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1 Introduction

We outline a simple dynamic model of strategic investment and market
share, adapted from the entry deterrence model outlined in [3], which was,
in turn, based on the work of Waagstein [5]. Consider a duopoly in which
Players I and II have initial market shares m0 and 1 − m0 respectively.
Suppose Player I enjoys first-mover advantage and has decided to try to
secure an increase in his market share from m0 to m1, where m1 > m0, at
time T1 and thereafter by creating competitive advantage through suitable
strategic investments over the period from 0 to T1. Player II retaliates by
investing in the period T1 to T2 to increase her market share from 1 −m1

to 1 −m2, where m1 > m2, in the period after T2. Let ω > T2 denote the
planning horizon. This is intended to model a service industry where players
seek to maintain or improve their market share by regular enhancements to
service quality or attractiveness.

The purpose of the model is the provision to Player I of quantitative
support for managerial decision taking about the level and effectiveness of
such investments in terms of their impact on present values of anticipated
future cash flows.

We include the possibility that m0 = 0 or m0 = 1; in these situations we
are studying entry deterrence. If m0 = 1 and Player I cannot increase his
market share, then we interpret initial investment by Player I as creating
excess capacity. Our results indicate how the possibility of entry varies
over time as the value of the market changes and the effect of the potential
entrant having multivariable investment opportunities.
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2 Player payoff functions

Let M(t) be the net present value at time zero of the surplus cash flow from
the market in the period (t, ω) after costs, other than those of the strategic
investment, have been met. We make no assumptions about the growth
of the market or its continuing to be profitable indefinitely into the future
[2]. M(t) plays two roles: first, it determines the total payoff available to
the players, in that we assume the players’ incentive for seeking increased
market share is to obtain a larger share of this surplus. Second, it is the
total sum available for the players to commit to strategic investment to gain
such an increase.

We assume that each of the players has identified a number of aspects
of their business where they believe strategic investment will increase mar-
ket share. We do not need to assume that these investments are made
simultaneously, or in any predetermined order, nor that their effects are in-
dependent (though see the footnote on page 2). Let x = (x1, x2, . . . , xm) be
a column vector denoting Player I’s strategic investment in areas 1, 2, . . . ,m
and X = x1 + x2 + · · ·+ xn the total investment in the period 0 to T1 and
y = (y1, y2, . . . , yn) &c. denote Player II’s strategic investment in the period
T1 to T2. In practice the investments would almost certainly be cash flows
over time; as with the value of the market, we measure them by their net
present value at time 0.

These vectors of investments are non-negative

x ≥ 0, y ≥ 0

in the sense that all their components are non-negative. We will write

z > 0

for a vector z to mean that all components of z are non-negative with at
least one strictly positive. We also give ≤ and < the obvious analogous
meanings when comparing vectors.

The share m1 of the market after time T1 which Player I might hope to
gain is clearly a function of x and might also depend on T1

m1 = m1(x, T1)

where m1(0, ·) = m0. We will usually supress the dependence on T1.
Let us assume that m1 is increasing and concave along rays in the positive

orthant — that is, (d/dα)m1(αx) > 0 and (d/dα)2m1(αx) < 0 for α > 0
and x ≥ 0 — which corresponds to a law of dimishing returns on the
investment1 . Similarly, the share 1−m2 of the market after time T2 which

1In mathematical terms these are equivalent to conditions on directional derivatives of
m1 which can be deduced from weaker conditions on the behaviour of m1. The simple
conditions used here imply, for example, that the areas of investment available to the
players are complements rather than substitutes; this could be ameliorated by more subtle
mathematical assumptions.
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Player II might hope to gain is clearly a function of x and y

m2 = m2(x,y)

where m2(x,0) = m1(x). It could be that m2 also depends on T1 and T2

but we will normally supress this.
Let us assume that m2 is decreasing and convex along rays in the pos-

itive orthant of its second argument — that is, (d/dα)m2(x, αy) < 0 and
(d/dα)2(m2(x, αy) > 0 for α > 0, x ≥ 0 and y ≥ 0 — which again cor-
responds to a law of diminishing returns. Let us also assume that m2 is
increasing and concave along rays in the positive orthant of its first argu-
ment — that is, (d/dα)m2(αx,y) > 0 and (d/dα)2m2(αx,y) < 0 for α > 0,
x ≥ 0 and y ≥ 0.

The value of the market to Player I if he makes a total strategic invest-
ment X with profile x and Player II invests Y with profile y is

π1(x,y) = m0[M(0)−M(T1)]−X︸ ︷︷ ︸
Proceeds up to T1

+m1(x)[M(T1)−M(T2)]︸ ︷︷ ︸
Proceeds T1 to T2

+ m2(x,y)M(T2)︸ ︷︷ ︸
Proceeds after T2

(1)
Similarly, the value of the market to Player II if she makes a total strategic
investment Y with profile y and Player I invests X with profile x is

π2(x,y) = [1−m0][M(0)−M(T1)]︸ ︷︷ ︸
Proceeds up to T1

+ [1−m1(x)][M(T1)−M(T2)]− Y︸ ︷︷ ︸
Proceeds T1 to T2

+ [1−m2(x,y)]M(T2)︸ ︷︷ ︸
Proceeds after T2

(2)

3 Feasibility conditions

Given that the improvement in cash flow to Player I resulting from the
changes in market share is [m1 −m0][M(T1)−M(T2)] + [m2 −m0]M(T2),
his strategic investment is realistic in business terms only if

X ≤ [m1 −m0][M(T1)−M(T2)] + [m2 −m0]M(T2) (3)

Player II is the follower so she should only attribute the improvement in her
cash flow after time T1, namely [m1 − m2]M(T2), to the investment y so
this is realistic in business terms only if

Y ≤ [m1 −m2]M(T2) (4)

Notice that if these feasibility conditions are satisfied then the levels of
investment are also smaller than the surpluses available to the players.

3



4 Static optimality conditions

We assume that strategic investment has no influence on the size of the mar-
ket, but only the split between the players. Then we can easily differentiate
π1 and π2 to give

∂π1

∂xi
=

∂m1

∂xi
[M(T1)−M(T2)] +

∂m2

∂xi
M(T2)− 1 (5)

for i = 1, . . . ,m

∂π2

∂yj
= −∂m2

∂yj
M(T2)− 1 (6)

for j = 1, . . . , n

so, at a Nash equilibrium, the values of x and y satisfy

∂m1

∂xi
[M(T1)−M(T2)] +

∂m2

∂xi
M(T2) = 1 (7)

for i = 1, . . . ,m

∂m2

∂yj
M(T2) = −1 (8)

for j = 1, . . . , n

The second equation here is a disguised form of the relationship between
the optimal investment decision and the interest rate in Fisher’s theory of
interest [1]. As in his theory we relate improvements in market share to
investment rather than capital.

4.1 Existence of optimal investment levels

Consider first Player II’s strategic investment decision. Assume M is dis-
counted, so that 1/M(T ) →∞ as T → ω; then either there exist y and T2

satisfying equation (8) or for some j with 1 ≤ j ≤ m

∂m2

∂yj
> − 1

M(T2)
for all yj > 0 and T2 > T1 (9)

In this case ∂π2/∂yj < 0 so there is no worthwhile level of investment in area
j. The first-mover advantage in this area is so great that Player II cannot
profitably respond to the investment made by Player I and Player II should
give no further consideration to investing in this area herself; in notational
terms, j should be removed from the set {1, . . . , n} and n reduced to n− 1.

We can also deduce the strategy which Player I should adopt in order to
induce Player II not to invest. The ray convexity conditions on m2 imply
that it is a convex function of each of y1, . . . , yn; moreover M is a decreasing
function so inequality (9) is satisfied for every j = 1, . . . , n if and only if

∂m2(x,y)
∂yj

∣∣∣∣∣
y=0

> − 1
M(T1)

for every j = 1, . . . , n (10)
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If Player I’s purpose is to prevent Player II’s investment then he should
choose x so that these inequalities are satisfied. Of course, such an x is
unlikely to be optimal and corresponds to the familiar strategy of a monop-
olist investing in excess capacity in order to deter entry. Furthermore, if
Player I can choose T1 then he can choose it so that (10) is satisfied for a
predetermined value of x since M(T2) → 0 as T2 → ω and T2 > T1.

Regarding Player I’s optimal investment decision, let us assume for the
moment that Player II does not retaliate. In this case m2 = m1 and so

π1(x) = m0[M(0)−M(T1)]−X︸ ︷︷ ︸
Proceeds up to T1

+ m1(x)M(T1)︸ ︷︷ ︸
Proceeds after T1

so the optimality conditions become

∂π1

∂xi
=

∂m1

∂xi
M(T1)− 1 = 0 for i = 1, . . . ,m (11)

Now, either there exist x and T1 satisfying equation (11) or for some i with
1 ≤ i ≤ m

∂m1

∂xi
<

1
M(T1)

for all x > 0 and T1 > 0 (12)

In this case ∂π1/∂xi < 0 so there is no worthwhile level of investment in area
i. Competition in the market is so intense that strategic investment based
on exploiting first-mover advantage in this area is unprofitable and Player I
should give no further consideration to investing in this area; in notational
terms, i should be removed from the set {1, . . . ,m} and m reduced to m−1.
We shall show later that Player II cannot make a credible threat to cause
an optimal investment made by Player I to become unprofitable.

Notice that the right-hand side of (12) is an increasing function of T1. For
investment by Player I to be worthwhile over the period 0 to T ∗

1 > T1 but not
over the period 0 to T1 it is necessary that m1 be an increasing function of
T1. This is not wholly unrealistic as Player I may be able to make the same
levels of investment more effective given a longer period to fully marshal
them. On the other hand, this model suggests that market conditions alone
cannot cause strategic investment in market share to become viable over the
long term if it is not already viable in a shorter term.

5 Some deductions

To progress further, let us assume that the areas under consideration for
investment have been reduced to those in which competition is not so intense
that there exist x, T1, y and T2 satisfying (7) and (8); we show that (3) and
(4) are also satisfied.
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To show that (4) holds, we note that, by the Mean Value Theorem
applied to the function

f(λ) = m2(x, λy)M(T2)

for any y > 0, there exists α ∈ (0, 1) such that

y> ∂m2

∂y

∣∣∣∣
(x,αy)

M(T2)

= [m2(x,y)−m2(x,0)]M(T2)
= [m2(x,y)−m1(x)]M(T2)

By the assumed ray convexity of the function m2 and equation (8)

y> ∂m2

∂y

∣∣∣∣
(x,αy)

M(T2) < y> ∂m2

∂y

∣∣∣∣
(x,y)

M(T2)

= y>(−1,−1, . . . ,−1)>

= −Y

and so
Y < (m1 −m2)M(T2)

— that is, the business feasibility condition (4) is satisfied. Indeed, not all
the available surplus is invested at the optimal investment level.

To show that (3) holds, we note that, by the Mean Value Theorem
applied to the function

f(λ) = m1(λx) [M(T1)−M(T2)] + m2(λx,y)M(T2)

for any y > 0, there exists α ∈ (0, 1) such that

x> ∂m1

∂x

∣∣∣∣
αx

[M(T1)−M(T2)] + x> ∂m2

∂x

∣∣∣∣
(αx,y)

M(T2)

= m1(x) [M(T1)−M(T2)]−m1(0) [M(T1)−M(T2)] +
[m2(x,y)−m2(0,y)]M(T2)

= [m1(x)−m0] [M(T1)−M(T2)] +
[m2(x,y)−m0]M(T2) +
[m0 −m2(0,y)]M(T2)

By the assumed ray concavity of the functions m1 and m2

x> ∂m1

∂x

∣∣∣∣
(αx,y)

[M(T1)−M(T2)] > x> ∂m1

∂x

∣∣∣∣
(x,y)

[M(T1)−M(T2)] (13)

and
x> ∂m2

∂x

∣∣∣∣
(αx,y)

M(T2) > x> ∂m2

∂x

∣∣∣∣
(x,y)

M(T2) (14)
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According to equation (7), the sum of the right-hand sides of (13) and (14)
is X and so

X < [m1−m0][M(T1)−M(T2)]+[m2−m0]M(T2)+[m0 −m2(0,y)]M(T2)

The term m0 −m2(0,y) = m2(0,0)−m2(0,y) is negative by the ray con-
vexity of m2 and so the business feasibility condition (3) is satisfied. Indeed,
not all the available surplus is invested at the optimal investment level.

This completes the proof that (3) holds.

6 Correspondence to the Chain-Store Game

In reality, the interactions modelled above take place repeatedly, in different
geographical locations for example, so there might be the opportunity for
one of the players to develop a reputation for, say, aggressive investment
behaviour in an attempt to dissuade other players from making certain re-
sponses. However, the argument above shows that the single interaction is
strategically equivalent to the one-shot Chain Store Game, whether or not
Player I has some market share at the outset. This generalises the analysis
in [4], showing that a rational player cannot create such a reputation if the
number of interactions is bounded.

The basic logic of a single interaction is shown in Figure 6. Here πTh
1

and πTh
2 are the payoffs to the players if Player II adopts a “threatening”

strategy so as to make πTh
1 < 0, in the hope of deterring Player I from

investing. However, he knows that πTh
2 < πOp

2 — the payoff to Player II
when she makes her optimal investment decision — so will not find the
threat credible. Hence rational play follows the double lines in Figure 6.

7 Futher work

The single episode model has been tested on data which aims to capture
key features of realistic scenarios. The results indicate some of the issues
which decision makers in these environments need to address. Details will
be included in the full paper.
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Figure 1: Payoffs in Correspondence to the Chain-Store Game
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