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Abstract 

We study changes in fossil fuel and non-fossil energy use and carbon dioxide emissions induced 

by carbon taxes. We develop a partial energy equilibrium model with capital and labor as 

production factors, and endogenous technological change through learning by doing and learning 

through research, distinguishing between private and public innovations. Our model reproduces 

the learning curves typical for energy system engineering models. The model also produces an 

endogenous S-curved transition from fossil fuel energy sources to non-fossil energy sources over 

the coming two centuries. It is shown that, (i) induced technological change accelerates the 

substitution of non-fossil energy for fossil fuels substantially. Also, (ii) a temporary carbon tax has 

a permanent effect on the technological progress of the non-fossil energy and advances the 

transition towards it. 
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Induced technological change under carbon taxes 

1. Introduction 

It has become increasingly clear that environmental taxes and regulation not only reduce pollution 
by shifting behavior away from polluting activities, but also encourage the development of new 
technologies that make pollution control less costly in the long run (Newel et al. 1999; Popp 
2002). Understanding of the response of technology to economic incentives – dubbed induced 
innovation or induced technological change (ITC) – will prove crucial for designing appropriate 
environmental policies (Jaffe et al. 2002). The aim of this paper is to present and apply a 
numerical model, namely the DE-carbonization Model with Endogenous Technologies for 
Emission Reduction, version 2, where only the Energy sector is considered (DEMETER 2E). 
DEMETER 2E assesses the potential contribution of ITC to carbon dioxide emissions reduction, 
and to compare this contribution of ITC with the contribution of substitution between carbon 
dioxide emitting and carbon free energy sources for a given technological state. In the literature, 
the subject of ITC has been studied mostly in the context of one representative aggregate 
technology (e.g. Verdier 1995, Beltratti 1997, Newell et al. 1999, Goulder and Matthai 2000, 
Nordhaus 2002). In that context, technology is treated as a production factor, and ITC stands for a 
substitution of the factor technology for other production factors. This paper extends the literature 
as it addresses ITC in the context of two competing technologies (energy sources). 
 Induced technological change is receiving considerable attention in the climate change related 
literature where the potential contribution of ITC to policies aiming at greenhouse gas emission 
reductions is subject of a yet undecided debate. Some studies try to estimate empirically the 
impact of ITC relative to the substitution effects without technological change (Carraro and 
Galeotti 1997, Goulder and Schneider 1999, Nordhaus 2002, van der Zwaan et al. 2002, 
Buonanno et al. 2003, Gerlagh and van der Zwaan 2003). But the estimated contribution of ITC 
varies considerably between the studies. Carraro and Galeotti (1997) employ an econometric 
model for the EU and come to an optimistic conclusion. ITC can bring about a double dividend 
when proper R&D incentives will reduce emissions without the need for decreasing consumption. 
Goulder and Schneider (1999) and Nordhaus (2002) are more pessimistic and conclude that, 
though ITC is not negligible, its contribution to greenhouse gas emission abatement is small when 
compared to the contribution of fixed-technology substitution. The somewhat disappointing result 
of these two studies may, however, be explained by the set up of the analyses. Nordhaus’(2002) 
study is based on one representative technology, and assumes that the reduction of carbon dioxide 
emissions requires the substitution of knowledge for energy. It abstracts from changes in energy 
composition, that is, the substitution of carbon poor energy sources for carbon rich energy 
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sources. The substitution between energy sources is included in the other study by Goulder and 
Schneider (1999), who consider fossil fuels versus renewable energy sources. These two energy 
sources are, however, treated as complements (elasticity of substitution below unity), so that 
substitution and competition is limited. Such an approach may be quite realistic in the short run, 
as global energy demand is ever increasing and renewables are, not yet, substitutes. They may 
become so in the long run, which is the context of our analyses. 
 ITC plays a more prominent role in a context with multiple competing energy sources (van 
der Zwaan et al. 2002, Gerlagh and van der Zwaan 2003) and such a context would also be in line 
with many so-called Integrated Assessment Models (e.g. Peck and Teisberg 1992; Manne et al. 
1995). To constrain climate change, the substitution between various energy sources is essential. 
In the long term, energy savings will be insufficient for substantial abatement levels of carbon 
dioxide emissions, since energy is an essential production factor. Instead, if a substantial emission 
abatement strategy is aimed for, a shift away from fossil fuel based energy sources towards 
carbon-free energy sources is unavoidable (Chakravorty et al. 1997). For this reason, in studying 
the added value of ITC, we have to take into account the effect of ITC on the relative contribution 
of various competing technologies used for energy production (Weyant and Olavson 1999).1 
 The significance of ITC for policy making is wider and not restricted to energy and climate 
change alone. Understanding ITC is essential for assessing resource policy analyses and the use of 
partial equilibrium models for this purpose. 
 The objective of this paper is twofold. First, we have a methodological objective, namely to 
bridge the gap between energy-system engineering and neo-classical economic approaches. 
Second, we present some policy analyses, to verify whether as a weak impulse can have a long-
term impact on emission levels and whether a weak impulse may change the learning curve too. 
 In carrying out policy analyses, we study the response of a carbon tax on CO2 emissions, 
when taking account of technological change. Most applied numerical studies so far assumed a 
technological state that dynamically developed over time, but that was independent of emission 
policies. We assess by how much these results may change if we include induced technological 
change (ITC), following emission policies. We have two specific sub-questions. 
 First, what is the significance of ITC for the responsiveness of cumulative emissions to 
constant carbon dioxide taxes? To measure this response, we take the reduction in cumulative 
carbon dioxide emissions over the period 2000-2100 following a constant carbon tax of say 20 
$/tC. We compare the reduction in cumulative emissions without ITC, and with ITC. The ratio 
between the two is a good measure for the impact/significance of ITC. This number is important, 

                                                   
1 More in general, a representative aggregate technology does not perform well when there are increasing returns 

to scale at the disaggregate level (Basu and Fernald 1997). 
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since most analyses with applied general equilibrium models assume given technology, and this 
may be realistic or too pessimistic dependent on the ITC ‘impact factor’. 
 Second, we want to study the implications of temporary taxes on the present carbon dioxide 
emission intensity of production and its future paths. Will a carbon tax direct technological 
innovations towards ‘cleaner’ production of energy, that is, towards renewables, so that after the 
tax is dropped, emissions remain below their levels that would appear without tax (the so-called 
BAU)? That is, is the change in technology persistent? 
 To study these questions, we develop a partial energy model, DEMETER 2E, that has the 
following features. Total energy demand is fixed. There are two energy sources (carbon and non-
carbon) that compete. The model describes technological innovations through learning by doing 
and research and development (R&D) in the tradition of the endogenous growth models with 
natural resources that have been specified to study growth and sustainability (Gradus and 
Smulders 1993; Bovenberg and Smulders 1995; den Butter and Hofkes 1995; Verdier 1995; 
Bovenberg and Smulders 1996; Beltratti 1997; Smulders 1999). The level of R&D is driven by 
economic incentives, that is, by the value of an innovation to the innovator. 
 We are aware of the limitations of the neoclassical approach we follow, which is an 
abstraction of the reality where producers do more than only maximizing profits. Our specific 
model is an abstraction of the reality, where we neglect taxes, and other market distortions. To 
compensate for these limitations, we try to find a harmony between our neoclassical approach and 
energy-system engineering approaches. We calibrate the model to generate a benchmark scenario 
that is in line with other studies, and then, we study the effect of a temporary 20 $/tC emission 
tax: 20 years, (2005-2025), 40 years (2005-2045), and a permanent tax of 20 $/tC for which the 
situation with and without ITC is considered. 
 Section 2 describes the basic features of the model for the energy sector and one energy 
source. Section 3 extends the model to take account of two competing energy sources. Two 
different energy sources are considered. Furthermore, the impact of energy production on carbon 
emissions and global average temperature is discussed, as well as the growth of world population 
in the model. Section 4 describes the empirical calibration of the model. Section 5 provides the 
results of the two-energy source simulation model. The final section discusses the implications of 
our analysis for climate change policies. Two Appendices are added to the paper. Appendix 1 
presents the first order conditions of the model, while the numerical values, as found in the 
calibration, are presented in Appendix 2. 

2. Endogenous technology for energy production 

We model energy as an intermediate good. The raw energy source is processed and used as a 
production factor for other production processes. This section presents the basic elements of our 
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model for energy production and innovation, describing one energy source. FIGURE 1 provides an 
overview of the model. We distinguish between knowledge gained through experience, so-called 
learning by doing, and knowledge produced through research carried out by innovators. The 
research-based technology is described as an expanding library of ideas that can be used in the 
production process. Innovation is a cumulative process; each innovation builds on the stock of 
existing knowledge. Energy producers can make use of all past and present innovations, that is the 
total stock of knowledge, and pay a license fee to all innovators that have developed the 
innovations that are currently in use. In turn, the innovators receive the license fees from all 
present and future energy producers that use their innovations. Both innovators and producers of 
final goods take prices as given. We do not consider product variety and price setting under 
monopolistic competition as in many other endogenous growth models (see Barro and Sala-i-
Martin 1995 for an overview). 
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FIGURE 1. Schematic overview of innovation and energy production in the model. The innovation 
and energy production processes are presented in an ellipse. Stocks are presented in rectangles. 

 In this section, for the one sector model, we assume that the demand for energy yt shows a 
constant elasticity σ, 

yt = ŷ t  pt
–σ , (1) 

for some exogenous demand variable ŷ t , where pt is the price of energy at date t. In the 
continuation of this paper, we omit time subscripts when convenient. We assume that energy is 
taxed at a fee τ. As common for energy taxes, the tax has a physical basis, and thus, adds a 
constant markup value to the production costs in contrast to a constant markup ratio,2 

pt  = qt+τ tεt , (2) 

                                                   
2  Usually the following expression is used: p t  =  (1+τ t)q t ,  where tax is measured as a rate. 
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where qt is the production cost and εt  the energy efficiency as defined later on in equation (13).  
 Firms, indexed j, produce energy according to 

yj,t = ς (z t)– µ(aj , t)ηa(bt)ηb(kj , t)α( l j , t)1 –α , (3) 

where ς is an overall productivity parameter, zt, the public cumulative amount of resource 
exploitation, is a negative externality of energy source exploitation on output, the variable aj , t  
denotes the total knowledge stock gained through research, bt  denotes the non-rival knowledge 
stock gained through learning by doing publicly available to all firms, kj , t , is the capital stock, and 
l j , t , is labor use in efficient labor units. Human capital increasing labor productivity is not 
specified explicitly, as it is considered embodied in the labor good, exogenous to the individual 
firm. 
 For fossil fuels, the value of (zt)µ reflects the effort required to exploit, say, oil wells. The 
effort (zt)µ increases because of decreasing quality of oil wells when the reserves decrease because 
of cumulative production. The increased effort is measured by the increase in the variable zt,  

z t +1  = z t  + yt . (4) 

where we omitted the subscript j for the output variable yt (=Σjyj,t). Equation (3) states that the 
effort required for energy production, (zt)µ, increases by 2µ for every doubling of the cumulative 
resource exploitation level. We assume that the energy sources are owned by the firms that exploit 
these, hence there is no open access, but there are well-defined property rights. This also implies 
that the impact on future efforts of energy production is internalized, as resource depletion 
influences the energy price in our model. For renewable energy sources, there is no exhaustion 
and we assume µ=0. This eliminates the negative externality on energy production. Variable zt for 
non-fossil energy can be interpreted as the cumulative production of and experience with non-
fossil energy production. FIGURE 2 illustrates the difference of fossil and non-fossil cumulative 
resource exploitation.  
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FIGURE 2. Growth pattern of cumulative resource exploitation over time for fossil fuel and non-
fossil energy in BAU. 

FIGURE 2 shows that while the cumulative fossil resources decline over time, the cumulative 
renewables increase exponentially and gain momentum after 2150 in the BAU. 
 The knowledge variable aj , t  is a measure of the number of innovations that are employed by 
the j-th firm, at date t. Let h∈[0,1] denote the innovators, and ainn

j , h  the (continuous) number of 
innovations in use by firm j owned by innovator h. Furthermore, let apub denote the innovations in 
public domain, for which patents are expired so that their use is free from license payments. We 
assume that innovations are additive, which is 

haa inn
hjj d

1

0
,∫=  + apub. (5) 

Also, we assume that the firms have to pay a license fee θh,t for the innovations employed, for 
every unit of innovation ainn

j,h,t, and for every unit of output yj,t, so that for the firm j, expenditures 

on innovations amount to .  Due to the assumed additivity of innovations (5), 

innovators face perfect competition and cannot earn monopoly rents. If one innovator charges the 
license fee θt, per output unit per innovation, then θ ty j , t  presents the maximal value the firm j is 
willing to pay per innovation, also to other innovators, and the license fee contract precisely 
captures that value. No individual innovator can increase its revenues when it switches to another 
license system or charges a higher license fee. Hence, the license fee is clearing the market of 
innovations. The license fee is the same for all innovators and we drop the subscript h, and (5) 
becomes 

1

, , , ,
0

dinn
h t j h t j ta yθ∫ h

aj = ainn
j + apub. (6) 

We return to the production of innovations at the end of this section. 
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 The learning-by-doing knowledge stock bt is based on cumulative experience, that is, the 
cumulative output level, with some depreciation δb, 

bt +1  = (1–δb)bt  + yt , (7) 

where we omitted the subscript j for the output variable yt, as in equation (4). Knowledge through 
a and b increases productivity, while the resource externality z decreases productivity, and when 
the former exceeds the latter, µ<ηa+ηb , productivity increases over time, whereas in the other 
case, µ>ηa+ηb , productivity decreases over time. 
 In addition to the license fees, firms pay for investment expenditures, i j , t , and wages, wtl j , t . 
At time t, total expenditures thus amount to i j , t  + wtl j , t  + θ ta i n n

j , ty j , t , while revenues amount to 
qtyj,t. The firms maximize the net present value of their cash flows: 

max , (8) 
,, , ,

1
(( ) )

j t

t inn
j t t j t t j t j t

t
q a y w l i

∞

=

β − θ − −∑ ,

where (1/β)–1 is the real interest rate, subject to the production identity (3), the dynamics of 
resource depletion (4), and to the capital depreciation-investments relation (9), 

kj , t + 1 = (1–δk)kj , t  + i j , t . (9) 

where δk is the depreciation rate, and it is the investment flow. As expenditures on licenses are 
proportional to output and production has constant returns to scale, the firms operate in a 
competitive market pricing the output at marginal cost. This holds for all firms and we can as well 
omit firms’ subscripts j. Appendix 1 presents the full set of first order conditions. 
 Next we turn to the supply of innovations. There are two externalities working in opposite 
direction. As a positive externality, knowledge about past innovations is public, that is, knowledge 
is non-rival when it is used to produce new knowledge. Research innovators use the ‘library’ of 
past inventions to produce new innovations, and thus, the flow of new innovations is increasing in 
the knowledge stock a. As a negative externality, research efforts r by one innovator negatively 
affect the finding of new innovations by other innovators, because of extraction of new 
innovations that are attainable from the current state of knowledge. The flow of new innovations 
for an individual innovator h is thus decreasing in the aggregate research flow r. Finally, the 
number of new innovations produced by an innovator h, ∆ah, is proportional to its research 
expenditures ∆rh  (∆rh=rh∆t ,  research expenditures are equal to the research flow rh times the 
time interval ∆t), and a fraction δinn of innovations owned by the innovator leaks to the public 
domain because of patents that expire: 

∆ai n n
h  = ζ  rh

π– 1  a1 –π  ∆rh  – δinnai n n
h . (10) 
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where ζ is a scaling constant. Aggregation of innovations (10) over the innovators gives 

ai n n
t + 1 = ζ  rt

π  at
1 –π  + (1–δ i n n)ai n n

t . (11) 

Public knowledge is fed through two channels. First, part of the property rights for innovations 
held privately by the innovators expires, δinnai n n , and public knowledge is also produced as a 
direct spinn-of of research, χζ  rt

π  at
1 –π ,  where the parameter χ ∈ (0,∞) describes the relative 

contribution of research to public knowledge versus privately held innovations: 

ap u b
t + 1 =  (1–δp u b)ap u b

t  + δ i n n  ai n n
t  + χζ  rt

π  at
1 –π . (12) 

Also, a small fraction δpub of knowledge becomes obsolete. Appendix 1 presents the full set of 
conditions characterizing the market for innovations. 

3. Energy aggregation and climate change 

So far we did not explicitly consider competition between technologies. In this section, we first 
extend the one-technology model with emissions and a simple representation of the carbon cycle, 
and we second consider two competing technologies that can be used for production.  
 Carbon emissions, expressed as a function of time by Et, are proportional to the use of fossil-
fuel-based energy, yt, via the aggregate carbon emission factor εt: 

Et  = εt yt , where εt = max(0.8, 0.998t)ε1 (13) 

The factor εt is assumed to be time-dependent, and declines by 0.2% per year and cannot drop 
below 80% of total output, to be able to account for a gradual de-carbonization process. Fossil-
fuel consumption has been subject to such a process since the early times of industrialization, by a 
transition –in chronological order– from the use of wood to coal, from coal to oil, and most 
recently from coal and oil to natural gas. Carbon emissions are linked to the atmospheric carbon 
dioxide concentration, which in turn determines the global average surface temperature. The 
carbon cycle dynamics assumed here are simple, and follow the approximations supposed in 
DICE (Nordhaus, 1994). Carbon emissions are linked to the atmospheric carbon-dioxide 
concentration, Atmt, which in turn determines the global average surface temperature, Tempt, 
using a “1-box representation”: 

Atmt+1 = Atm0 + (1–δM)(Atmt – Atm0)+ (1– δE)(Et+Ē), (14) 

Temp t+1 = (1–δT)Tempt + 2 1

0

Atmlog
Atm

t T+ 

 

 δT, (15) 
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where δM is the atmospheric CO2 depreciation rate, 1–δE the retention rate, Ē are emissions not 
linked to energy production, δT the temperature adjustment rate resulting from the atmospheric 
warmth capacity, and T is the long-term equilibrium temperature change associated with a 
doubling of the atmospheric CO2 concentration.  
 Population (POPt) grows logistically as follows: 

POP t+1 = POPt POP
POP1 1

POPLT
tg + −

  
, (16) 

 

                                                  

where gPOP is the initial population growth rate and POPLT is the long term population number. 
 Now we turn to two competing technologies. Goods produced by both technologies have their 
own characteristics but are substitutes; we use the same parameter σ as above in equation (1), now 
to denote the constant elasticity of substitution between technologies. For convenience, we 
assume inelastic demand on the aggregate level, ŷt, which grows at a rate γ,3 so that we can focus 
on the substitution effects between the two technologies. The technologies are denoted by g=1,2. 
We do not assume that energy produced by both technologies has constant elasticity of 
substitution, but we assume a linearly homogeneous and variable elasticity of substitution (VES) 
aggregation function. 
 In this context, the symbol σ denotes the elasticity of substitution between the two 
technologies and not the elasticity of demand as in the previous section. Though, we notice that if 
one technology has a minor share in total output, and if total demand for both technologies is 
constant, then σ approximately describes the elasticity of demand for that particular technology. 
Energy system models (e.g. Peck and Teisberg 1992) typically assume that carbon-free 
technologies are perfect substitutes for fossil fuel technologies, but have limited maximum supply 
and relatively high production costs that do not decrease over time. Such a set of assumptions 
does not facilitate an explanatory description of a continuous diffusion over time of carbon-free 
technologies, since under perfect substitution demand is zero for all but the cheapest technology, 
unless positive demand is explicitly included as a volume constraint. More generally, perfect 
substitution between different technologies cannot explain that relatively expensive new 
technologies can develop before they become fully competitive with mature technologies. In 
contrast, models with a neo-classical point of reference typically assume complementarity 
between energy technologies. In Stephan et al (1997) and Goulder and Schneider (1999), carbon-
free technologies and fossil fuel based technologies are relatively poor substitutes, that is, they 

 
3 More specifically, we let ŷ grow exogenously as follows: ŷt=POPt/POP1(1+gypc)t–1ŷ1. This means that energy 

demand per capita grows at gypc per period, while the total energy demand also accounts for the relative increase 

in population. 
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have substitution elasticity of unity, or less4. Under this assumption, carbon-free technologies will 
not reach a substantial market share, irrespective of future decreases in production costs. 
 In this paper, we specify an aggregator function that bridges the two views on substitutability.  
We assume that σ is constant along an expansion path, that is when both y1 and y2 increase by the 
same factor, but σ varies along an isoquant for constant ŷt. Specifically, the two technologies are 
considered moderate substitutes, σ≈1, when one technology is dominant and demand for the other 
technology is best described through niche markets. The two technologies are considered good 
substitutes, σ>1, when both technologies have substantial market share. Finally, as in the energy 
system literature, we assume that no energy source has an absolute comparative advantage in use, 
that is, we treat demand for both technologies symmetrically. We can thus write the elasticity of 
substitution as a function of the relative inputs of both technologies, σ(y1/y2). In the literature, 
various VES-aggregation functions have been specified, see Nadiri (1982, Section 3.1.2) for an 
overview. Most VES functions, however, assume that the elasticity of substitution is 
monotonically increasing in the share of one of the production factors, while we treat both 
technologies symmetrically, that is, we assume σ(y1/y2)=σ(y2/y1). Our aggregation function is 
based on the symmetric VES aggregator function proposed in Kadiyala (1972). We have specified 
the aggregator function  

( )1 2 σ /(σ 1)(σ 1) /σ (σ 1) /σ
1, 2, 1, 2, ˆ( )t t t ty y y y yϑ ϑ ϑ− −− −+ t=

                                                  

, (17) 

such that it satisfies the following features. The elasticity of substitution is unity if one technology 
is dominant, σ→1 for y1/y2→0, or y1 /y2→∞. Also, the elasticity of substitution exceeds unity, 
signifying more intense competition, when both technologies are comparable in size. Thus, when 
one technology is in its infancy with high production costs, its elasticity of demand is about minus 
unity, and it has an almost constant value share ϑ. Appendix 1 presents the condition when prices 
are equalized to marginal productivity. FIGURE 3 shows the output aggregation, as explained 
above. 

 
4 Note that the elasticity of substitution measures the inverse of the curvature of the production isoquant. It 

divides the percentage change in the factor ratio (that is the change in the angle of the input vector) by the 

percentage change in the prices (the change in the slope of the isoquant). See, for example, Varian, 1992. 
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FIGURE 3. Elasticity of substitution between fossil fuel and non-fossil energy sources, based on 
parameter values σ=5, ϑ=0.037. 

It is difficult to come up with aggregate energy prices for both technologies. Since, in 2000, the 
estimated ratio between the volumes for fossil fuel and non-fossil energy has been 24:1, an 
elasticity of substitution of σ=5 is approximately consistent with a price ratio of 1:2.8, reflecting 
the price ratio (2.5 $/GJ and 7.0 $/GJ) chosen for the current energy prices (see p(fossil fuel) and 
p(non-fossil energy) in TABLE 3). The assumed substitution possibilities of the carbon-free 
technology for the fossil fuel technology, reflected in the value of σ, is of crucial importance for 
the speed of market penetration. A high elasticity implies that market shares react strongly to even 
a modest decrease in future production costs, due to gained experience. A low elasticity, on the 
other hand, implies a relatively slow penetration rate.  

4. Calibration and methodology 

We also carried out a numerical simulation based on approximate real-world data. As a reference 
scenario, we constructed a business-as-usual path that follows common assumptions on future 
energy consumption and prices. The model runs for 45 time steps of 5 years each, representing the 
period 2000-2250, though the presentation of data and figures will be restricted to the first two 
centuries 2000-2200. On the basis of the database developed for the IIASA-WEC study 
(Nakicenovic et al., 1998), final commercial energy consumption in 2000 is estimated to be 
320 EJ.5 From the same database, the share of fossil fuel technologies in energy production (in 
2000) is estimated at 96 %. This corresponds to 307 EJ. The remaining share of 13 EJ is non-
fossil energy. Future energy consumption is assumed to increase by 1 per cent per capita (=gypc). 
In 2000, the population (POPt) is assumed to be 5.89 billion (POP1) and its growth rate 1.45% 

                                                   
5 This excludes non-commercial biomass use, as well as traditional carbon-free sources such as nuclear and 

hydropower. 
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(World Bank, 1999). The population is assumed to logistically reach 11.4 billion by the end of the 
simulation period (POPLT), as in the IIASA-WEC study (Nakicenovic et al, 1998).  

Since our model represents the two energy resources in an aggregate way, we have to make 
reasonable estimates for the average initial energy prices required. Because of the variability and 
volatility of these prices, this is not straightforward. In addition, the literature provides insufficient 
evidence on the elasticity of substitution between the two energy technologies, σ, to justify a 
certain choice. As our model serves mainly for analyzing the dynamics of the energy system, 
approximate estimates suffice. 

Prices for final energy derived from natural gas technologies vary in a range from 2 to 3 
$(1990)/GJ.6 Since coal, oil and natural gas are, grosso modo, competitive, a good reference price 
in our calculations for the average fossil fuel energy resource is 2.5 $/GJ, in the model-start-off 
year 2000.  

The two-technology model includes a non-fossil energy technology, competing with the fossil 
fuel technology as described in (17) and (41), which replaces the demand equation (1). A large 
spread exists in production costs for energy from wind, solar and biomass options. Prices for 
commercial final electricity from wind turbines varied in 1995 between 5 and 20 $(1990)/GJ, in 
the highest-cost and lowest-cost production cases, respectively.7 Whereas electricity production 
costs for photovoltaics are still significantly higher than that for wind energy, costs of electricity 
derived from biomass are comparable to that of wind energy.8 The average price of final energy 
by the non-fossil energy is taken to be 7.0 $/GJ, in the year 2000. This value is merely taken as an 
example from the range of current feasible wind electricity prices; it represents a realistic figure of 
the current cost of a particular non-carbon energy alternative, generically speaking. 
 We furthermore assume that both the fossil fuel and non-fossil energy have the same 
technology parameters, the value of which is taken from the one-technology model. Since we 
choose σ=5, the equilibrium converges to a non-fossil energy dominated balanced growth path. 
Parameters and first-period values for state variables have been chosen such that, in the 
benchmark scenario, also referred to at the Business as Usual (BAU) scenario, the share for the 
non-fossil energy increases from 4% in 2000 to 11% in 2100 and 98% in 2200 (FIGURE 5). 
Related to the non-fossil energy gain in market share, the non-fossil energy benefits from 

                                                   
6 See, for example, IEA/OECD 1999, p.41. 
7 See, for example, IEA/OECD 2000, p.54. In fig.3.3 in this publication, one sees that in 1995 (in the EU) wind 

energy production costs varied from about 0.02 to 0.08 ECU(1990)/kWh. Assuming an approximate equivalence 

between the ECU and $, as well as the conversion factor of 3.6 in going from GWh to TJ (that is, 0.0036 from 

kWh to GJ), one obtains the range quoted here. 
8 See, for example, IEA/OECD, 2000, p.21. 
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economies of scale more than the fossil fuel energy source and its price decreases over time, while 
the price for the fossil fuel energy technology slightly increases (FIGURE 6). 

5. Simulation results 

This section presents and discusses the results with the calibrated model. FIGURE 4 shows the level 
of emissions in the period 2000–2200 for three cases, namely BAU, a steady 20 $/tC tax without 
ITC and with ITC. FIGURE 5 shows how the share of renewables changes over time in the same 
three cases.  
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FIGURE 4. Emissions for benchmark BAU 
scenario, a 20 $/tC tax without technological 
adjustment, and a 20 $/tC tax with endogenous 
technological change 

FIGURE 5. Share for non-fossil energy for 
benchmark BAU scenario, a 20 $/tC tax 
without technological adjustment, and a 20 
$/tC tax with endogenous technological change 

We can derive the following conclusions from FIGURE 4 and FIGURE 5. Our model appears to 
reasonably represent the common BAU scenario as a benchmark. After 2140, emissions sharply 
drop because the energy system makes an endogenous transition towards the non-fossil energy 
technology. When we abstract from the impact of carbon taxes on technology, a carbon tax of 20 
$/tC advances the shift towards the non-fossil energy modestly by about 20 years, and thus 
reduces emissions modestly. However, when we include ITC in our calculations, the effect of a 
carbon tax is amplified. The transition is advanced by about ninety years, it takes off at around 
2030, and emissions drop substantially during the second half of the 21st century. The next figures 
present the cause for this advance in transition. FIGURE 6 plots the energy production costs for 
fossil fuels and renewables, while FIGURE 7 shows these costs for the case with a steady 20 $/tC 
tax and ITC. 
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FIGURE 6. Energy production costs for fossil 
fuels and non-fossil energy benchmark BAU 

scenario. 

FIGURE 7. Energy production costs for fossil 
fuels and non-fossil energy, 20 $/tC tax 

scenario with ITC. 

 
We can derive the following conclusions from FIGURE 6 and FIGURE 7.9 Under BAU (FIGURE 6), 
production costs for non-fossil energy steadily decrease, until, by 2150, they equal production 
costs of fossil fuels. From that point on, fossil fuels face decreasing market shares, the output 
levels for fossil fuels decreases, R&D effort and learning by doing decreases and the growth of 
innovations slows down. Technological development becomes insufficient to compensate for 
resource exhaustion and the increase in wages and fossil fuel prices increase. This is also the 
reason why production costs for fossil fuels increase much earlier in the 20 $/tC tax scenario 
(FIGURE 7), that is, immediately after non-fossil energy sources take over as the dominant energy 
source in 2060. The carbon tax stimulates the use of non-fossil energy, and this leads to an earlier 
decrease in production costs. Thus, ITC acts as a multiplier for a policy that aims at a 
transformation from carbon-based to carbon-free energy sources. 
 In the bottom up literature, this phenomenon is known as the learning curve. We will 
investigate whether our model can reproduce it. Thereupon, we plot the logarithmic production 
cost to the logarithmic installed capacity for fossil fuels in FIGURE 8 and renewables in FIGURE 9. 

 

                                                   
9 While it is not presented in the figures, the energy production costs under the TAX20_NOITC scenario match 

the BAU levels. 
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FIGURE 8. Simulated learning curve for fossil 
fuels, BAU scenario and 20 $/tC tax scenario 

with ITC. 

FIGURE 9. Simulated learning curve for non-
fossil energy, BAU scenario and 20 $/tC tax 

scenario with ITC. 

 
FIGURE 8 shows that the production costs for fossil fuels are initially almost constant, until the 
effort to extract fossil fuels increases substantially, and as a result the production costs go up 
steeply, and it is no longer economically attractive to exploit these resources at a large scale. 
FIGURE 9 shows that the production costs fall, when the output of renewable resources grows. In 
the steady 20 $/tC tax case, the costs drop even further, until the costs of labor become a limiting 
factor in the production cost.  
 We can draw the following conclusions from these two figures. We have calculated, ex post, 
installed capacity per period as that part of production that uses newly installed capital stock. On 
the horizontal axis, we find the log of the cumulative value for this variable z. On the vertical axis, 
we have the log of the production costs q. In models that describe learning by doing through 
learning curves (e.g. MESSAGE, Messner 1997; DEMETER 1, van der Zwaan et al. 2002, 
Gerlagh and van der Zwaan 2003), typical for bottom up models, a constant learning rate (lr) is 
assumed at which the cost of investments or the costs of production per output unit declines for 
each doubling of cumulative production. This corresponds to 

 qt = q0 xt
α–1, (18) 

where xt is the cumulative experience or capacity installed, and 0<α<1 and q0 are constants. The 
value of the exponent α–1 is the basis of the process of learning-by-doing and defines the speed of 
learning for the technology considered. The learning rate is given by 

121 −α−=lr . (19) 
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In our model, there is no exogenous learning rate, but we can reproduce the learning curves that 
come out of our simulations. For the non-fossil energy sources, under BAU, we find an average 
learning rate of about 16% (FIGURE 9). Thus, our model reasonably captures the main insight from 
the energy system learning by doing literature. 
 However, the mechanisms underlying the curve in our model differ from the energy system 
models in an important way. First, in our model, technology advances through R&D and learning 
by doing, but it has to offset increasing wages for the non-fossil energy source, and increasing 
resource scarcity for the fossil fuels as well. Thus, production costs only decrease when 
technological advances are sufficient to offset the two forces that tend to increase prices. For 
fossil fuels, as becomes clear from FIGURE 6 and FIGURE 8, initially technological progress is just 
sufficient to compensate increasing wages and increasing scarcity, but after a time, prices 
increase, even though the stock of technology keeps growing. 
 Second, in our model, while technological progress through learning by doing is based on 
past cumulative experience, technological progress through R&D is based on expected revenues 
from innovations. Thus, an anticipated increase in the market share for non-fossil energy sources 
increases current R&D effort and decreases production costs, before the rise in non-fossil energy 
materializes. This explains why in FIGURE 9 the learning curve for the 20 $/tC scenario lies below 
and bends off compared to the BAU learning curve. 
 Finally, we turn to the question of the introduction whether transient carbon taxes can have 
permanent effects on emissions when they direct technological change. FIGURE 10 and FIGURE 11 
show the effect of a transient tax of 20 $/tC for 20 years (2005–2025) (TAX20A), a transient tax 
of 20 $/tC for 40 years (2005–2045) (TAX20B), a permanent tax over the whole period (TAX20), 
and compare this to the BAU. 
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FIGURE 10. Emissions for benchmark BAU 
scenario, a permanent 20 $/tC tax, and two 

transient 20 $/tC tax scenarios with 
endogenous technological change 

FIGURE 11. Share for non-fossil energy for 
benchmark BAU scenario, a permanent 20 $/tC 

tax, and two transient 20 $/tC tax scenarios 
with endogenous technological change 
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From FIGURE 10 and FIGURE 11 follows that a transient carbon tax of 20 $/tC for 20 years (2005-
2025) advances the transition by about 55 years (FIGURE 11) and decreases cumulative emissions 
over 2000–2100 by 11%. A transient tax of about 40 years advances the transition by about 110 
years and reduces cumulative emissions by 44%, while a permanent tax advances the transition by 
about 130 years and reduces cumulative emissions by 61%. From this extreme sensitivity of the 
model with ITC to taxes, also indicates that the BAU is surrounded with uncertainty on the date 
when renewables overtake fossil fuels. Small perturbations in say 2000-2050, can have a large and 
lasting impact, possibly changing the BAU.  
 From FIGURE 10 and FIGURE 11 we can also derive the ITC impact factor, to find the 
significance of ITC for the responsiveness of cumulative emissions to constant carbon dioxide 
taxes. We measure this response as the reduction in cumulative carbon dioxide emissions over the 
period 2000-2100 following the steady carbon tax of 20 $/tC. We compare the reduction in 
cumulative emissions without ITC, and with ITC. This leads to an ITC impact factor of 2.4, which 
is even higher than the factor 2, which was found by Carraro and Galeotti (1997). They, however, 
only included learning by research and left out learning by doing. Our model clearly indicates that 
it is too pessimistic to assume technology as given in the long run. 

6. Discussion 

In this paper we have presented a model that is neo-classical in nature, but we have tried to get it 
in line with the results known from the system-engineering models, notably (i) the learning curve, 
and (ii) the S-curved transition towards new (renewable) technologies.  
 As for (i), we bridge a gap between the neo-classical economic literature that focuses on 
incentives for R&D as the driving force for productivity, and the energy systems models that more 
or less mechanically describe productivity as dependent on cumulative historic experience. We 
have presented results from applied numerical neo-classical model for the energy sector that can 
reproduce the learning curve typical for system engineering models. However, two comments are 
in order. First, production costs decrease because of both learning by doing and research. 
Research is not only affected by past output and knowledge levels, but also by anticipated output 
levels. Thus, an anticipated increase in the market shares for renewables will stimulate research 
that increases the productivity. Thus, an anticipated future increase in output for renewables will 
enhance the decrease of current production costs: the learning curve becomes steeper in a policy 
scenario that favors the use of renewables. Second, production costs tend to increase because of 
increasing wages. Production costs can only decrease insofar as the increase in productivity 
exceeds the productivity in wages. When, in the long term, fossil fuels are slowly replaced by 
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renewables, research levels will drop for fossil fuels, and production costs will increase due to 
increasing wages. The fossil fuels will follow an inverted learning curve when fading out. 
 As for (ii), from energy system analysis, it is known that the process from invention, to 
demonstration projects, to significant market shares typically takes between five and seven 
decades (Nakicenovic et al. 1998). Energy system models incorporate these insights by explicitly 
setting constraints on the increase in market shares for new technologies. Our model does not 
have such market penetration constraints, but still it generates the same S-curve for the market 
share of renewables. Also, when climate change policy stimulates the transition towards non-
carbon emitting energy sources, the transition is enhanced, but it is also realistic. See the 
discussion by Caldeira et al. (2003), O’Neill et al. (2003), Swart et al. (2003), Hoffert et al. 
(2003). 
 DEMETER 2E on the one hand simplifies DEMETER 1 (van der Zwaan et al. 2002, Gerlagh 
and van der Zwaan 2003) by only considering the production of energy, but on the other hand it 
extends DEMETER 1 by including learning by research and distinguishing between private and 
public innovations. In the future, we intend to extend DEMETER 2E with the production of non-
energy consumer goods as well. 
 Besides the methodological insights, we have also presented some policy analyses, to verify 
whether as a weak impulse can have a long-term impact on emission levels and whether a weak 
impulse may change the learning curve too. 
 We have shown numerically that endogenous technological change has a very large impact on 
the responsiveness of emissions to carbon dioxide taxes. As measure of this response, we take the 
reduction in cumulative carbon dioxide emissions over the period 2000-2100 following a constant 
carbon tax of 20 $/tC. Endogenous technological change enhances cumulative emissions 
reductions by factor 2.4. Without endogenous technological change, one has a much more 
pessimistic perspective on the possibilities of emission reductions than with ITC. Moreover, with 
ITC, even a temporary carbon tax has a lasting effect on CO2 emission levels.  
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Appendix 1. First order conditions for firms’ profit maximization 

The energy producers 
In this appendix, we derive all first order conditions for the representative energy producer.  
 The Lagrangean for profit maximization (8) subject to (3), (4), and (9) reads: 

L = Σt βt (qy–θai n ny–wl– i  + λ(ςz– µaηabηbkα l ( 1 –α )–y) 

– ψk + βψ+1( i+(1–δk)k)  + κz – βκ+1(z + y)) (20) 

Where βtλt>0 is the dual variable for (3), βt+1ψt+1>0 is the dual variable for (9), and βt+1κt+1>0 is 
the reversed dual variable for (4). For convenience, we omitted time subscripts for the variables in 
the Lagrangean, and used shorthand notation ψ+1 to denote the forward time lap ψt+1. The first 
order conditions for y, a, l, i, k, and z are, respectively, 

q = θai n n  + λ  + βκ+1 ,   (21) 
θy  = ηaλy/a ,  (22) 
w = (1–α)λ  y / l  ,   (23) 
1 = β  ψ+1 ,  (24) 
ψ  = β(1–δ)ψ+ 1  + αλy /k , (25) 
κ  = βκ+1 + µλy /z . (26) 

We can substitute equations (24) in (25) to derive a capital cost equation that shows capital costs 
to consist of interest and depreciation: 

δk + 1/β  – 1  = αλy /k  . (27) 

The price of the output good, q, consists of three parts (21), the license fee θai n n , the immediate 
production costs λ, and the resource scarcity rent βκt+1. From (21) and (22), we see that innovation 
costs make a constant mark up ηa on top of the immediate production costs net of the license fee, 
λ, 

θa  = ηaλ . (28) 

which enables us to give the price of innovations θ as: 

θ  = ηa  ξ  zµ  a– 1 –ηa b–ηb . (29) 

Substitution of (28) in (21) gives us output prices q as 

qt = (1+ηa ainn/a)λ t + βκt+1. (30) 
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where λt is the marginal production costs per unit of output, 

λ = min {(δk+1/β–1)k+wl  | 1≤ς  z– µaηabηbkα l1 –α  } = ξ t z t
µ  a t

–ηa  bt
–ηb  ,  (31) 

with ξ the price of the factor composite (kj,t)α( l j,t)1 –α ,  dependent on capital costs, δk+1/β–1, and 
wages, wt 

ξ  = ς– 1α–α (1–α) –(1–α) (δk+1/β–1)α w1–α, (32) 

which is exogenous to the firm. The term βκt+1 describes the resource rent for the future increase 
in resource exploitation efforts due to present exploitation levels. Equations (30) and (31) display 
that output prices are proportional to factor costs, as expressed in ξ, inversely proportional to the 
technological productivity, aηa  and bηb , that there is a mark up ηaainn/a for the costs of technology 

and for the resource rent. 
 For the renewable energy resource sector, we assume that there is no exhaustion and we 
assume µ=0; this does not change the first order conditions. 
 
Innovators 
Let φi n n

t   denote the asset price of an innovation, that is, the value of an innovation to its owner.  
In equilibrium, this value, one period ahead, βφ i n n

+ 1 ,  is equal to the production costs per unit of 
innovation, ∆rh /∆ah ,  given by (10), 

βφ i n n
+ 1  = ζ– 1  r1 –π  aπ– 1 . (33) 

Hence, equilibrium on the market for innovations requires that the costs of developing a new 
technology, that is, the costs of an increase ∆ah, equals the revenues the innovator can obtain by 
selling the license fees.  
We obtain the overall research effort r, 

r  = (ζβφ i n n
+ 1)1 / ( 1 –π )  a . (34) 

The revenues from an innovation are equal to the net present value of future license fees: 

φi n n
t   = , (35) ( )(β(1 δ )) θs t

inn s s
t s

y
∞

−

=

−∑

In terms of a recursive equation, we write 

φi n n
t   = θ ty t + (1–δinn)βφi n n

t +1. (36) 
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Private and social returns on research do not match. The social returns of an innovation held by 
the innovator are given by 

φs o c
t   = θ ty t + (1–δinn)βφs o c

t +1 + δinnβφp u b
t +1 (37) 

where the first two terms on the right-hand-side are the same as for the private returns, but the 
third term reflects the fact that those innovations that leak from the private sector to the public 
domain also contribute to the social value of the privately held innovations. In turn, the social 
value of knowledge in the public domain, in terms of a recursive equation, is given by 

φp u b
t = θ ty t + (1–δpub)βφp u b

t+1. (38) 

Given these three values for innovations, we can calculate the social rate of return on research in 
period t (SRRt). For the individual firm, the private value of an innovation is equal to the 
production costs per unit of innovation, βφ i n n

+ 1=drh /dah ,  as described in (33). Public returns, 
however, fall short of private returns because of the extraction of innovations. The extraction 
factor is given by the ratio between marginal productivity of research, ∆ai n n /∆r , as described by 
(11), and the private productivity of research, (∆ai n n

h /∆rh) ,  given by (33). For this factor, we 
find  

l im∆↓0 (∆ai n n /∆r)(  ∆rh /∆ai n n
h)  = π . (39) 

At the same time, public returns exceed private returns because of the spill-over from privately 
held knowledge to publicly available knowledge. First, the social value of privately held 
innovations exceeds the private value, φs o c

t+1/ φi n n
t+1>1, and second, research leads to a direct spin 

of on public knowledge, χφp u b
t+1/ φi n n

t+1. The SSR is now given by 

SRRt = π(φs o c
t+1+χφp u b

t+1)/ φi n n
t+1. (40) 

When the SRR exceeds unity, SRR>1, the social returns on research exceed the costs, and policies 
are warranted that stimulate research above its equilibrium level. Typically, from empirical 
studies, the SRR is found to be in the order of four, SRR≈4. 
The dynamic two-technology model consists of equations (2), (3), (4), (6), (7), (9), (11), (12), 
(21), (23), (24), (26), (27), (28), (32), (34), (36), (37), (38), (40), both for fossil fuels and non-
fossil energy; equations (17) and (41) are used for aggregation. The impact of energy production 
on the global carbon cycle is calculated ex post via equations: (13), (14) and (15). 

Parameters have been chosen such that the balanced growth solution corresponds to the data; 
see TABLE 1–TABLE 3 for all parameter and variable values. 
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Energy aggregation 
From equalization of prices and marginal productivity in (17), p1/p2 = y1/y2, we have 

( ) ( ) ( )( ) ( ) ( )( )σ 1 /σ σ 1 /σ σ 1 /σ σ 1 /σ
2 2 1 1 1 2 1 1 1 2 2 21 y p y y p y y p y y p yϑ ϑ− − −− − = − − , (41) 

Appendix 2. Model parameters and variable values in calibration procedure 

TABLE 1. Calibration parameters and variable values in first period (2000-2004) for fossil fuels 
Parameters per period per year Endogenous variables Per period Per year 
α 0.3  y [ZJ] 1.536* 0.307 
β 0.784 0.952 p [$/GJ] 2.500*  
δk  0.35 0.07 a 10.208  
δinn 0.25 0.05 ainn 1.000*  
δb 0.1 0.02 apub 9.208  
δpub 0.1 0.02 b  7.731  
χ 4.530*  z 15.566  
µ 0.027*  q 2.500  
ηa 0.321*  λ 2.401  
ηb 0.260  l 2.582 0.516 
π 0.5  i 0.793 0.159 
σ 0.4  k 1.767  
ς  0.200*  ξ 7.994  
ζ 0.394*  r [trillion $] 0.0768* 0.0154 
   κ 0.030  
Exogenous. Variables ψ 1.276  
w 1  ϕinn 0.281  
ŷ  2.216* 0.443 ϕpub 0.393  
   ϕsoc 0.468  
   θ 0.075  
   SRR 4*  
Exogenous variables growth rates Variables growth rates   
gŷ =  γ 0.0987* 0.019 gp 0* 0 
gw  0.0773 0.015 gϕ   0 0 
   gy   0.0987* 0.019 
   ga  0.0987 0.019 
   gl 0.0199 0.004 

* Empirical data for y and p, a normalization for a=1, research expenditures that make 2 per cent 
of total value of output, and a social rate of return on research of SRR=4, and growth rates gp=0, 
gy=0.0987 are used to calculate the parameters χ, ηa, ς, ζ, µ, variable ŷ, and growth rate γ; 
parameter β=1.05–years

.  
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TABLE 2. Calibration parameters and variable values in first period (2000-2004) for non-fossil 
energy 
Parameters Per period per year Endogenous variables Per period Per year 
α 0.3  y [ZJ] 0.064* 0.0128 
β 0.784 0.952 p [$/GJ] 7.000*  
δk  0.35 0.07 a 1.100  
δinn 0.25 0.05 ainn 0.112  
δb 0.1 0.02 apub 0.988  
δpub 0.1 0.02 b 0.273  
χ 4.530  z 0.476  
µ 0  q 7.000  
ηa 0.321  λ 6.779  
ηb 0.260  l 0.304  
π 0.5  i 0.097  
σ 2  k 0.208  
ς  0.321*  ξ 4.986  
ζ 0.394  r [trillion $] 0.010  
   κ 0.000  
Exogenous. Variables ψ 1.276  
w 1  ϕinn 0.307  
ŷ  3.136* 0.627 ϕpub  0.429  
   ϕsoc  0.511  
   θ 1.978  
   SRR 4  
Exogenous variables growth rates Variables growth rates   
gŷ = γ  0.0987 0.019 gp –0.0159 –0.0032 
gw  0.0773 0.015 gϕ   0 0 
   gy   0.1345 0.0256 
   ga 0.1164 0.0223 
   gl 0.0363 0.0072 

* Empirical data for y and p, are used to calculate the parameter ς, and variable ŷ, no resource 
exhaustion for renewables µ=0, elasticity adjusted for renewable energy σ=2; β=1.05–years. 
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TABLE 3. Two-technology model additional parameter, exogenous variable (value at first period,
2000-2004), and state variable values at beginning of first period (2000) 
Endogenous variables per period per year Climate parameters per period per year 
y (fossil fuels) 1.536 0.3072 ε1 0.0205  
y (non-fossil energy) 0.064 0.0128 Atm0 0.590  
p (fossil fuels) 2.500  δM 0.0408 0.0083 
p (non-fossil energy) 7.000  δE 0.36  
   Ē 0.00665 0.00133 
Exogenous variable   δT 0.096 0.02 
ŷ 1.491  T  3.0  
   gypc 0.051 0.01 
Integration parameters   gPOP 0.149 0.0282 
σ 5.0  POP1 5.89  
ϑ 0.037  POPLT 11.36  
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