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Introduction 
The goal of this work is to find a practical method of market condition 

analysis. Numerous researches are subjugated to this topical subject1,2,3, although it 
would be premature to speak about their classical condition in this course. 

A methodological problem faced by the market analysis is well-known and 
comes to the global equilibrium problem. The market is a peculiar mathematical 
modeling object in terms of the fact that its equilibrium conditions can be multiple. 
For example, a number of equilibrium conditions for a standard Arrow—Debreu 
model4 comes to be infinite, and not only is it infinite but also forming a continual 
set5. Practically, it means that a condition of price development process about a 
local equilibrium poorly depends on the prehistory of such a process. Therefore, an 
import of the forecasting methodology from physical system analysis, where 
dependence of the current condition of the process on its prehistory is significant, 
to market condition analysis, occurs to be useless. Particularly, considering a 
character of differences between the business cycle and the cycle of lunisolar 
eclipses, the classical methods, excellent for analyzing the celestial mechanics 
cycles, do not allow us to achieve even imperfect results in the market analysis. 

This research leans upon the only assumption that a mechanism to be 
designated as a strongly dissipative system produces the market condition data. 

Finally, we will get all results of our research in the form of a regression on 
the assumption, and all our solutions will result from the analysis of the market 
condition data. We will use Dow-Jones Industrial Average (DJIA) time series, 
which are accessible data of the market condition and can be easily found on the 
Internet. 

 
Business Cycle Model 

Let’s consider square self-mapping f of an interval ]1,0[∈x  
(1)    , )1()( 2 xxbxaxxf −=−= µ
presented on the following graph (Fig. 1) for 8,0=µ . 
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Fig. 1. Graph  of f(x) mapping for x∈ [0, 1] interval, where µ=0,8. 
 
It is easy to see on Fig. 1 that the points with abscissas  and  (the fixed 

points of f mapping), where µ is a set point, are unstable and that a pair of values 
 and , with any entry condition  from an open interval [0, 1], serves as an 

asymptotic limit of iterations, with which the images of the initial point will 
alternately coincide. The two indicated points form an attractor with a period of 2, 
which is also named a 2-cycle. The f(x) maps the  point into the  point, and 
vice versa. 

*
1x *

2x

*
2x

*
1x *

2x 0x

*
1x

Since 
(2)     and ))(()( *

2
*
1

*
2 xffxfx ==

(2′)    , ))(()( *
1

*
2

*
1 xffxfx ==

then these two points, which are not the fixed points of the f mapping (as it was 
stressed before), are the fixed points of the mapping 
(3)    , )())(()( 2 xfxffxg ==

presented on the graph for the same value of µ (Fig. 2). 
A transition from the situation when an attractor with a period of 2 appears 

instead of that with a period of 1 (i. e. when a period doubles) takes place when the 
value of µ increases and the only value of 01 =µ . At that moment, the fixed stable 
point of f mapping becomes unstable and the two fixed points of f 2 mapping 
appear correspondingly. This mapping has four fixed points, two of which (  and 

) are stable. The two squares outlining the fixed points (Fig. 2) are to stress the 
presence of the respective cycles around the both. 
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Fig. 2. Graph of g(x)=f 2(x) mapping for x∈ [0, 1] interval, where µ=0,8. 
 
It is well known from the chaos theory6 what happens when we further 

increase the µ value. The f и f 2 curves are being gradually deformed the way that, 
as a result of it, the fixed points of the f 2 mapping also become unstable. We can 
locally see a parabolic curve with a fixed stable point inside each square on Fig. 2, 
i. e. the cycle of speculations repeats the same logic: the fixed point of g mapping 
is substituted with the two fixed points of the  function. The 
same logic can also be applied to the two fixed points of g mapping with  and  
abscissas, which simultaneously become unstable when 
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And so forth: we receive an endless cascade of bifurcations, and each one of 
them is accompanied by the period doubling related to the sub-harmonic 
instability. However, according to the Ruelle—Takens—Newhouse scenario7, 
quite a few number of bifurcations could be enough for an emergence of a chaotic 
behavior of the system. According to this theory, one could expect that the power 
spectrum of a dynamic system described by the mapping of this kind would evolve 
into µ functions as follows: first the system power spectrum will contain one 
frequency ( 1ω ), then two ones ( 1ω  and 2ω ), and sometimes three ones ( 1ω , 2ω , 3ω ). 
As soon as the third frequency emerges in the spectrum, the noise component 
appears, which is characteristic for the chaos. In a practical sense, considering a 
system working ‘at chaos edge,’ like the market, let’s assume, for our purposes, 
that only two frequencies will be enough in the power spectrum for the process 
model. 
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Selection of time series modes 
with the use of a ‘reaction-diffusion’ system 

 
A structure of recognizing systems based on the use of dissipative dynamics 

is known8. Their essence is to relax to a condition described by a specific function. 
This function, being essentially analogous to power, makes a ‘potential landscape’ 
in the system state space. In a majority of practical cases, that ‘landscape’ has a 
complex form with numerous minima divided by potential barriers. Let’s consider 
that our recognizing system is organized the way that its different stable 
conditions, corresponding to the patterns, are the minima of the power function, 
provided that the mode, being a certain dynamic variable, corresponds to each 
pattern the system is to recognize. The process of recognition will imply that the 
system reaches the minimum corresponding to the nearest pattern to the one being 
analyzed. 

The analogue recognition of the patterns is nowise the only method of this 
sort. The system dynamics may have an evolving character as well, i. e. it may 
base on the mode competition. It is only the mode corresponding to the nearest 
pattern that can ‘survive’ in the course of the system evolvement. This is an 
analogue to Darwin selection. Usually patterns are entered into the system 
parameters. The pattern being analyzed can be presented either through forming a 
corresponding entry condition or through modifying the system parameters. In the 
first case, the analogue solving of a recognition problem is based on the system 
dynamic regulation under its entry conditions: the depicting point occurs to be in 
some attractor’s basin within the state space. 

Both ways of the system regulation are possible in evolving models: we will 
survey the parametric way of such regulation below. Let’s take some universal 
‘reaction-diffusion’ model as a base, which model can be reduced to a system of 
Lotka—Volterra differential equations within the limit of complete interfusion and 
can create a series of comforts. The evolving model analyzed has a universal 
character in principle. However, to be evident, let’s discuss a classical form of the 
‘reaction-diffusion’ model in its biochemical interpretation. 

Half a century ago Alan Turing proposed the now famous reaction-diffusion 
system involving two chemicals9 to model biological pattern formation, and 
‘morphogenesis’. Since then, it has been extensively used in studying various 
speciec problems in mathematical biology10. In its general form the Turing system 
for modelling the evolution of the concentrations of two chemicals is given as 
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8 Bongard J.C. and Pfeifer R. (2001) Repeated Structure and Dissociation of Genotypic and PhenotypicComplexity 
in Artificial Ontogeny, in L. Spector et al (eds.), Proceedings of The Genetic and Evolutionary Computation 
Conference, GECCO-2001, San Francisco, CA, pp.829-836. 
9 Turing A.M. (1952) The chemical basis of morphogenesis // Phil. Trans. Roy. Soc. Lond., B237, 37-72. 
10 Murray J.D. Mathematical Biology, 2nd. ed. – Berlin: Springer Verlag, 1993. 



where ),( txUU r
≡  and V ),( txV r

≡  are the unknown concentrations, and  and  
the respective diffusion constants. The reactions are modeled by the functions f and 
g which are typically non-linear. Turing formalised this idea to abstract chemicals 
in an environment. To model this it is necessary to describe the concentrations of 
these chemicals over space and time. The interactions between the chemicals can 
then be seen as functions applied to the current concentrations. Using such a 
system it is possible by means of diffusion and reaction to generate very diverse 
pattern formation systems. The name of this type of pattern formation system is 
reaction-diffusion system, as the two key elements in the pattern formation are the 
long-range effect of diffusion and purely local reaction interactions. Diffusion is 
the relatively slow mechanism employed by nature to equalise the concentrations 
of a chemical over space. Reaction is a much faster, and specifically local effect 
between two chemicals. When we combine these simple mechanisms and choose 
the parameters of the reaction and diffusion right, it is possible to simulate and 
describe many (dynamic or static) pattern formation mechanisms. 

uD vD

With a reaction-diffusion system, we consider the dispersing two-species 
Lotka—Volterra model with temporally periodic intermittence of interspecific 
competitive relationships. We assume that the competition coefficient becomes a 
given positive constant and zero by turns periodically in time. 
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where U  and V  is the population density of both species at position 
x and time t. Parameters  and ,  and , 

),( txU≡ ),( txV≡

uD vD ur vr uα  and vα  are all positive, which 
mean respectively the diffusion coefficient to indicate the mobility, the intrinsic 
growth rate to give the maximal reproductive capacity, and the intra-specific 
competition coefficient to indicate the strength of density effect from the other 
individuals of same species. Functions of time )(tuvuv ββ ≡  and )(tvuvu ββ ≡

)( Ttuv

 introduce 
the inter-specific competitive interaction between populations of species 1 and 2. 
These functions is now de.ned as regorously periodic in time: )(tuvββ =+  for 
any  with a given positive constant T. 0≥t

Then, as one can show, in the presence of the ‘best’ several modes, the 
formed system is to select accidentally one of the patterns corresponding to those 
modes (depending on the fluctuations of all the modes’ initial concentrations). 

The classical scalar form of Lotka—Volterra equation looks as follows11: 
(6)    . )(*)(*)1()1( 2 txncompetitiotxdeathbirthtx −−+=+
Switching to such designations as ncompetitiobdeathbirtha =−+= ,1

]1,0[
, implying that x 

depends on t, and admitting that ∈x , we receive a formula analogous to the 
self-mapping of a square interval, see (1). 

                                                 
11 Sorin S. (1997) Generalized Lotka—Volterra (GLV) models and generic emergence of scaling laws in stock 
markets. – Budapest: Econophysics (Kluver Academic Press); eds. Imre Kondor and Janos Kertes. 



A minimum deviation of the approximating model from a preset DJIA time 
series (in terms of root-mean-square proximity) is implied here as the best 
approximation. Using the terms of the described recognition principle, the received 
approximating model is the mode having a maximum selective value. 

Naturally, it does not guarantee the model from its inadequacy to the real 
DJIA process caused by the market, at least on long-term intervals and with equal 
exactness. Generally speaking, before we start discussing the received real data, 
one should reconsider the very assumptions, since they were taken in the interests 
of the model rather than of interpreting the real data, which are, in fact, strongly 
different from the model. 

 
Discussion of the data 

 
As an example of a DJIA time series, let’s consider the results of applying 

the described mode selection principle with the use of ‘reaction-diffusion’ systems. 
In accordance with both the model and the algorithm described above, a mode 
depicted on Fig. 3 was selected from the indicated time series. 

Fig. 3. Result of the mode selection from DJIA time series. 
 
The main advantage of the method described above is its robustness. The 

latter reveals itself in the fact that no additions of new data to the DJIA time series, 
both from the ‘right’ and from the ‘left’, change the mode. For example, changes 



of the mode provided by the DJIA data update for the last three months are 
virtually within the thickness of the line on the graph. 

Another advantage of the selected mode is that it is quite a successful 
predictive model. For example, local extrema of this curve, which could be 
observed in reality during several months, meet the changes in the market 
sentiment quite exactly. Following the graph on Fig. 4, a moderately increasing 
tendency, which received its essential development recently but had been 
forecasted on the data that were known in March, is particularly obvious. However, 
in relation to this solution, let’s note the business cycle estimation robustness. 

Fig. 4. Analysis of result of the mode selection from DJIA time series. 
 
Disadvantages of the selected mode are also completely obvious: the curve 

does not approximate the data in the sense of root-mean-square proximity; 
provided that this shift looks like a systematic error. However, both disadvantages 
are correctable. As a matter of fact, they are caused by a false attitude in selecting 
the mode from the process description, which selection is obviously not continual 
on the time interval being considered. Self-organization of strongly dissipative 
systems which are a source of DJIA data is a quality sporadically leading them to 
rather deep kinds of restructuring. The break in the cycle continuity is a result of 
any restructuring, which fact does not allow us to insist on a hypothesis (assumed 
by default) that any business cycle is an endlessly renewable continuous curve. In 
other words, the result is a compromise between the reality and the hypothesis. 

Generally speaking, it is the analysis of the business cycle continuity breaks 
that is the most interesting part of the task on using the model of a ‘reaction-
diffusion’ type in the business cycle analysis; provided that this model is 



potentially useless therefor. However, this topic lies outside the bounds of this 
research, though being a natural course in the further development of the related 
investigations. Thus, two-species Lotka—Volterra model with temporally periodic 
intermittence of interspecific competitive relationships allows to identify a 
business cycle in the form of a superposition of the solutions. This solution is 
obviously defective since it doesn’t imply any unavoidable alterations of a business 
process over an analyzed interval. 


