈ E. Notice that for the
agents underlying the observations, the best possible situation is that of be-
ing predicted their true values (that is, (i) in the definition above) and the
further away the prediction is with respect to the true value, the worse off
the agent is (part (ii) in Definition 1 ). There is still scope for different sensi-
bilities when judging a positive residual with a negative one. From now on,
and abusing notation, we shall consider Z = (X, eY ) to be such that X could
be restricted to some subset of all possible values and therefore, the defini-
tions below refer to the restricted domain for Z considered in the problem.
Besides, we shall make use of the notation (yi, Y−i) = Y.

Definition 2 Regression estimator bβ0 = (bβ0, bβ1) = T (X, eY ) = T ((X, eyi, eY−i))
is manipulable at sample (X, eY ) ∈ Z by observation i ∈ {1, ..., n} if ∃Reyii ∈
<eyi , ∃yi ∈ E, (yi 6= eyi) such thathbβ0(X, yi, eY−i) + bβ1(X, yi, eY−i)xiiP eyii hbβ0(X, eyi, eY−i) + bβ1(X, eyi, eY−i)xii .
Definition 3 Regression estimator bβ0 = (bβ0, bβ1) = T (X, eY ) = T ((X, eyi, eY−i))
is strategy-proof if it is not manipulable at any sample (X, eY ) ∈ Z for any
observation i ∈ {1, ..., n} .

Strategy-proof estimators are also called non-manipulable. A strategy-
proof regression estimator leaves no gain in declaring a false response variable
value (eyi 6= yi) for no agent behind any observation i ∈ {1, .., n} . A rational

3It might well be the case of the true value being observed later or at a closer random
investigation and there is no cost in reporting over-estimated or under-estimated values
(there is always the possibility of claiming to have reported involuntary errors).
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agent can only (weakly) worsen his own prediction for any single-peaked
preferences on the prediction space by reporting false information.
In this paper we propose a whole family of strategy-proof estimators

robust to individual strategic manipulation of the response variable called
clockwise repeated median estimators (CRM). Moreover, every CRM es-
timator is such that the regression line always pass through two different
observations for any admissible sample. Nevertheless, CRM estimators do
not exhaust the class of strategy-proof estimators. Later, we shall prove
that common estimators in the literature leave scope for strategic manip-
ulation. We shall see that OLS and some well-known estimators that are
robust to non-strategic contamination such as the least median of squares
estimator (Rousseeuw (1984)), Theil’s (1950) estimator and Siegel’s (1982)
repeated median estimators are not strategy-proof. The first example of
non-manipulable estimator we propose works for the case of β0 = 0 and
xi > 0 ∀i ∈ {1, ..., n} and amounts to an extension of the Median Voter
Theorem. Let us define the Median Voter (MV) estimator as:

bβ1 = med½eyixi
¾

bβ0 = medi∈N (eyi − bβ1xi) (4)

We can easily establish the following result:

Proposition 1 The MV estimator is strategy-proof for all admissible sam-
ples Z 0 with xi > 0 ∀i ∈ N.
Proof. Let us take any sample (X, eY ).We define the variable w(i, eyi, xi) =eyi

xi
∀i ∈ N, ∀eyi ∈ E, ∀xi ∈ E++. For any single-peaked preferences Ryii for

all i ∈ N, we can define a different single-peaked preferences Ryii such that
for all v, v0 ∈ E, w(i, byi, xi)Ryii w(i, by0i, xi) ←→ (byi)Ryii (by0i). Since bβ0 = 0
for every sample, we can interpret each reported individual slope w(i, eyi, xi)
as the reported ”peak” of each agent’s single-peaked preferences R

yi
i . No-

tice that by construction,

µ
yi
xi

¶
P
yi
i

µeyi
xi

¶
∀eyi ∈ E, ∀xi ∈ E++. Then,

bβ MV is strategy-proof if and only if

·
med

½
yi
xi

¾
xi

¸
Ryii

·
med

½eyi
xi

¾
xi

¸
∀i ∈ N, ∀eyi, yi ∈ E, ∀xi ∈ E++. But by construction this implies that·
med

½
yi
xi

¾
xi

¸
xi

R
yi
i

·
med

½eyi
xi

¾
xi

¸
xi

∀i ∈ N, ∀eyi, yi ∈ E, ∀xi ∈ E++, or sim-
plifying terms: med

½
yi
xi

¾
R
yi
i med

½eyi
xi

¾
∀i ∈ N, ∀yi

xi
,
eyi
xi
∈ E, given any
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admissible X. Then, we know that choosing the median on a single dimen-
sion is a strategy-proof allocation method (see Moulin (1980)), so bβ MVmust
be strategy-proof.

The MV estimator has nevertheless limited interest, since the admissible
samples for which it works exclude negative values for the xi’s and it always
imposes a zero estimate for the intercept. We shall introduce now a class of
estimators that are strategy-proof for almost all samples and for every simple
regression. The relevant samples for calculating any CRM estimator are those
Z = (X, eY ) such that xi 6= xj for all i, j ∈ N. Let us now define this class of
clockwise repeated median (CRM) estimators: First, each member of the class
is parameterized by two fixed sets of names of observations: S, S0 ⊆ N =
{1, ..., n} such that either S ∩ S0 = ∅ or S ⊆ S0. Then, we need to calculate
the clockwise angle of any pair of declared observations i, j ∈ {1, ...n} in the
sample, CWA((xi, eyi), (xj, eyj)), defined as: ∀(xi, eyi), (xj, eyj) ∈ (X, eY ),
CWA((xi, eyi), (xj, eyj)) = π + sign(xj − xi)π

2
+ sign

µ eyj − eyi
xj − xi

¶ ¯̄̄̄
arctan

µ eyj − eyi
xj − xi

¶¯̄̄̄
.

(5)

Then, we can define the directing angle,DA(X, eY ), defined such as ∀(X, eY ) ∈
Z:

DA(X, eY ) = medi∈S medj∈S0
j 6=i

CWA((xi, eyi), (xj, eyj)). (6)

And finally, the regression estimator is obtained with the following formula:4

bβ1 = tan hDA(X, eY )− π − π

2
sign(DA(X, eY )− π)

i
bβ0 = medi∈S ³eyi − bβ1xi´ (7)

Although the description of the estimator seems complicated, it has a
clear intuition. First, the estimate for the slope is generated as follows:
for every agent or observation in S, we take each observation i ∈ S, say
(xi, eyi) ∈ (X, eY ), find the straight line that passes through (xi, eyi) and any
other observation in the set S0 ⊆ {1, ..., n} and rank any other observation
from the one with the smallest clockwise angle to the one with the highest
starting from 12 o’clock until we exhaust all other observations. Then, we

4Notice that DA(X, eY )−π 6= 0, by construction for all admissible samples (X, eY ) ∈ Z.
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find the median angle5 of the ranked angles for (xi, eyi), and again the median
of the medians of the angles for all observations in the set S, which we call
the directing angle. Finally, we transform the directing angle into a slope by
means of the tangent function and this will be estimator bβ1. The estimator
for β0 is the median of the intercepts with the y-axis of the projected lines
that pass through each observation in set S ⊆ N and share the same slopebβ1. The class of CRM estimators are therefore parameterized by the sets
(S, S0).
Let us analyze the example shown in Figure 1. We have a sample (X, eY )

composed by four observations: (x1, ey1), (x2, ey2), (x3, ey3), (x4, ey4). Let us con-
sider the CRM estimator defined by S = S0 = {1, 2, 3, 4}. First, we start
by observation (x1, ey1) ∈ S and find CWA((x1, ey1), (x2, ey2)). The expression
(5) above represents the angle shown as the dashed sector in Figure 1.1.
Analogously, Figure 1.2. shows the angle CWA((x1, ey1), (x4, ey4)). To find
the directing angle, we first need to find medj∈S0CWA((x1, ey1), (xj, eyj)) =
CWA((x1, ey1), (x2, ey2)). Now, we proceed likewise taking as the reference
observation (x2, ey2) and easily find that medj∈S0CWA((x2, ey2), (xj, eyj)) =
CWA((x2, ey2), (x1, ey1)). Now, we take the third observation and get
medj∈S0CWA((x3, ey3), (xj, eyj)) = CWA((x3, ey3), (x4, ey4)). Finally, taking

(x4, ey4),we calculatemedj∈S0CWA((x4, ey4), (xj, eyj)) = CWA((x4, ey4), (x3, ey3)).
The four angles (one for each observation) which are candidates to be the
directing angle are depicted as pointing arrows in Figure 1.3. Now, we can
apply expression (6) to find the directing angle using the repeated median,

so DA(X, eY ) = medi∈S medj∈S0
j 6=i

CWA((xi, eyi), (xj, eyj)) =
= med

½
CWA((x1, ey1), (x2, ey2)), CWA((x2, ey2), (x1, ey1)),
CWA((x3, ey3), (x4, ey4)), CWA((x4, ey4), (x3, ey3)

¾
=

= CWA((x1, ey1), (x2, ey2)). Notice that we have decided to define the me-
dian of an even number of angles as the maximum median. Now, we must
transform the directing angle into a slope by using the formula to find bβ1
in (7), that simply undo the angle formula to find the corresponding slope,
which is depicted in Figure 1.4. The dashed straight line embodies the slope
of the regression using this CRM estimator. The estimate for the intercept is
calculated from (7) by projecting the slope passing through each observation
to find the median of the intercepts. Clearly, the dashed line passing through
both (x1, ey1) and (x2, ey2) is the regression line. Observe that it must always
be the case of the regression line passing through two observations in the
sample. The clockwise angle supporting the slope of the regression line is the

5When calculating the median of an even number of observations it can be used either
the bigger or the smaller of the two median observations, but not the average if we want
to preserve strategy-proofness.
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directing angle.

[Insert Figure 1 about here]

Let us analyze some members of the class of CRM estimators:
If S = S0 = N, we obtain

DA(X, eY ) = medi∈N medj∈N\{i} CWA((xi, eyi), (xj, eyj)), (8)

The resulting estimator is an extension of the repeated median estimator
defined in Siegel (1982) when the medians are taken on the angles defined
by the slopes, not on the slopes themselves. The breakdown point of this
estimator is the biggest possible, 50%, i.e., the estimator remains bounded
unless at least half of the observations’ response variables go to infinity.
Given any h ∈ N, if S = N\ {h} and S0 = {h}, we obtain

DA(X, eY ) = medi∈N\{h} CWA((xi, eyi), (xh, eyh)), (9)

which is a clockwise median extension of the median star estimator (Simon
(1986)) when defined taking as the reference observation (xh, eyh) instead of
(medj∈N xj, medj∈N eyj). Of course, observation h ∈ N could be defined as
the one such that xh = medj∈N xj.
If S = {h ∈ N | xh ≤ medj xj} , S0 = {h ∈ N | xh > medj xj}, we obtain

DA(X, eY ) = medi∈S medj∈S0CWA((xi, eyi), (xj, eyj)), (10)

which amounts to Brown and Mood (1951) technique. A variant of this is
taking the set S as the set of the names of the third part of the sample with
the smallest xj’s and set S

0 as the names of the third part of the sample with
the highest xj’s, which coincides exactly with the resistant line method of
Tukey (1970/71). Tukey proposes to choose as the estimate of the slope the

value bβ1 such that medi∈S (yi − bβ1xi) = medi∈S0 (yi − bβ1xi) and the median
of the residuals of both groups S and S0 as the estimate of the intercept.
It is easy to check that the resistant line method can be written as a CRM
estimator.
In what follows, we prove that CRM estimators are strategy-proof in the

admissible true sample Z such that ∀i, j ∈ {1, ..., n} , xi 6= xj.6
6We claim that the assumption is no too demanding since variable xi is real. In case

that two different agents i and j share the same x, any convention that slightly changes one
of them or both for the sake of estimation would work. For example, this one: xi = xi− ε
if i = min {i, j} , for ε as small as desired. The transformation in the sample is negligible
and CRM estimators would be well-defined.
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Theorem 1 Any CRM estimator is strategy-proof for any admissible true
sample Z.

Proof. Let bβ = (bβ0, bβ1) be the CRM estimator as defined in equations
(5), (6) and (7). We prove that for any admissible sample, no agent i behind
observation i with true values (xi, yi) can ever be better off by reporting a
value eyi different from yi for any single-peaked preferences R

yi
i ∈ <yi . For

simplicity, we shall deal with the case where #S0 and #S are both odd, but
the same proof holds for any other case where #S0 and/or #S are even with
minor changes. We begin by establishing some properties of the CRM esti-
mator. The most efficient way to understand it and avoid large expressions
is by means of graphical examples that are nevertheless completely general
(see Figure 2 ). Let us think on any sample (X, yi, eY−i) ∈ Z. For all x ∈ E,
we define by(bβ, x) = bβ0 + bβ1x. When applying CRM using formulae (5), (6)
and (7), notice that by construction, there must always exist two observa-

tions, say k, h ∈ {1, ..., n} such that bβ1(X, yi, eY−i) = eyh − eyk
xh − xk .

7 Let us call

observation k the directing observation pointing to observation h (if there are
more than one directing observation, take the one with the smallest x). Since
the admissible domain is Z, we must distinguish between two possible cases
now: either xh > xk or xk > xh with completely analogous analysis, so we

shall focus in just one: xh > xk. Notice that, since bβ1(X, yi, eY−i) = eyh − eyk
xh − xk

and it is the slope corresponding with a median of angles (one for each ob-

servation that are themselves medians of angles), there are at least
#S + 1

2
observations l ∈ {1, ..., n} with

medj∈S0
j 6=l

CWA((xl, eyl), (xj, eyj)) ≥ medj∈S0
j 6=k

CWA((xk, eyk), (xj, eyj)) (11)

and also
#S − 1
2

observations l ∈ {1, ..., n} would be such that

medj∈S0
j 6=l

CWA((xl, eyl), (xj, eyj)) < medj∈S0
j 6=k

CWA((xk, eyk), (xj, eyj)). (12)

Now, we can divide the (x, y) plane into four parts taking the directing

7Observation i could well be one of those (k or h); in that case, we identify the notationeyh or eyk with yi. Moreover, notice that bβ1(X, yi, eY−i) <∞ and is always bounded in any
domain Z, since xj 6= xh for all j, h ∈ N.
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observation k as a reference point as it is illustrated in Figure 2.1.: Areas

A(bβ,X, eY ) = n(x, y) ∈ E2 such that x < xh and y > by(bβ, x)o ,
B(bβ,X, eY ) = n(x, y) ∈ E2 such that x > xh and y ≥ by(bβ, x)o ,
C(bβ, X, eY ) = n(x, y) ∈ E2 such that x < xh and y ≤ by(bβ, x)o and

D(bβ,X, eY ) = n(x, y) ∈ E2 such that x > xh and y < by(bβ, x)o .
(13)

Now, notice that since (xh, eyh) ∈ B(bβ,X, eY ), by construction of bβ, since
n is even, area B(bβ, X, eY ) contains at least #S0 + 1

2
sample observations

(xl, eyl) ∈ (X, eY ). That leaves at most #S0 − 1
2

sample observations for total

area A(bβ,X, eY ) ∪ C(bβ,X, eY ) ∪D(bβ,X, eY ).
First, we prove that for any observation (xl, eyl) ∈ B(bβ,X, eY ), it holds

that

medj∈S0
j 6=l

CWA((xl, eyl), (xj, eyj)) < medj∈S0
j 6=k

CWA((xk, eyk), (xj, eyj)). (14)

By contradiction, assume that ∃(xl, eyl) ∈ B(bβ,X, eY ) such that (14) does not
hold; then, it must hold that the area to the right of the line x = xl and above
the straight line that passes through (xl, eyl) and the slope defined by the angle
medj∈S0

j 6=l
CWA((xl, eyl), (xj, eyj)) is always strictly contained in B(bβ, X, eY ). By

definition of medj∈S0
j 6=l

CWA((xl, eyl), (xj, eyj)), there must be at least #S0 + 1
2

observations in that area, which enters into contradiction with (xk, eyk) being
the directing observation pointing to (xh, eyh), since (xh, yh) ∈ B(bβ,X, eY ) but
cannot enter into the count for finding medj∈S0

j 6=l
CWA((xl, eyl), (xj, eyj)). Now,

since all observations (xl, eyl) ∈ B(bβ,X, eY ) have a smaller
medj∈S0

j 6=l
CWA((xl, eyl), (xj, eyj)) than medj∈S0

j 6=k
CWA((xk, eyk), (xj, eyj)), it

must be true by (12) that all other observations in A(bβ,X, eY )∪C(bβ,X, eY )∪
D(bβ, X, eY ) are such that
medj∈S0

j 6=l
CWA((xl, eyl), (xj, eyj)) ≥ medj∈S0

j 6=k
CWA((xk, eyk), (xj, eyj)). (15)

Now, we prove that there is no sample observations in area A(bβ, X, eY )
or in other words, A(bβ,X, eY ) ∩ (X, eY ) = ∅. By contradiction, suppose that
there is one, say (xl, eyl) ∈ A(bβ, X, eY ). By (15), l is such that
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medj∈S0
j 6=l

CWA((xl, eyl), (xj, eyj)) ≥ medj∈S0
j 6=k

CWA((xk, eyk), (xj, eyj)), so by
(12), it is clear that there must exist at least other observation (xr, eyr) such
that xl < xr < xk and above the straight line passing through (xl, eyl) with the
slope defined by the angle medj∈S0

j 6=l
CWA((xl, eyl), (xj, eyj)). Now, we focus in

observation r in A(bβ, X, eY ) that maximizes ³eyr − bβ1xr´, i.e., r ∈ {1, ..., n} is
such that eyr−bβ1xr ≥ eyj−bβ1xj, ∀j ∈ A(bβ, X, eY ). By construction, there can-
not be any other observation inA(bβ,X, eY ) included into r’s ”counting space”,
i.e., the space to the right of xr and above medj 6=r CWA((xr, eyr), (xj, eyj)) ≥
medj 6=k CWA((xk, eyk), (xj, eyj)) (see Figure 2.2.). Two cases must be ana-
lyzed.
Case 1:
medj∈S0

j 6=r
CWA((xr, eyr), (xj, eyj)) > medj∈S0

j 6=k
CWA((xk, eyk), (xj, eyj)): by

(12), we find a contradiction and the existence of observation j impedes the

existence of any observation in A(bβ,X, eY ).
Case 2:
medj∈S0

j 6=r
CWA((xr, eyr), (xj, eyj)) = medj∈S0

j 6=k
CWA((xk, eyk), (xj, eyj)). In

this case, there is a tie between two directing observations, i.e., (xk, eyk) and
(xr, eyr), both pointing to two different observations: observation k to (xh, eyh)
and observation r to, say, (xf , eyf). Let us define areasA0(bβ, X, eY ), B0(bβ,X, eY ),
C 0(bβ, X, eY ) and D0(bβ, X, eY ) as the analogous to A(bβ, X, eY ), B(bβ, X, eY ),
C(bβ,X, eY ) andD(bβ,X, eY ) in (13) respectively when taking the tied directing
observation (xr, eyr) as the reference point in the definitions (see Figure 2.2.).
Now, if (xf , eyf) ∈ B(bβ, X, eY ) (remember that B(bβ,X, eY ) is defined as the
corresponding region for the reference directing point (xk, eyk)), the same ar-
gument in (12) yields the conclusion that medj∈S0

j 6=r
CWA((xr, eyr), (xj, eyj)) <

medj∈S0
h6=k

CWA((xk, eyk), (xj, eyj)), which we proved to be impossible. If (xf , eyf) ∈
A(bβ,X, eY ), notice that there cannot be any other observations in area
A(bβ,X, eY ) ∩ B0(bβ,X, eY ) apart from (xf , eyf), by definition of (xr, eyr), so

area B(bβ, X, eY ) ∩ B0(bβ, X, eY ) contains #S0 − 1
2

sample observations with

strictly smaller median slopes than
medj∈S0

j 6=k
CWA((xk, eyk), (xj, eyj)) and therefore, areaB(bβ,X, eY )\B0(bβ,X, eY )

16



contains only (xh, eyh). Now, notice that it must be the case that
medj∈S0

j 6=f
CWA((xf , eyf), (xj, eyj)) < medj∈S0

j 6=k
CWA((xk, eyk), (xj, eyj)) =

= medj∈S0
j 6=r

CWA((xr, eyr), (xj, eyj))
and since f ’s slope is smaller than that of k and r and all

#S0 − 1
2

obser-

vations in B(bβ,X, eY )∩B0(bβ,X, eY ) are obviously included in f ’s own B set,
neither k nor r can be the directing observations: f will be the directing one,
so we find a contradiction with our assumptions and both cases are covered:
the set A(bβ, X, eY )∩ (X, eY ) must be empty and moreover, no possible tie can
emerge in the directing observation lying outside the straight line passing

through (xr, eyr) with slope eyh − eyk
xh − xk .

Therefore, we know that all observations (xl,eyl) in C(bβ,X, eY ) andD(bβ, X, eY )
are such thatmedj∈S0

j 6=l
CWA((xl, eyl), (xj, eyj)) > medj∈S0

j 6=k
CWA((xk, eyk), (xj, eyj))

and all (xl,eyl) in B(bβ,X, eY ) are such that medj∈S0
j 6=l

CWA((xl, eyl), (xj, eyj)) <
medj∈S0

j 6=k
CWA((xk, eyk), (xj, eyj)).

The last fact we need in order to prove that CRM estimators are strategy-

proof is that it must happen that bβ0 = medi∈N
³eyi − bβ1xi´ = yk − bβ1xk,

that is, the estimate for the intercept term is given by the intercept of the

straight line with slope
eyh − eyk
xh − xk that passes through the directing observation

k ∈ {1, ..., n} . This becomes obvious since we know now that area A(bβ, X, eY )
is empty and area B(bβ, X, eY ) contains #S + 1

2
sample observations, so the

straight line defining the areas A,B,C and D with supports in (xk, eyk) and
(xh, eyh) is in fact the regression line.
Now, we shall prove that no agent i ∈ {1, ..., n} behind any observations

can gain by reporting a different eyi 6= yi. First, let us assume that the sample
is (X, yi, eY−i). Notice that if i = k or any other observation lying on the
regression line cannot have any incentive to lie, since the prediction for their
x’s are exactly their true value (the residual is the smallest possible for any
single-peaked preferences he might have). We must only care about the
observations outside the regression line. Let us distinguish two cases.
Case 1: Let i ∈ {1, ..., n} be such that xi < xk.
Since i ∈ C(bβ,X, eY ), yi lies below the regression line and declaring a
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lower eyi < yi increasesmedj∈S0
j 6=i

CWA((xi, eyi), (xj, eyj)), 8 potentially increases
medj∈S0

j 6=l
CWA((xl, eyl), (xj, eyj)) for l ∈ S with (xl, eyl) ∈ B(bβ,X, eY ) (it cannot

decrease them in any case), but it cannot make them be higher than
medj∈S0

j 6=k
CWA((xk, eyk), (xj, eyj)) and has no effect on the slopes

medj∈S0
j 6=l

CWA((xl, eyl), (xj, eyj)) for l ∈ S with (xl, eyl) ∈ B(bβ, X, eY ) and
l = k. The net effect is that the median of the new slopes for all observations
cannot change bβ1 and therefore cannot lower i’s prediction, so there is no
incentive to report a smaller value. Now, imagine that agent i declares a
higher eyi > yi. If eyi < bβ1(X, yi, eY−i)xi, i’s slope decreases, but it cannot
be smaller than medj∈S0

j 6=k
CWA((xk, eyk), (xj, eyj)). Once more it cannot affect

the slopes of agents in area D(bβ,X, eY ) and cannot increase the slopes of
the agents in B(bβ,X, eY ), so the net effect is that observation k continues
to be the directing one and there is no gain from lying for the agent behind
i. If eyi > bβ1(X, yi, eY−i)xi, observation i substitutes observation k as the
directing one up to some limit for which a different observation will play
the directing role. When i plays the directing observation role, initially it
points to observation k and takes the regression line away from the true
observation. There is no way such that agent i can reduce its predicted
value by increasing eyi even further, since any other directing observation in
B(bβ,X, eY ) would have a smaller slope than bβ1(X, yi, eY−i) and would pass
through a point in B(bβ,X, eY ).
Case 2: Let i ∈ {1, ..., n} be such that xi > xk.
If yi ∈ B(bβ,X, eY ) reporting a higher value eyi > yi cannot make the slope

for i be higher than bβ1(X, yi, eY−i), since medj∈S0
j 6=i

CWA((xi, eyi), (xj, eyj)) <
medj∈S0

j 6=k
CWA((xk, eyk), (xj, eyj)),and the same happens for any observation

in B(bβ,X, eY ). By contrast, the increase in eyi cannot make the slopes of
observations in C(bβ,X, eY ) and D(bβ, X, eY ) smaller than bβ1(X, yi, eY−i). Since
no slope in the sample jumps over the median defining bβ1(X, yi, eY−i), the
regression line remains unaltered. Now, in order to analyze the possibilities
of manipulation when reporting a smaller value eyi < yi: we must distinguish
two cases:
Case 2.1.: If i’s angle points to some other observation l with xl > xi,

reporting a smaller eyi < yi such that (eyi, xi) ∈ B(bβ, X, eY ) raises the angle
8Notice that whenever i /∈ S, his own angle will not affect to the total count to find the

directing angle defining the regression line and therefore i cannot be the directing angle,
but he still can affect other’s angles and hence the selection of the directing angle.
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corresponding to i but cannot reach the even higher angle of the directing
observation. Moreover, no other observation in B(bβ, X, eY ) surpasses the
directing angle due to i’s lie. Observations in C(bβ,X, eY ) and D(bβ, X, eY )
either lower their slopes or do not change, but their slopes cannot jump
over the directing angle in any case, so there is no chance of changing the
regression line and the predicted byi until eyi enters area D(bβ,X, eY ). If this is
the case, still when i’s slope is smaller than that of the directing observation
k, i’s angle decreases to pass through (eyi, xi) if i ∈ S, following i’s fall ineyi, since no angle of observations in B(bβ,X, eY ) can jump on k’s new angle
(see Figure 2.3.). This change lowers the predicted byi, so i will be worse off.
If eyi decreases even more, it will eventually leave the regression line fixed
at a lower level, but no other directing point in B(bβ,X, eY ), C(bβ, X, eY ) or
D(bβ, X, eY ) will be able to support a new directing angle (see Figure 2.3.).
Therefore, by lowering byi, the agent behind observation i can only worsen his
predicted value.
Case 2.2.: If i’s angle points to some other observation l with xl < xi,

reporting a smaller eyi < yi such that (eyi, xi) ∈ B(bβ, X, eY ) lowers i’s own
angle and cannot make any slope of observations in B(bβ,X, eY ) rise over
the directing observation one. Analogously, observations in C(bβ,X, eY ) and
D(bβ, X, eY ) can potentially lower their own slopes, but never as low as i’s di-
rected angle (see Figure 2.4.). Therefore, the regression line does not change.

When eyi falls below the regression line, i.e., when (eyi, xi) ∈ D(bβ, X, eY ), by
the same reasoning as above, the regression could rotate around the directing
observation (eyk, xk) pointing to i until eventually it could stop pointing to
other one in D(bβ,X, eY ), always making the agent behind observation i being
worse off for every single-peaked preference that he might have.
Finally, if yi ∈ D(bβ, X, eY ), lowering eyi < yi cannot neither decrease i’s

slope nor make any slope of observations in B(bβ,X, eY ) rise enough to beat
k as the directing observation. Nevertheless, it can decrease some slopes of
observations in D(bβ,X, eY ), but the existence of observation j precludes that
any other can beat k in any case, so the regression line remains the same. The
last case is that of yi ∈ D(bβ,X, eY ) when considering lies such that: eyi > yi.
For all eyi ∈ D(bβ, X, eY ), i’s slope falls but never as much as to pick the
directing observation k’s slope (this would conflict with our previous results
about the slopes of observations in each region). Some other observations

in D(bβ,X, eY ) might increase their own slopes even further. On the other
hand, some observations in B(bβ,X, eY ) (some l such that xl < xi) might
increase their slopes and some others might see it lowered (some of those l ∈
B(bβ,X, eY ) for which xl > xi), but there is no chance of beating the median,
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so the regression does not change. Finally, increasing eyi > yi so far such thateyi ∈ B(bβ,X, eY ) (see Figure 2.4.) must make i’s slope fall below k’s slope,
and therefore jumping to the other side of the median. Other observations
in areas C(bβ,X, eY ) and D(bβ, X, eY ) might increase their slopes and some
others in B(bβ, X, eY ) like l with xl < xi might increase their slope, but
never as much as to beat k as the directing observation. Some observations
in B(bβ, X, eY ) like l with xl > xi might see their slopes lowered. Finally,
the directing observation k’s slope must rise initially pointing to i since an
observation in area D(bβ, X, eY ) has moved up to counting area B(bβ, X, eY ).
The results of all this is that the regression line moves further away from
yi and for any single-peaked preferences, the agent behind observation i is
worse off. Pushing the lie eyi even further in B(bβ,X, eY ) might eventually
stop the regression line rotating upwards around k to point to any other
observation in B(bβ,X, eY ) and no new shift in the regression line emerges.
Therefore, we have exhausted all possible cases and there is no chance of
getting a better prediction by manipulating the declared response value, so
the CRM estimator bβ is strategy-proof.

[Insert Figure 2 about here]

CRM estimators are proved to be strategy-proof for very large admissible
samples, since Z includes every observation such that ∀i, j ∈ N, xi 6= xj.
Furthermore, CRM estimators possess other interesting statistical properties.
When all the observations lie on the same straight line, CRM estimators
always capture the line. Moreover, CRM estimators are scale equivariant
for any true sample Z. An estimator bβ is scale equivariant if ∀(X,Y ) ∈
Z, ∀λ ∈ E, bβ(X,λY ) = λbβ(X,Y ), i.e. a change in the units of measurement
of the response variable only re-scales the estimator. Furthermore, CRM
estimators also possess good ”allocating” properties. In particular, they are
all efficient (or Pareto-optimal) in the sense that for all admissible samples
and for all individual single-peaked preferences, CRM estimators are such
that there does not exist a different regression line that guarantees (weakly)
better predictions for all the agents and leaves at least one agent strictly
better off. Let us define the efficiency property more rigorously and we shall
easily prove the result.

Definition 4 Regression estimator bβ0 = (bβ0, bβ1) = T (X,Y ) is Pareto-
efficient if ∀Z = (X,Y ), there does not exists any β00,β

0
1 ∈ E such that
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∀i ∈ N, ∀Ryii ∈ <eyi ,
[β00 + β01xi]R

yi
i

hbβ0(X,Y ) + bβ1(X,Y )xii
and [β00 + β01xj]P

yj
j

hbβ0(X,Y ) + bβ1(X,Y )xji for at least one j ∈ N.
Proposition 2 Any CRM estimator is Pareto-efficient for any admissible
true sample Z.

Proof. We know by construction that all CRM estimators are such
that for all admissible samples, the regression line always passes through at
least two different observations. That means that the prediction offered to
at least two individuals is exactly their best-preferred prediction, i.e., their
own true value of the response variable. Therefore, at least two individuals
are always left as well-off as possible and given the same sample, any other
regression line (i.e., β00, β

0
1 ∈ E ) that either passes only through some of these

observations but not through all or does not pass through any of them can
only make at least one of them strictly worse-off. Since only one regression
line can pass through the set of agents that are given their best predictions,
the statement in the definition of Pareto-efficiency above must hold and the
proof is complete.
Now, we check different well-known estimators in the literature and we

shall prove that they are not strategy-proof. It is easy to see that OLS is
typically manipulable by any observation. Observations with positive resid-
uals have an incentive to report higher eyi’s and those with negative residuals
have an incentive to report smaller values for their response variables.9 The
least median squares method (LMS, see Rousseeuw (1984)) is defined asbβ(LMS) = argmaxbβmedi∈N be2i . For the simple regression case, this method
amounts to find the strip containing half of the observations with the smaller
width measured in the y axis. The regression line is the straight line that lies
exactly in the middle of the strip. Clearly, there are cases where an obser-
vation critical for the strip (say, one that lies below the regression line) can
lower slightly the reported eyi and push the regression line closer to his true
value. Another median-based estimators for the simple regression model like
those of Andrews (1974), Theil (1950), Siegel’s repeated median (1982) or
Simon’s median star (1986) are not strategy-proof either. We briefly explain
each of them and will show the possibility of manipulation by means of a
simple graphical example. Andrews proposed to classify the observations in

9Actually, the only possibility that precludes any gain from manipulating the regression
are the cases where all true observations lie on the same straight line.
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two sets L and R. L would contain those with smaller x−value with the ex-
ception of a certain fraction of the smallest and R contains those with higher
x−value with the exception of a certain fraction of those with the highest
x−value. Moreover, sets L and R do not contain a number of those in a
neighborhood of the median x−value. Then, Andrews calculates the median
of the two remaining subsets of x−values, say med x1 and med x2 and the
medians of the corresponding y−values of both groups (med y1 and med y2).
The estimation for the slope is then defined as:

bβ1 = med y2 −med y1
med x2 −med x1 . (16)

Figure 3.1. shows a case in which observation h ∈ N that defines the me-
dian of the largest x−value group can manipulate the sample by reporting
a slightly smaller eyh (the direction of the manipulation is shown with the
straight arrow and the manipulated new regression line is depicted as the
bold dashed line). Another well-known robust estimator that can be easily
proved not to be strategy-proof is the one proposed by Theil (1950). Theil’s
estimator for the slope is:

bβ1 = med1≤i<j≤n yj − yixj − xi . (17)

Theil’s estimator breakdown point is about 29.3%, but it is not strategy-
proof. Figure 3.2. provides an example in which the agent behind observa-
tion h ∈ N can profitably manipulate the sample by reporting a higher eyh.
An interesting variant of Theil’s estimator is the repeated median estima-
tor proposed by Siegel (1982), which has a breakdown point of 50%. The
method consists in computing a two-stage median of the pairwise slopes. The
estimates for both parameters are:

bβ1 = medi∈N medj∈N\{i} µ yj − yixj − xi

¶
bβ0 = medi∈N ³

yi − bβ1xi´ . (18)

Siegel’s repeated median estimator is not strategy-proof, as Figure 3.3. shows.
Agent h ∈ N can obtain a better result by reporting a higher eyh. Notice that
there exists an analogous repeated median version among the CRM estima-
tors that is strategy-proof. The difference between the two are clear: while
Siegel’s repeated median estimator finds the two-stage median of the pair-
wise slopes of the observations, our CRM estimator obtains the two-stage
median of the pairwise clockwise angles defined by the slopes. This quite
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simple change happens to be crucial regarding the strategic properties of
both methods. Finally, we consider Simon’s (1986) median star estimator,
with slope defined as:

bβ1 = medi∈N µ
yi −medj∈N yj
xi −medj∈N xj

¶
. (19)

The median star estimator was actually first proposed by Hampel (1975)
and amounts to the line passing through (medj∈N xj, medj∈N yj) which has
equal number of positive residuals on both sides of medj∈N xj. Figure 3.4.
shows a simple example in which agent h ∈ N can gain by manipulating
the sample. Notice that the median star estimator also has a CRM version
defined on the directing angles rather than on the slopes themselves, with
the additional change of the regression line passing through (xi, yi) such that
xi = medj∈N xj.

[Insert Figure 3 about here]

3 The simulation results

In this section we show some examples and Monte Carlo experiments to
motivate the data fits obtained using different linear regression methods. In
particular we compare the OLS estimates under some kind of manipulation
with three types of CRM estimators, all of them defined in Section 2 : the
simple clockwise version of the ”Repeated Median” estimator (i.e., the one
defined by equations (5), (8) and (7)), the version of the so called ”Resistant
Line” method due to Brown and Mood (1951) (equations (5), (10) and (7))
and the clockwise version of the median star estimator (equations (5), (9) and
(7)). The samples are simulated from the following data generating processes
(DGP hereafter):

DGP1 : yi = 5− 0.5xi + ei where ei ∼ N(0, 1) (20)

DGP2 : yi = −5 + 0.5xi + ei where ei ∼ N(0, 1) (21)

Therefore we show the performance of the estimators when fitting either
a negative or a positive slope. The unit variance was also used to consider
enough sample variation to capture the differences of the data fits but pre-
serving the linear relationship among the variables. Given a particular esti-
mation method, there is scope for different ways of manipulating the sample.
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If we are interested in predicting the likely manipulating behavior of agents
from a strategic point of view when OLS is applied, we are in trouble, since
no pure strategies Nash equilibrium of the strategic OLS estimation induced
game exists whenever all the observations do not lie on the same straight
line.
Hence, for any declared values of the others, there will be at least one

agent interested in declaring a different value. This is so because OLS pa-
rameters depend continuously (and with no bounds) on the declared response
variable values of the agents and there is always a value of the dependent
variable for every agent that can move the regression line until passing ex-
actly through the true value, so this will be each agent’s best response. There
is no easy way of predicting a stable equilibrium behavior of the agents under
OLS estimation and it could well be the case that agents are not perfectly
informed either about the others’ true values or their potential lies, so we
take a shortcut: we assume bounded rationality strategic behavior for the
agents by considering that the ”magnitude of the lie” is related to the value
of the residual, that seems to be a reasonable approximation to the agent’s
behavior. Furthermore, we limit the manipulation behavior only to those
agents whose residuals are bigger (in absolute value) than the variance of the
regression, that is, those at risk of being treated as potential true outliers.
To simplify, we assume that the agents that obtain predictions ”not too far
away” from their respective true values will not lie (the gains will not be
important enough as to obtain additional information to play strategically).
Therefore, among the agents that will lie, the agents whose residuals are

positive (negative) would tend to increase (decrease) their reported value in
an attempt to bias the regression towards their true value. The contaminated
sample is generated by the following procedure:

eyi = ½ yi + c1k
2
i bei if ki ≥ c2

yi if ki < c2
(22)

where ki =
|bei|r

1

n

Pn
j=1 be2j , bei = yi −

bβ0 − bβ1xi ∀i = 1, 2, ..., n and bβ0 and
bβ1 being the OLS estimates obtained with the true sample. Two arbitrary
constants, c1 and c2 must be also considered, in particular we used c1 =
10 and c2 = 1 which implies that less than 1/3 of the observations are
contaminated on average.
Figures 4 and 5 show some examples of the estimates obtained using 20

observations simulated from the DGP 1 (20) and DGP 2 (21) respectively.
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It is clear from these pictures that some of the fits provided by the esti-
mators within the ”Clockwise Repeated Median family” are better than the
ones obtained by the contaminated OLS. In particular the ”Resistant Line”
predictions are pretty close to those of the OLS and both the clockwise ”Re-
peated Median” and ”Median Star” seem to be biased somehow10.

[Insert Figures 4 and 5 about here]

Finally, Figures 6 and 7 display the empirical histograms of both the
regression intercept and the slope11. The histograms have been plotted after
simulating 1000 different samples from DGP 1 (20) and 2 (21) and computing
the corresponding estimates for both parameters by using the five methods
considered in this section. We only show the Figures for DGP 1 since the
results of DGP 2 are similar. Moreover the variance of the simulated models
was reduced to make the comparisons clearer in the pictures. These Fig-
ures show clear evidence supporting the CRM strategy-proof estimates (in
particular the Resistant Line) over OLS estimates when the agents could be
contaminating strategically the sample. Observe that the Resistant Line es-
timates are consistent, although with a slower convergence rate than the OLS
ones. The other estimates within the CRM family are not so well asymptot-
ically behaved (for example, the clockwise version of the Repeated Median
seem to be biased) but the contaminated OLS does not have any desirable
property.

[Insert Figures 6 and 7 about here]

Finally, Tables 1 and 2 report the mean squared error ratios of the Con-
taminated OLS (COLS) and the Resistant Line (RL) to the OLS estimates
for the regression slope. In order to highlight the merits of the strategy-proof
estimators we chose the Resistant Line among all the family and for the sake
of brevity we only report the estimates for the regression slope. The esti-
mates were computed from simulations of bivariate normal distributions12 for

10Observe that the further the two observations which select the CRM estimated line
are, the better fit is obtained. Therefore the ”Resistant Line” seems to be more appropiate
since both observations are obtained from two different subsamples.
11All the simulations were programmed and run using TSP (Time Series Processor)

software.
12Note that the distribution of Y conditioned on X when ρ = 0.928 and ρ = −0.928

corresponds to the DGP’s shown in equations (20) and (21) respectively. Moreover we
generated a hundred simulations of n observations, but the results do not significantly
differ from those obtained when simulating a thousand times instead.
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different values of both the correlation coefficient (ρ) and the observations
(n). These tables show the efficiency loss of the estimators compared to the
OLS one. In particular RL is a robust and non-manipulable estimator at the
cost of duplicating or even triplicating the OLS variance. Nevertheless, if the
agents reporting the data behave strategically this is a minimum cost because
under the manipulation considered, the contaminated OLS mean squared er-
rors could be bigger than three hundred times the true OLS counterparts.

[Insert Tables 1 and 2 about here, called Figures 8 and 9 below]

4 Conclusions

In this paper we have introduced a class of estimators for the simple regres-
sion case that are immune to strategic contamination of the data when the
agents behind the observations are interested in not being true outliers. CRM
estimators are thus recommendable when the lack of information about the
response variable values is an important problem. We claim that when infor-
mation is not easily observable and verifiable, the individual incentives to re-
port false information must be taken into account. Traditionally, statisticians
have perhaps underestimated this fact in some cases, where the information-
extraction aim of statistics is fundamentally linked with clear and unavoid-
able economic resource allocation consequences of the information obtained.
In this case, a (partial) conflict of interest between the researcher and the
agents that provide the data must be solved and the way in which informa-
tion is aggregated (the estimators or regression method used) can potentially
change the incentives of the individuals to declare their true values. There
is a gain in credibly committing to using a specific way of aggregating infor-
mation. If the agents who have the private information perceive that their
own well-being depend on their reported information, they will try to act
strategically and the sample will be contaminated, but if they believe that
the econometrician is going to use a strategy-proof estimator that leaves no
gain in reporting false information, the agents behind the observations will
behave truthfully, the data will be trustworthy and the information reliable.
Our approach to strategic data contamination is just a particular case

appropriate when the information extracted from the regression is likely to
affect the interests of the individuals that report the information about the
response variable in a particular direction. However, there may be different
social situations where the estimates are used (or perceived to be used) in
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a different way and might change the individual incentives from those ana-
lyzed in this paper. For example, it is possible to imagine contexts where
the agents behind the observations could be interested in reducing, say, the
difference between their true yi value and the average of the predicted values,
1
n

Pn
i=1 byi, or not being perceived as an outlier regarding the reported value,

i.e., minimizing |byi − eyi| instead of |byi − yi| . All these cases can nevertheless
be analyzed within our strategic approach, but changing the preferences the
agents have. Strategy-proofness still holds as a strong incentive compatibil-
ity requirement, but individual preferences that summarize their incentives
and guide their strategic behavior when facing any estimator will no longer
be single-peaked. Further research on this topic will presumably lead to very
different estimators.
Notice, however, that different strategy-proof CRM estimators also per-

form very differently in terms other than being resistant to some specific
kind of data manipulation in large domains, although they are calculated in
a similar way. In particular, the resistant line, either discarding some obser-
vations or not, is a particularly interesting method that seem to have high
consistency and robustness, while other CRM estimators like the clockwise
repeated median or the clockwise median star do not provide very good fits.
Nevertheless, if the problem of strategic data contamination is important
enough, the loss of consistency involved in CRM estimators is a small price
to pay in exchange for the accuracy of the reported data implied by using
strategy-proof estimators. The exact nature of the trade-off between estima-
tion consistency and incentive compatibility is nevertheless still unclear and
further research on the issue could be worthwhile.
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FIGURE 4: DGP yi=5-0.5xi+ei; V(ei)=1.
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FIGURE 5: DGP yi=-5+0.5xi+ei; V(ei)=1.
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FIGURE 6: SIMULATED HISTOGRAMS FOR THE 
REGRESSION INTERCEPT (yi=5-0.5xi+ei; V(ei)=0.01)
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FIGURE 7: SIMULATED HISTOGRAMS FOR THE 
REGRESSION SLOPE (yi=5-0.5xi+ei; V(ei)=0.01)
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MSE ratios of Contaminated OLS (COLS) and Resistant Line (RL) to the OLS for the regression 
slope. 

 ρ=−0.928 ρ=−0.447 ρ=−0.099 
 COLS/OLS COLS/OLS COLS/OLS RL/OLS COLS/OLS RL/OLS 

n=20 282.84 2.59 391.33 2.43 332.86 3.35 
n=40 482.59 3.39 447.36 2.61 364.72 2.44 
n=60 460.55 2.87 284.77 2.37 485.47 2.42 

 

Figure 8:

 
MSE ratios of Contaminated OLS (COLS) and Resistant Line (RL) to the OLS for the regression 
slope. 

 ρ=0.099 ρ=0.447 ρ=0.928 
 COLS/OLS COLS/OLS COLS/OLS RL/OLS COLS/OLS RL/OLS 

n=20 333.09 3.73 215.52 3.06 308.15 3.38 
n=40 275.64 2.61 447.36 2.61 441.95 3.14 
n=60 544.27 2.44 504.91 2.35 454.05 2.86 
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